CS5760: Computer Vision Noah Snavely

Lecture 7: Image alignment

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

Reading

• Szeliski: Chapter 6.1

Announcements

- Project 2 is out
 - To be done in groups of 2

– Due March 10

- Project 1 artifact voting
 - Please submit your votes by Wednesday at 11:59pm

Project 2 Demo

2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c} I & t \end{array} igg]_{2 imes 3} igg]$	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left. s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} m{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are a nested set of groups

• Closed under composition and inverse is a member

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror
- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b\\c & d\end{bmatrix} \begin{bmatrix} e & f\\g & h\end{bmatrix} \begin{bmatrix} i & j\\k & l\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Affine Transformations

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations

$$\begin{bmatrix} x'\\y'\\w\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1\end{bmatrix}\begin{bmatrix} x\\y\\w\end{bmatrix}$$

- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Homographies

Alternate formulation for homographies

$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$

where the length of the vector $[h_{00} h_{01} \dots h_{22}]$ is 1

Image Warping

Given a coordinate xform (x',y') = T(x,y) and a source image f(x,y), how do we compute an xformed image g(x',y') = f(T(x,y))?

Forward Warping

- Send each pixel f(x) to its corresponding location (x',y') = T(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?

Forward Warping

- Send each pixel f(x,y) to its corresponding location x' = h(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?
 - Answer: add "contribution" to several pixels, normalize later (*splatting*)
 - Can still result in holes

Inverse Warping

- Get each pixel g(x',y') from its corresponding location (x,y) = T⁻¹(x,y) in f(x,y)
 - Requires taking the inverse of the transform
 - What if pixel comes from "between" two pixels?

Inverse Warping

- Get each pixel g(x') from its corresponding location x' = h(x) in f(x)
 - What if pixel comes from "between" two pixels?
 - Answer: *resample* color value from *interpolated* (*prefiltered*) source image

Interpolation

- Possible interpolation filters:
 - nearest neighbor
 - bilinear
 - bicubic (interpolating)
 - sinc
- Needed to prevent "jaggies" and "texture crawl"

(with prefiltering)

Questions?

Computing transformations

- Given a set of matches between images A and B
 - How can we compute the transform T from A to B?

- Find transform T that best "agrees" with the matches

Computing transformations

Simple case: translations

How do we solve for $(\mathbf{x}_t, \mathbf{y}_t)$?

 $\mathbf{x}_t,$

Displacement of match i =
$$(\mathbf{x}'_i - \mathbf{x}_i, \mathbf{y}'_i - \mathbf{y}_i)$$

$$(\mathbf{x}_t, \mathbf{y}_t) = \left(\frac{1}{n}\sum_{i=1}^n \mathbf{x}'_i - \mathbf{x}_i, \frac{1}{n}\sum_{i=1}^n \mathbf{y}'_i - \mathbf{y}_i\right)$$

Another view (x_1, y_1) (x_1, y_1) (x_2, y_2) (x_2, y_2) (x_2, y_2) (x_1, y_1) (x_1, y_1) (x_1, y_1) (x_1, y_1) (x_1, y_1) (x_2, y_2) (x_2, y_2) (x_1, y_1) (x_2, y_2) (x_2, y_2) (x_1, y_2) (x_2, y_2) (x_1, y_2) (x_2, y_2) (x_1, y_2) (x_2, y_2) (x_1, y_2)

$$egin{array}{rcl} \mathbf{x}_i + \mathbf{x_t} &=& \mathbf{x}_i' \ \mathbf{y}_i + \mathbf{y_t} &=& \mathbf{y}_i' \end{array}$$

- System of linear equations
 - What are the knowns? Unknowns?
 - How many unknowns? How many equations (per match)?

Another view (x_1, y_1) (x_1, y_1) (x_2, y_2) (x_2, y_2) (x_2, y_2) (x_1, y_1) (x_1, y_1) (x_1, y_1) (x_1, y_1) (x_1, y_1) (x_2, y_2) (x_2, y_2) (x_1, y_1) (x_2, y_2) (x_2, y_2) (x_1, y_2) (x_2, y_2) (x_1, y_2) (x_2, y_2) (x_1, y_2) (x_2, y_2) (x_1, y_2)

$$egin{array}{rll} \mathbf{x}_i + \mathbf{x_t} &=& \mathbf{x}'_i \ \mathbf{y}_i + \mathbf{y_t} &=& \mathbf{y}'_i \end{array}$$

- Problem: more equations than unknowns
 - "Overdetermined" system of equations
 - We will find the *least squares* solution

Least squares formulation

• For each point $(\mathbf{x}_i, \mathbf{y}_i)$

$$egin{array}{rcl} \mathbf{x}_i + \mathbf{x_t} &=& \mathbf{x}_i' \ \mathbf{y}_i + \mathbf{y_t} &=& \mathbf{y}_i' \end{array}$$

• we define the *residuals* as

$$r_{\mathbf{x}_i}(\mathbf{x}_t) = (\mathbf{x}_i + \mathbf{x}_t) - \mathbf{x}'_i$$

$$r_{\mathbf{y}_i}(\mathbf{y}_t) = (\mathbf{y}_i + \mathbf{y}_t) - \mathbf{y}'_i$$

Least squares formulation

• Goal: minimize sum of squared residuals

$$C(\mathbf{x}_t, \mathbf{y}_t) = \sum_{i=1}^n \left(r_{\mathbf{x}_i}(\mathbf{x}_t)^2 + r_{\mathbf{y}_i}(\mathbf{y}_t)^2 \right)$$

- "Least squares" solution
- For translations, is equal to mean (average) displacement

Least squares formulation

Can also write as a matrix equation

Least squares

At = b

• Find **t** that minimizes

$$||\mathbf{At} - \mathbf{b}||^2$$

• To solve, form the normal equations

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{t} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
$$\mathbf{t} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Questions?

Least squares: linear regression

Linear regression

Linear regression

Affine transformations

- How many unknowns?
- How many equations per match?
- How many matches do we need?

Affine transformations

• Residuals:

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i$$

$$r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$$

• Cost function:

$$C(a, b, c, d, e, f) = \sum_{i=1}^{n} \left(r_{x_i}(a, b, c, d, e, f)^2 + r_{y_i}(a, b, c, d, e, f)^2 \right)$$

Affine transformations

Matrix form

Homographies

To unwarp (rectify) an image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
 - linear in unknowns: w and coefficients of H
 - H is defined up to an arbitrary scale factor
 - how many points are necessary to solve for H?

Solving for homographies

$$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$\begin{aligned} x'_i &= \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}} \\ y'_i &= \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}} \end{aligned} \text{ Not linear!}$$

 $\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$

Solving for homographies

 $\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$

Defines a least squares problem: minimize $\|Ah - 0\|^2$

- Since $\, h \,$ is only defined up to scale, solve for unit vector $\, \hat{h} \,$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Recap: Two Common Optimization Problems

Questions?

Image Alignment Algorithm

Given images A and B

- 1. Compute image features for A and B
- 2. Match features between A and B
- 3. Compute homography between A and B using least squares on set of matches

What could go wrong?

Robustness

• Let's consider a simpler example... linear regression

Problem: Fit a line to these datapoints

• How can we fix this?

We need a better cost function...

• Suggestions?

Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
 - "Agree" = within a small distance of the line
 - I.e., the inliers to that line
- For all possible lines, select the one with the largest number of inliers

Counting inliers

Counting inliers

Counting inliers

How do we find the best line?

 Unlike least-squares, no simple closed-form solution

- Hypothesize-and-test
 - Try out many lines, keep the best one
 - Which lines?

Translations

<u>RAndom SAmple Consensus</u>

Select one match at random, count inliers

<u>RAndom SAmple Consensus</u>

Select another match at random, count inliers

<u>RAndom SAmple Consensus</u>

Output the translation with the highest number of inliers

- Idea:
 - All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
 - RANSAC only has guarantees if there are < 50% outliers
 - "All good matches are alike; every bad match is bad in its own way."

– Tolstoy via Alyosha Efros

- Inlier threshold related to the amount of noise we expect in inliers
 - Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
 - Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
 - How many rounds do we need?

- Back to linear regression
- How do we generate a hypothesis?

- Back to linear regression
- How do we generate a hypothesis?

- General version:
 - 1. Randomly choose *s* samples
 - Typically s = minimum sample size that lets you fit a model
 - 2. Fit a model (e.g., line) to those samples
 - 3. Count the number of inliers that approximately fit the model
 - 4. Repeat *N* times
 - 5. Choose the model that has the largest set of inliers

How many rounds?

- If we have to choose *s* samples each time
 - with an outlier ratio e
 - and we want the right answer with probability p

	proportion of outliers <i>e</i>								
S	5%	10%	20%	25%	30%	40%	50%		
2	2	3	5	6	7	11	17		
3	3	4	7	9	11	19	35		
4	3	5	9	13	17	34	72		
5	4	6	12	17	26	57	146		
6	4	7	16	24	37	97	293		
7	4	8	20	33	54	163	588		
8	5	9	26	44	78	272	1177		

p = 0.99

How big is s?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+ \cdots$	
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left[\left. s oldsymbol{R} \right oldsymbol{t} \right]_{2 imes 3} ight. ight.$	4	angles $+ \cdots$	\Diamond
affine	$\left[egin{array}{c} m{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

RANSAC pros and cons

• Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
 - Parameters to tune
 - Sometimes too many iterations are required
 - Can fail for extremely low inlier ratios
 - We can often do better than brute-force sampling

Final step: least squares fit

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins

- There are many other types of voting schemes
 - E.g., Hough transforms...

Panoramas

- Now we know how to create panoramas!
- Given two images:
 - Step 1: Detect features
 - Step 2: Match features
 - Step 3: Compute a homography using RANSAC
 - Step 4: Combine the images together (somehow)
- What if we have more than two images?

Can we use homographies to create a 360 panorama?

 In order to figure this out, we need to learn what a camera is

360 panorama

Questions?