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Fluid simulation landscape
Eulerian methods 

• fluid properties are written down at points that stay 
fixed while the fluid moves by


• more classical approach, easier to make accurate in 
the limit, hard to make fast


Lagrangian methods 
• fluid properties are written down at points that move 

with the fluid

• can be simpler, easier to make fast, harder to achieve 

high accuracy


Hybrid methods 
• convert back and forth between Eulerian and 

Lagrangian representations in hopes of getting the 
advantages of both

Leonhard Euler 
(1707–1783)

Joseph-Louis Lagrange  
(1736–1813)



Outline
Elements of fluid mechanics 

• reference: Bridson & Müller-Fischer SIGGRAPH course notes


Smoothed Particle Hydrodynamics 
• the basic scheme for particle-based (Lagrangian) fluids

• particles represent bits of fluid mass

• interact via inter-particle forces


Grid based fluids 
• represent fluid velocity and pressure on grids

• each timestep updates velocity and pressure fields

• operate in alternating advection (move along velocity) and projection (solve for pressure) steps

https://www.cs.ubc.ca/~rbridson/fluidsimulation/fluids_notes.pdf


Key ideas of fluid mechanics
Velocity   

• blob at position  will be at position  at time 


Pressure  
• blob at position  exerts force  on a neighboring blob


Incompressibility 
• water under most conditions and air under mild conditions do not appreciably compress

• thus pressure instantly adjusts to keep the volume density constant


Viscosity 
• water an air have very little viscosity; honey or motor oil have higher viscosity
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Material derivative
A quantity  in a fluid can change for two reasons 

• because different bits of fluid show up where we are looking

• because the actual properties of the bits of fluid are changing


Measuring what is changing about the fluid itself 
• material derivative  is the time derivative seen by a bug 

riding with the fluid


Measuring what changes at a fixed observation point 
• ordinary time derivative  is the derivative seen by an 

observer at a fixed position


E.g.: temperature gradient in 1D, steady fluid motion 
•  but 

q

Dq/Dt

dq/dt

DT/Dt = 0 dT/dt = − (dT/dx)u(x)



Rules for fluid motion
…for incompressible fluids with negligible viscosity 

First rule:  
• consider a little blob of fluid with volume .  It has mass .


• it experiences a net force from its neighbors of .


• it experiences a body force, e.g. due to gravity, of .

• the acceleration of this blob of fluid is governed by


-    or   


• in the limit as  we have


-    which is the momentum balance equation

f = ma
dV m = ρdV

−∇p(x) dV

mg

m
Du(x)

Dt
+ ∇p(x)dV = mg ρ

Du(x)
Dt

dV + ∇p(x) dV = ρg dV

dV → 0
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Rules for fluid motion
Second rule: conservation of mass 

• since the density is constant, the flows into and out of a region must balance


-    —by the divergence theorem


• this has to be true for all volumes so the velocity field is divergence free


-

∫∂Ω
u(x) ⋅ dn = 0 = ∫Ω

∇ ⋅ u(x) dx

∇ ⋅ u(x) = 0



Rules for fluid motion
So the equations that define the problem are 

• these are the Euler equations for an incompressible and inviscid fluid 
(add viscosity and they are called Navier-Stokes equations)

Du(x)
Dt

+
1
ρ

p(x) = g

∇ ⋅ u(x) = 0



Discretizing the Euler equations
In some ways the grid-based Eulerian approach is the easiest to write down 

We need to store velocity  and store (or at least think about) pressure  
• we will need to relate derivatives of pressure to velocity and vice versa

• it is convenient then to use a staggered rectangular grid


- associate  with  
the cells of a regular grid


- associate components of   
with the edges of the grid

u(x) p(x)

p

u

M
at

th
ias

 M
ül

ler



Solving the Euler equations
Successful algorithms treat terms of Euler equations separately 

• first solve  to get  from   

(advection step: move velocity along the velocity)


• next add  to get  from   
(velocity update: can also add other body forces if desired)


• finally solve for pressure and update  to get   

(projection: ensure  is divergence free)

Du
Dt

= 0 uA uk

g uB uA

du
dt

=
1
ρ

∇p uk+1

u



Grid fluid solver: advection step
For the advection step we want  to be the velocity  

that the bit of fluid at  had a time  ago 
• one approach: work out in terms of space and time derivatives of  on the grid


- sadly this requires very small time steps for stability


• better approach: simply look where this bit of fluid was a time  ago


- step backward by  along the velocity vector


- sample (interpolate) the fluid velocity at that point to get 


This approach is known as “semi-Lagrangian advection” 
• it is unconditionally stable since it’s strictly interpolating; range of velocities gets smaller with 

each step, never larger

• the same approach can be used for other quantities as well as the velocity itself

u(x)
x h

u

h
h

uA



Semi-Lagrangian advection
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Trace back in time to a (non-grid)  
sample location at the previous  
time step

Compute sample location using 
a simple Forward Euler step

To get the velocity vector  
you need to interpolate the  
components from the  
staggered grid

To sample the previous 
velocity you need to  
linearly interpolate from 
the corresponding  
velocity grid



Velocity update
After the advection step we have new velocities everywhere 

• they correspond to each bit of fluid flying straight

• no interaction between bits of fluid

• no concern for forces


First and simplest fix: add acceleration due to body forces 
•    — in practice for gravity only have to update the  componentuB(x) = uA(x) + hg y



Velocity projection (pressure update)
After advection and velocity update, velocity field is broken 

• it is supposed to be divergence free (since the fluid is incompressible)

• in an incompressible fluid the pressure acts to enforce this constraint


Last substep is to solve for the pressure that will cause  

• we want a pressure field so that 


• this expands to  where  is the Laplacian of 


• this is a Poisson problem and there are good methods to solve it


• result is the final  for the next timestep 
(pressure does not need to be saved)

∇ ⋅ u = 0

∇ ⋅ uk+1 = ∇ ⋅ (uB(x) −
h
ρ

∇p(x)) = 0

hΔp = − ρ∇ ⋅ uB Δp = ∇ ⋅ ∇p p

uk+1



Velocity projection (pressure update)



Grid simulator
Will need boundary conditions 

• pressure = 0 (Neumann) conditions for free boundaries (open space)

• normal velocity = 0 (Dirichlet) conditions for solid boundaries (obstacles)

• require simple local changes in the pressure step


Those are all the pieces required 
• often you’ll want to advect smoke density  

or temperature passively along with the fluid

• simple approximation: upward buoyancy force  

proportional to temperature

• demo by Matthias Müller

https://matthias-research.github.io/pages/tenMinutePhysics/17-fluidSim.html


Particle based fluids
A whole different approach to fluid simulation 

• represent fluid variables on movable particles

• advect the particles with the velocity (ballistic motion)

• use inter-particle forces to manage pressure and viscosity


Key mathematical formulation: Smoothed Particle Hydrodynamics (SPH) 
• methods originated in astrophysics in the 90s

• idea: define continuously varying quantities by blurring the particles

• sample these quantities at particle locations to compute forces



Defining a continuous field through smoothing
Use a smooth kernel 

• popular choice:


• define kernel by radial falloff: 

• example: fluid density


-    — and let  be the density at particle 


• once we have density, define interpolants of any quantity by generalizing this as


- 


• this provides machinery to define the terms in the Navier-Stokes equations

W(r) = W(∥r∥)

ρ(x) = ∑
i

miW(x − xi) ρi = ρ(xi) i

q(x) = ∑
i

mi

ρi
qiW(x − xi)



Computing forces in SPH
Divergence-free velocity is not exactly maintained 

• this means we can’t assume no density variations


…but mass is exactly conserved 
• they are particles, they can’t help it 

(so no need to worry about losing mass even with density fluctuations)


Particles behave like regular ballistic particles subject to forces 

• 


• the left hand side defines the particle acceleration

• SPH lets us compute the forces on the right hand side

• gravity (or other external forces) is easy

ρ
Du(x)

Dt
= − ∇p(x) + ρg



Computing the pressure force
Pressure exerts a force on each particle 

• the pressure is a function of the nearby particles


• given pressure  for each particle the interpolant is


- 


• and its gradient is


- 


• resulting in the force due to pressure on particle 


-

pi

p(x) = ∑
i

mi

ρi
piW(x − xi)

∇p(x) = ∑
i

mi

ρi
pi ∇W(x − xi)

i

fp
i = − ∇p(xi) = − ∑

j

mj

ρj
pj ∇W(xi − xj)



Computing the pressure force
Symmetrized force is typically used 

•



How to define pressures for the particles? 
• simple: think of fluid as compressible and define pressure from density


• popular model    —kind of like ideal gas law


• advantage: simplicity


• disadvantage: springiness (if  is low) or numerical stiffness (if  is high)

• more sophisticated method: use iterative solve to find incompressible velocities

fp
i = − ∇p(xi) = − ∑

j

mj

ρj

pi + pj

2
∇W(xi − xj)

p(x) = k(ρ(x) − ρ0)

k k





Early graphics SPH: real time c. 2003
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Iteratively solving for pressure: predictive-corrective 
incompressible SPH

• iterate within each timestep to find 
pressures that lead to velocities 
that lead to uniform density


• allows larger timesteps 

• ultimately faster than the alternative 

of using tiny simtesteps to 
achieve sufficient pressure 
uniformity



SPH with better pressure solve
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