
CS5643 
13 Brief survey of fluid animation

Steve Marschner
Cornell University

Spring 2023

Fluid simulation landscape
Eulerian methods

• fluid properties are written down at points that stay
fixed while the fluid moves by

• more classical approach, easier to make accurate in
the limit, hard to make fast

Lagrangian methods
• fluid properties are written down at points that move

with the fluid

• can be simpler, easier to make fast, harder to achieve

high accuracy

Hybrid methods
• convert back and forth between Eulerian and

Lagrangian representations in hopes of getting the
advantages of both

Leonhard Euler
(1707–1783)

Joseph-Louis Lagrange
(1736–1813)

Outline
Elements of fluid mechanics

• reference: Bridson & Müller-Fischer SIGGRAPH course notes

Smoothed Particle Hydrodynamics
• the basic scheme for particle-based (Lagrangian) fluids

• particles represent bits of fluid mass

• interact via inter-particle forces

Grid based fluids
• represent fluid velocity and pressure on grids

• each timestep updates velocity and pressure fields

• operate in alternating advection (move along velocity) and projection (solve for pressure) steps

https://www.cs.ubc.ca/~rbridson/fluidsimulation/fluids_notes.pdf

Key ideas of fluid mechanics
Velocity

• blob at position will be at position at time

Pressure
• blob at position exerts force on a neighboring blob

Incompressibility
• water under most conditions and air under mild conditions do not appreciably compress

• thus pressure instantly adjusts to keep the volume density constant

Viscosity
• water an air have very little viscosity; honey or motor oil have higher viscosity

u(x)
x x + u(x)dt dt

p(x)
x p(x) dA

Material derivative
A quantity in a fluid can change for two reasons

• because different bits of fluid show up where we are looking

• because the actual properties of the bits of fluid are changing

Measuring what is changing about the fluid itself
• material derivative is the time derivative seen by a bug

riding with the fluid

Measuring what changes at a fixed observation point
• ordinary time derivative is the derivative seen by an

observer at a fixed position

E.g.: temperature gradient in 1D, steady fluid motion
• but

q

Dq/Dt

dq/dt

DT/Dt = 0 dT/dt = − (dT/dx)u(x)

Rules for fluid motion
…for incompressible fluids with negligible viscosity

First rule:
• consider a little blob of fluid with volume . It has mass .

• it experiences a net force from its neighbors of .

• it experiences a body force, e.g. due to gravity, of .

• the acceleration of this blob of fluid is governed by

- or

• in the limit as we have

- which is the momentum balance equation

f = ma
dV m = ρdV

−∇p(x) dV

mg

m
Du(x)

Dt
+ ∇p(x)dV = mg ρ

Du(x)
Dt

dV + ∇p(x) dV = ρg dV

dV → 0
Du(x)

Dt
+

1
ρ

∇p(x) = g

Rules for fluid motion
Second rule: conservation of mass

• since the density is constant, the flows into and out of a region must balance

- —by the divergence theorem

• this has to be true for all volumes so the velocity field is divergence free

-

∫∂Ω
u(x) ⋅ dn = 0 = ∫Ω

∇ ⋅ u(x) dx

∇ ⋅ u(x) = 0

Rules for fluid motion
So the equations that define the problem are

• these are the Euler equations for an incompressible and inviscid fluid 
(add viscosity and they are called Navier-Stokes equations)

Du(x)
Dt

+
1
ρ

p(x) = g

∇ ⋅ u(x) = 0

Discretizing the Euler equations
In some ways the grid-based Eulerian approach is the easiest to write down

We need to store velocity and store (or at least think about) pressure
• we will need to relate derivatives of pressure to velocity and vice versa

• it is convenient then to use a staggered rectangular grid

- associate with  
the cells of a regular grid

- associate components of  
with the edges of the grid

u(x) p(x)

p

u

M
at

th
ias

 M
ül

ler

Solving the Euler equations
Successful algorithms treat terms of Euler equations separately

• first solve to get from  

(advection step: move velocity along the velocity)

• next add to get from  
(velocity update: can also add other body forces if desired)

• finally solve for pressure and update to get  

(projection: ensure is divergence free)

Du
Dt

= 0 uA uk

g uB uA

du
dt

=
1
ρ

∇p uk+1

u

Grid fluid solver: advection step
For the advection step we want to be the velocity  

that the bit of fluid at had a time ago
• one approach: work out in terms of space and time derivatives of on the grid

- sadly this requires very small time steps for stability

• better approach: simply look where this bit of fluid was a time ago

- step backward by along the velocity vector

- sample (interpolate) the fluid velocity at that point to get

This approach is known as “semi-Lagrangian advection”
• it is unconditionally stable since it’s strictly interpolating; range of velocities gets smaller with

each step, never larger

• the same approach can be used for other quantities as well as the velocity itself

u(x)
x h

u

h
h

uA

Semi-Lagrangian advection

M
at

th
ias

 M
ül

ler

Trace back in time to a (non-grid)
sample location at the previous
time step

Compute sample location using
a simple Forward Euler step

To get the velocity vector
you need to interpolate the
components from the
staggered grid

To sample the previous
velocity you need to
linearly interpolate from
the corresponding
velocity grid

Velocity update
After the advection step we have new velocities everywhere

• they correspond to each bit of fluid flying straight

• no interaction between bits of fluid

• no concern for forces

First and simplest fix: add acceleration due to body forces
• — in practice for gravity only have to update the componentuB(x) = uA(x) + hg y

Velocity projection (pressure update)
After advection and velocity update, velocity field is broken

• it is supposed to be divergence free (since the fluid is incompressible)

• in an incompressible fluid the pressure acts to enforce this constraint

Last substep is to solve for the pressure that will cause

• we want a pressure field so that

• this expands to where is the Laplacian of

• this is a Poisson problem and there are good methods to solve it

• result is the final for the next timestep 
(pressure does not need to be saved)

∇ ⋅ u = 0

∇ ⋅ uk+1 = ∇ ⋅ (uB(x) −
h
ρ

∇p(x)) = 0

hΔp = − ρ∇ ⋅ uB Δp = ∇ ⋅ ∇p p

uk+1

Velocity projection (pressure update)

Grid simulator
Will need boundary conditions

• pressure = 0 (Neumann) conditions for free boundaries (open space)

• normal velocity = 0 (Dirichlet) conditions for solid boundaries (obstacles)

• require simple local changes in the pressure step

Those are all the pieces required
• often you’ll want to advect smoke density  

or temperature passively along with the fluid

• simple approximation: upward buoyancy force  

proportional to temperature

• demo by Matthias Müller

https://matthias-research.github.io/pages/tenMinutePhysics/17-fluidSim.html

Particle based fluids
A whole different approach to fluid simulation

• represent fluid variables on movable particles

• advect the particles with the velocity (ballistic motion)

• use inter-particle forces to manage pressure and viscosity

Key mathematical formulation: Smoothed Particle Hydrodynamics (SPH)
• methods originated in astrophysics in the 90s

• idea: define continuously varying quantities by blurring the particles

• sample these quantities at particle locations to compute forces

Defining a continuous field through smoothing
Use a smooth kernel

• popular choice:

• define kernel by radial falloff:

• example: fluid density

- — and let be the density at particle

• once we have density, define interpolants of any quantity by generalizing this as

-

• this provides machinery to define the terms in the Navier-Stokes equations

W(r) = W(∥r∥)

ρ(x) = ∑
i

miW(x − xi) ρi = ρ(xi) i

q(x) = ∑
i

mi

ρi
qiW(x − xi)

Computing forces in SPH
Divergence-free velocity is not exactly maintained

• this means we can’t assume no density variations

…but mass is exactly conserved
• they are particles, they can’t help it 

(so no need to worry about losing mass even with density fluctuations)

Particles behave like regular ballistic particles subject to forces

•

• the left hand side defines the particle acceleration

• SPH lets us compute the forces on the right hand side

• gravity (or other external forces) is easy

ρ
Du(x)

Dt
= − ∇p(x) + ρg

Computing the pressure force
Pressure exerts a force on each particle

• the pressure is a function of the nearby particles

• given pressure for each particle the interpolant is

-

• and its gradient is

-

• resulting in the force due to pressure on particle

-

pi

p(x) = ∑
i

mi

ρi
piW(x − xi)

∇p(x) = ∑
i

mi

ρi
pi ∇W(x − xi)

i

fp
i = − ∇p(xi) = − ∑

j

mj

ρj
pj ∇W(xi − xj)

Computing the pressure force
Symmetrized force is typically used

•

How to define pressures for the particles?
• simple: think of fluid as compressible and define pressure from density

• popular model —kind of like ideal gas law

• advantage: simplicity

• disadvantage: springiness (if is low) or numerical stiffness (if is high)

• more sophisticated method: use iterative solve to find incompressible velocities

fp
i = − ∇p(xi) = − ∑

j

mj

ρj

pi + pj

2
∇W(xi − xj)

p(x) = k(ρ(x) − ρ0)

k k

Early graphics SPH: real time c. 2003

M
at

th
ias

 M
ül

ler

Iteratively solving for pressure: predictive-corrective
incompressible SPH

• iterate within each timestep to find
pressures that lead to velocities
that lead to uniform density

• allows larger timesteps

• ultimately faster than the alternative

of using tiny simtesteps to
achieve sufficient pressure
uniformity

SPH with better pressure solve

Ba
rb

ar
a

So
len

th
ale

r

