Lecture 1: Images and image filtering



© 2006 Aude Oliva and Antonio Torralba

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

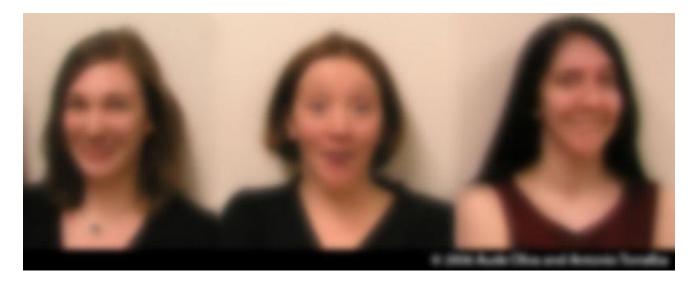
Lecture 1: Images and image filtering

Hybrid Images, Oliva et al., <u>http://cvcl.mit.edu/hybridimage.htm</u>

Lecture 1: Images and image filtering

Hybrid Images, Oliva et al., <u>http://cvcl.mit.edu/hybridimage.htm</u>

Lecture 1: Images and image filtering



Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

Reading

• Szeliski, Chapter 3.1-3.2

Announcements

- You should all be enrolled in Piazza and CMS
- Let me know if you need to be added
- Office hours
 - Noah
 - Thursday 9:30-11am (Baron)
 - Zhengqi
 - Tuesday 4:15-5:45pm (Bear Hug)
 - Thursday 4:15-5:45pm *or* Friday 2-3:30 (preferences?)

Announcements

 Project 1 (Hybrid Images) will be released this week or early next week

The state of Computer Vision and AI: we are really, really far.

The picture above is funny.

But for me it is also one of those examples that make me sad about the outlook for AI and for Computer Vision. What would it take for a computer to understand this image as you or I do? I challenge you to think explicitly of all the pieces of knowledge that have to fall in place for it to make sense. Here is my short attempt:

- · You recognize it is an image of a bunch of people and you understand they are in a hallway
- You recognize that there are 3 mirrors in the scene so some of those people are "fake" replicas from different viewpoints.
- You recognize Obama from the few pixels that make up his face. It helps that he is in his suit and that he is surrounded by other people with suits.
- You recognize that there's a person standing on a scale, even though the scale occupies only very few
 white pixels that blend with the background. But, you've used the person's pose and knowledge of how
 people interact with objects to figure it out.
- You recognize that Obama has his foot positioned just slightly on top of the scale. Notice the language I'm
 using: It is in terms of the 3D structure of the scene, not the position of the leg in the 2D coordinate system
 of the image.
- You know how physics works: Obama is leaning in on the scale, which applies a force on it. Scale
 measures force that is applied on it, that's how it works => it will over-estimate the weight of the person
 standing on it.
- The person measuring his weight is not aware of Obama doing this. You derive this because you know his
 pose, you understand that the field of view of a person is finite, and you understand that he is not very
 likely to sense the slight push of Obama's foot.
- You understand that people are self-conscious about their weight. You also understand that he is reading
 off the scale measurement, and that shortly the over-estimated weight will confuse him because it will
 probably be much higher than what he expects. In other words, you reason about implications of the
 events that are about to unfold seconds after this photo was taken, and especially about the thoughts and
 how they will develop inside people's heads. You also reason about what pieces of information are
 available to people.
- There are people in the back who find the person's imminent confusion funny. In other words you are
 reasoning about state of mind of people, and their view of the state of mind of another person. That's
 getting frighteningly meta.
- Finally, the fact that the perpetrator here is the president makes it maybe even a little more funnier. You
 understand what actions are more or less likely to be undertaken by different people based on their status
 and identity.

The state of Computer Vision and AI: we are really, really far.

Oct 22, 2012

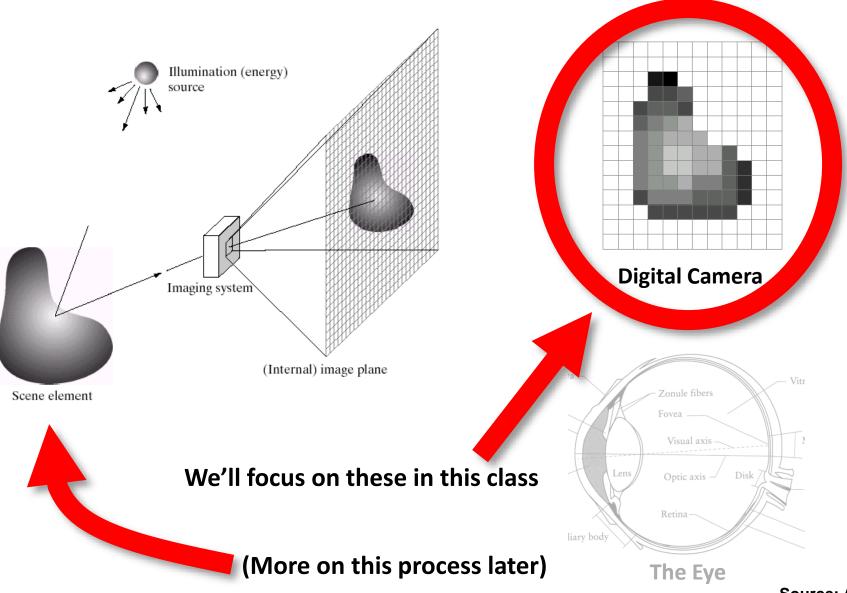
The picture above is funny.

But for me it is also one of those examples that make me sad about the outlook for AI and for Computer Vision. What would it take for a computer to understand this image as you or I do? I challenge you to think explicitly of all the pieces of knowledge that have to fall in place for it to make sense. Here is my short attempt:

- · You recognize it is an image of a bunch of people and you understand they are in a hallway
- You recognize that there are 3 mirrors in the scene so some of those people are "fake" replicas from different viewpoints.
- You recognize Obama from the few pixels that make up his face. It helps that he is in his suit and that he is surrounded by other people with suits.
- You recognize that there's a person standing on a scale, even though the scale occupies only very few
 white pixels that blend with the background. But, you've used the person's pose and knowledge of how
 people interact with objects to figure it out.
- You recognize that Obama has his foot positioned just slightly on top of the scale. Notice the language I'm using: It is in terms of the 3D structure of the scene, not the position of the leg in the 2D coordinate system of the image.
- You know how physics works: Obama is leaning in on the scale, which applies a force on it. Scale
 measures force that is applied on it, that's how it works => it will over-estimate the weight of the person
 standing on it.
- The person measuring his weight is not aware of Obama doing this. You derive this because you know his
 pose, you understand that the field of view of a person is finite, and you understand that he is not very
 likely to sense the slight push of Obama's foot.
- You understand that people are self-conscious about their weight. You also understand that he is reading
 off the scale measurement, and that shortly the over-estimated weight will confuse him because it will
 probably be much higher than what he expects. In other words, you reason about implications of the
 events that are about to unfold seconds after this photo was taken, and especially about the thoughts and
 how they will develop inside people's heads. You also reason about what pieces of information are
 available to people.
- There are people in the back who find the person's imminent confusion funny. In other words you are
 reasoning about state of mind of people, and their view of the state of mind of another person. That's
 getting frighteningly meta.

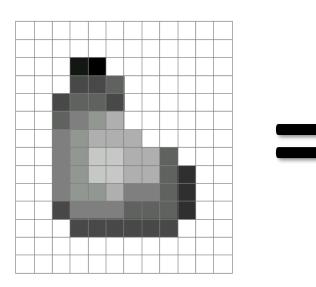
-

Finally, the fact that the perpetrator here is the president makes it maybe even a little more funnier. You
understand what actions are more or less likely to be undertaken by different people based on their status
and identity.



Source: A. Efros

• A grid (matrix) of intensity values



255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

(common to use one byte per value: 0 = black, 255 = white)

- We can think of a (grayscale) image as a function, *f*, from R² to R:
 - -f(x,y) gives the **intensity** at position (x,y)

<u>snoop</u>

 $f(x, y) \\
 x \\
 x$

<u>3D view</u>

 A digital image is a discrete (sampled, quantized) version of this function

v

Image transformations

 As with any function, we can apply operators to an image

• We'll talk about a special kind of operator, convolution (linear filtering)

Filters

- Filtering
 - Form a new image whose pixels are a combination of the original pixels
- Why?
 - To get useful information from images
 - E.g., extract edges or contours (to understand shape)
 - To enhance the image
 - E.g., to remove noise
 - E.g., to sharpen to "enhance image" a la CSI

Canonical Image Processing problems

- Image Restoration
 - denoising
 - deblurring
- Image Compression
 - JPEG, JPEG2000, MPEG..
- Computing Field Properties
 - optical flow
 - disparity
- Locating Structural Features
 - corners
 - edges

Question: Noise reduction

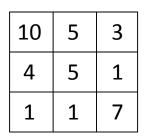
 Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

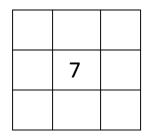
What's the next best thing?

Image filtering

• Modify the pixels in an image based on some function of a local neighborhood of each pixel



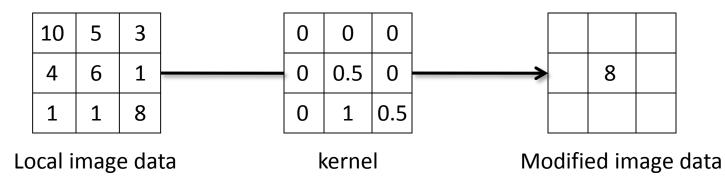
Local image data



Modified image data

Linear filtering

- One simple version of filtering: linear filtering (cross-correlation, convolution)
 - Replace each pixel by a linear combination (a weighted sum) of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")



Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \ge 2k+1$), and G be the output image $G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i+u, j+v]$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

Convolution

• Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

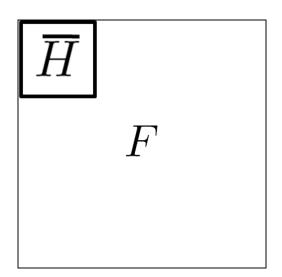
$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]$$

This is called a **convolution** operation:

$$G = H * F$$

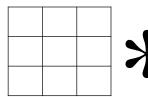
Convolution is commutative and associative

Convolution



Adapted from F. Durand

Mean filtering



H

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

G

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	_				

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10				

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20			

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

G[x, y]

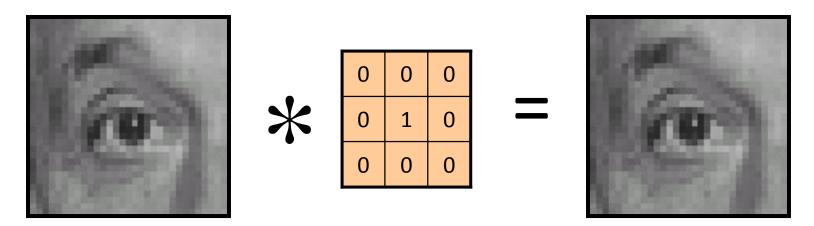
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		

G[x, y]

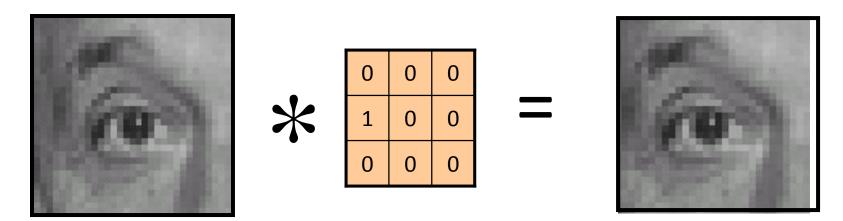
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	



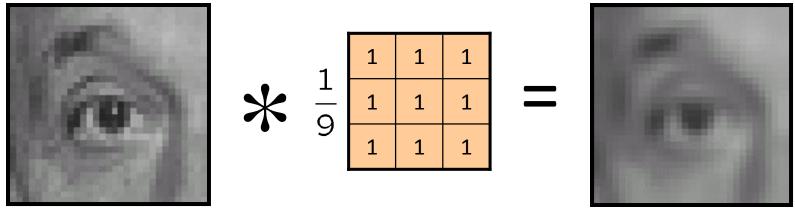
Original

Identical image



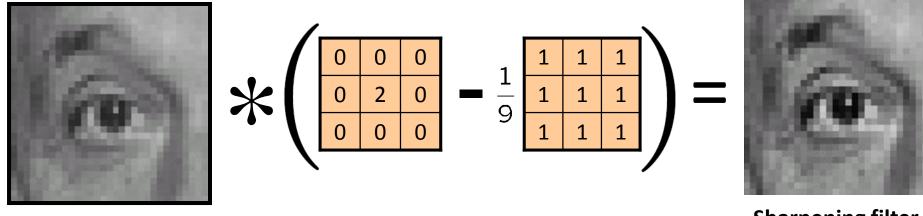
Original

Shifted left By 1 pixel



Original

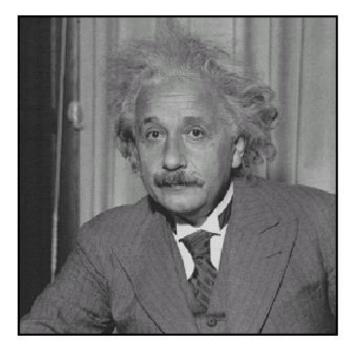
Blur (with a mean filter)



Original

Sharpening filter (accentuates edges)

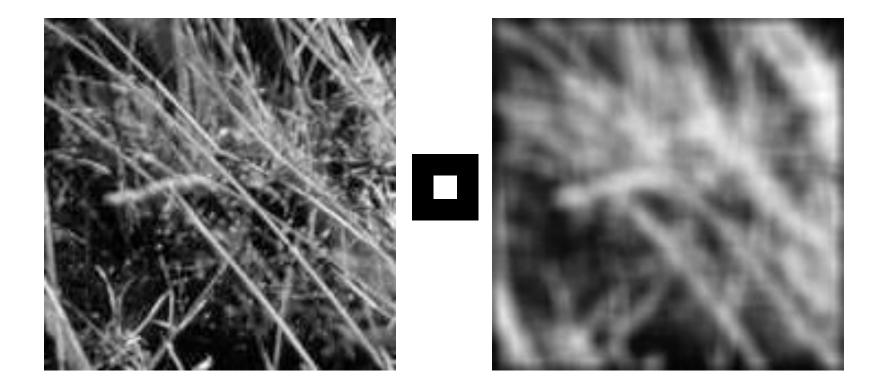
Sharpening



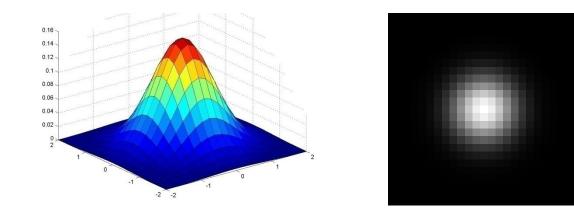
before

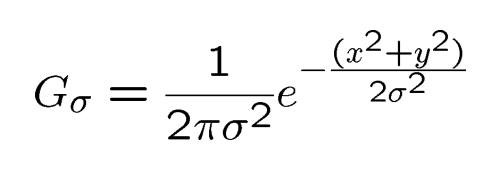
after

Smoothing with box filter revisited

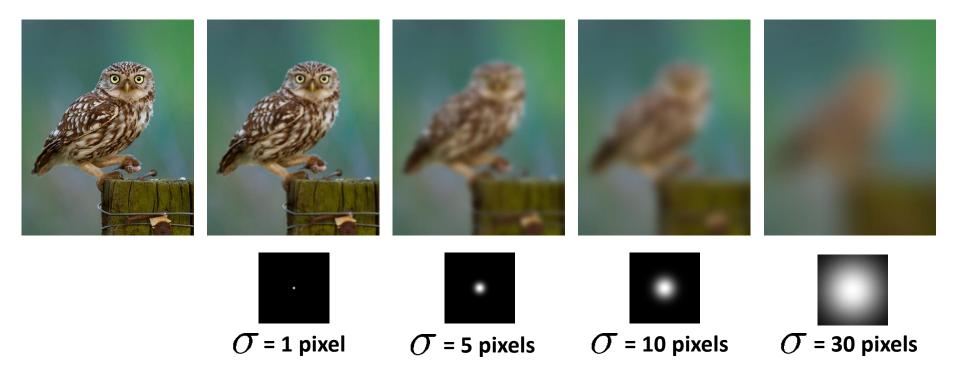


Gaussian Kernel

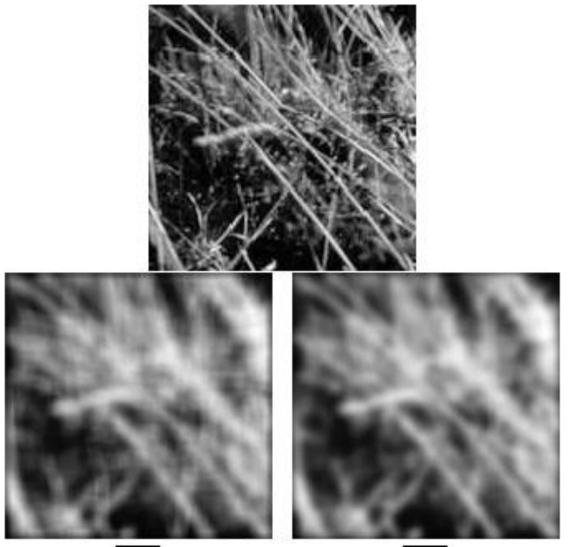




Gaussian filters

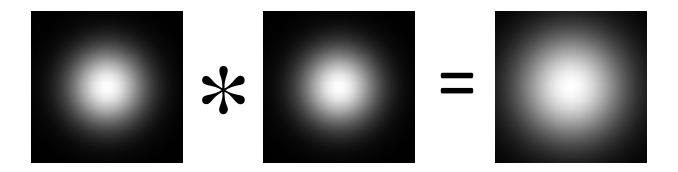


Mean vs. Gaussian filtering



Gaussian filter

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian



– Convolving twice with Gaussian kernel of width σ = convolving once with kernel of width $\sigma\sqrt{2}$

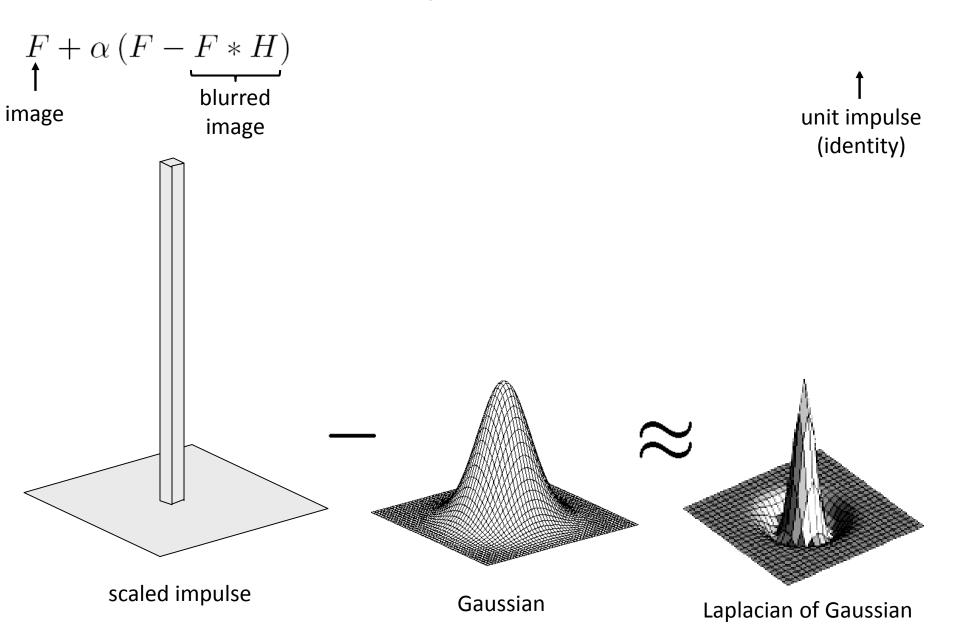
Sharpening revisited

• What does blurring take away?

Let's add it back:

Source: S. Lazebnik

Sharpen filter



Sharpen filter

"Optical" Convolution

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of an image.

Source: http://lullaby.homepage.dk/diy-camera/bokeh.html

Filters: Thresholding

 $g(m,n) = \begin{cases} 255, \ f(m,n) > A\\ 0 \quad otherwise \end{cases}$

Linear filters

• Is thresholding a linear filter?

Questions?