CS5670: Computer Vision

Noah Snavely

Lecture 6: Feature matching

Reading

• Szeliski: 4.1

Announcements

Project 1 artifact voting online shortly

Project 2 to be released soon

Quiz at the beginning of class today

Local features: main components

Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = [x_1^{(1)}, \dots, x_d^{(1)}]$ each interest point.

Matching: Determine correspondence between descriptors in two views

SIFT Example

Which features match?

Feature matching

Given a feature in I₁, how to find the best match in I₂?

- 1. Define distance function that compares two descriptors
- 2. Test all the features in I₂, find the one with min distance

Feature distance

How to define the difference between two features f_1 , f_2 ?

- Simple approach: L₂ distance, | |f₁ f₂ | | (aka SSD)
- can give good scores to ambiguous (incorrect) matches

Feature distance

How to define the difference between two features f_1 , f_2 ?

- Better approach: ratio distance = ||f₁ f₂ || / || f₁ f₂' ||
 - f₂ is best SSD match to f₁ in l₂
 - f_2' is 2^{nd} best SSD match to f_1 in I_2
 - gives large values for ambiguous matches

Feature distance

 Does the SSD vs "ratio distance" change the best match to a given feature in image 1?

Feature matching example

51 matches (thresholded by ratio score)

Feature matching example

58 matches (thresholded by ratio score)

Evaluating the results

How can we measure the performance of a feature matcher?

feature distance

True/false positives

How can we measure the performance of a feature matcher?

feature distance

The distance threshold affects performance

- True positives = # of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
- False positives = # of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?

Evaluating the results

How can we measure the performance of a feature matcher?

Evaluating the results

How can we measure the performance of a feature matcher?

Available at a web site near you...

- For most local feature detectors, executables are available online:
 - http://www.robots.ox.ac.uk/~vgg/research/affine
 - http://www.cs.ubc.ca/~lowe/keypoints/
 - http://www.vision.ee.ethz.ch/~surf

Questions?