CS5670: Computer Vision Noah Snavely

Lecture 2: Edge detection

From Sandlot Science

Announcements

- Project 1 (Hybrid Images) is now on the course webpage (see "Projects" link)
 - Due Wednesday, Feb 15, by 11:59pm
 - Artifact due Friday, Feb 15, by 11:59pm
 - To be done individually
 - Voting system for favorite artifacts (with small amount of extra credit)
 - Files due by CMS
 - We will provide a course VM for you to run the assignments

Project 1: Hybrid Images

Project 1 Demo

Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Origin of Edges

Edges are caused by a variety of factors

Images as functions...

 Edges look like steep cliffs

Characterizing edges

 An edge is a place of rapid change in the image intensity function

Image derivatives

- How can we differentiate a digital image F[x,y]?
 - Option 1: reconstruct a continuous image, f, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?

Image gradient

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

Source: Steve Seitz

Image gradient

Source: L. Lazebnik

Effects of noise

Noisy input image

Where is the edge?

Source: S. Seitz

Solution: smooth first

To find edges, look for peaks in $\frac{d}{dx}(f*h)$

Source: S. Seitz

Associative property of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*h) = f*\frac{d}{dx}h$
- This saves us one operation:

The 1D Gaussian and its derivatives

$$G_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

$$G_{\sigma}'(x) = \frac{d}{dx} G_{\sigma}(x) = -\frac{1}{\sigma} \left(\frac{x}{\sigma}\right) G_{\sigma}(x)$$

2D edge detection filters

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$

derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

Derivative of Gaussian filter

The Sobel operator

Common approximation of derivative of Gaussian

<u>1</u> 8	1	2	1
	0	0	0
	-1	-2	-1
$\overline{s_y}$			

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient magnitude

Sobel operator: example

Source: Wikipedia

Image with Edge

Edge Location

Image + Noise

Derivatives detect edge and noise

Smoothed derivative removes noise, but blurs edge

Example

original image (Lena)

Finding edges

gradient magnitude

Finding edges

thresholding

Get Orientation at Each Pixel

- Threshold at minimum level
- Get orientation

theta = atan2(gy, gx)

Non-maximum supression

- Check if pixel is local maximum along gradient direction
 - requires interpolating pixels p and r

Before Non-max Suppression

After Non-max Suppression

Finding edges

thresholding

Finding edges

thinning

(non-maximum suppression)

Canny edge detector

MATLAB: edge (image, 'canny')

1. Filter image with derivative of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression

- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

Canny edge detector

 Still one of the most widely used edge detectors in computer vision

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Depends on several parameters:

 σ : width of the Gaussian blur

high threshold low threshold

Canny edge detector

- ullet The choice of ${oldsymbol{\sigma}}$ depends on desired behavior
 - large σ detects "large-scale" edges
 - small σ detects fine edges

Scale space (Witkin 83)

- Properties of scale space (w/ Gaussian smoothing)
 - edge position may shift with increasing scale (σ)
 - two edges may merge with increasing scale
 - an edge may *not* split into two with increasing scale

Questions?