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Overview
Kinematics of rigid bodies (emphasis on 2D case) 

• state includes position and rotation for each body


Dynamics of a free body 
• how to compute time derivative of state

• forces, torques, impulses


Rigid body collisions 
• isolated body-obstacle collision

• isolated body-body collision



Rigid body state
A position 

• I’ll call it 

• it’s the position of the center of mass (keeps 

things simpler)


A rotation 
• can be represented with a rotation matrix 

• defines the mapping from the body’s local 

space to world space:


-   —   is in world space,  
is in body space


x

R

r = x + Rrb r rb



Representing rigid body state
In 2D 

•  is simple (2 numbers)


•  so let’s write down 


• so state has 4 numbers but 3 DoF since 


In 3D 
•  is simple (3 numbers)

• rotation is best represented as a unit quaternion


- 


- 


• so state has 7 DoF but 6 DoF since 

x

R = [c −s
s c ] q = [c

s]
∥q∥ = 1

x

q = [w x y z]T

R(t) = R(q(t))

∥q∥ = 1



Rigid body velocity
Motion of a point on a moving body 

•    (  is not changing)


• 


• so  maps a body-space point to the 
rotational part of its world-space velocity

r(t) = x + R(t)rb rb
·r(t) = ·r(t) + ·R(t)rb = v(t) + ·R(t)rb

·R



Angular velocity in 2D
The matrix  is special, just like  

• we also don’t need to write down the whole matrix

• look at 2D case with a steady rotation


• conclusion:  where 


•  is called the angular velocity


• since  is the first column of , 

·R R

·R = ω×R ω× = [0 −ω
ω 0 ]

ω

q R ·q = ω×q = ω × q



Rigid body kinetic energy (2D)
What is the kinetic energy of a body with velocity ? 

• can arrive at this by integrating kinetic energy density over the body


- let  be the mass density of the body (mass per unit area, in 
2D,  in body coords)


- differential area  has velocity  and kinetic energy 



- integrate over the body to get  where 


-   — where  is momentum

v

ρ(r)
r

dA v
1
2 ρ(r)v2(r) dA

1
2 mv2 m = ∫ ρ(r) dA

Etr
k = 1

2 mv2 = 1
2 v ⋅ mv = 1

2 v ⋅ p p



Rigid body kinetic energy (2D)
What is the kinetic energy of a body with angular velocity ? 

• apply same to rotating body to get rotational kinetic energy


- differential area  at  has velocity  and kinetic energy 



- integrate over the body to get  where 


-   — where  is angular momentum 

What is this ? 
• total body mass weighted by squared distance from origin

• measures how much energy is needed to get the body spinning

• value depends on center; but remember we standardized on having the body 

origin at the center of mass:  in body coordinates

ω

dA r ω∥r∥
1
2 ρ(r)ω2r2 dA

1
2 Iω2 I = ∫ r2ρ(r) dA

Erot
k = 1

2 Iω2 = 1
2 ω ⋅ Iω = 1

2 ω ⋅ L L

I

rc = 1
m ∫ rρ(r) dA = 0



Rigid body kinetic energy (2D)
What is the kinetic energy of a body with velocity  and angular velocity ? 

• remember our body origin is at the center of mass


• in this case just add the two energies together: 

v ω

Ek = 1
2 mv2 + 1

2 Iω2



Forces and torques
When a force is applied to a point  on a body 

• the force affects the center-of-mass velocity


- 

• the force also affects the angular velocity


- effect depends on offset 


- only the component perpendicular to  
affects the body’s rotation


- effect is proportional to 


- hence define torque  


- 


-  is constant in the absence of torques

r

f = m ·v = ·p

r′ = r − x
r′ 

∥r′ ∥
τ = r′ × f

τ = I ·ω = ·L
L



Impulses
Just like with particles, impulses cause instantaneous change in velocity 

• for linear velocity,  just like with a particle


• and for angular velocity,  (a torque impulse)


This will be useful for collisions 
• 


•

mΔv = j
IΔω = r′ × j

v+ = v− + m−1j
ω+ = ω− + I−1 r′ × j

POLL


bar with length , mass  and 
 starts with  and 


impulse  is applied (1) at the 
center of the bar or (2) at the end of 
the bar


bar moves freely (no pivot, friction, etc.)

l = 4 m = 3
I = 4 v = 0 ω = 0

j = (1,0)



Collisions: rigid body–obstacle
Body collides with fixed obstacle 

• want to apply an impulse at the point of contact so that 


• before collision:  where 


• impulse is along normal: 


• after collision:   ;  


• relate normal velocities before and after to find :


-



• so  where 

v+
n = − crv−

n

v−
n = n̂ ⋅ (v− + ω− × r′ ) r′ = r − x

j = γn̂

v+ = v− + m−1j ω+ = ω− + I−1 r′ × j
γ

v+
n = n̂ ⋅ (v− + m−1j + (ω− + I−1 r′ × j) × r′ )

= n̂ ⋅ (v− + m−1γn̂ + ω− × r′ + I−1γ(r′ × n̂) × r′ )
= v−

n + γ (m−1 + n̂ ⋅ I−1(r′ × n̂) × r′ )
γ = − (1 + cr)meffv−

n meff = (m−1 + n̂ ⋅ I−1(r′ × n̂) × r′ )−1



Collisions: two rigid bodies
Bodies A and B collide at point  

• pre-collision velocities are , , , 


• velocity of colliding point on body A:  
where 


• velocity of colliding point on body B:  
where 


• relative normal velocity: 



• will apply an impulse in the normal direction at the 
point of contact


• decide size of impulse using restitution hypothesis: 

r
va ωa vb ωb

va + ωa × ra
ra = r − xa

vb + ωb × rb
rb = r − xb

vn = n̂ ⋅ (va − vb + ωa × ra − ωb × rb)

v+
n = − crv−

n



• will apply impulse  to body A and  to body B, both at point 


• for body A,  and 


• for body B,  and 


• the impulse is in the direction of the collision normal: 

• so the post-collision relative velocity is





• setting  leads to 

j −j r
Δva = m−1

a j Δωa = I−1
a ra × j

Δvb = − m−1
b j Δωb = − I−1

b rb × j

j = γn̂

v+
n = n̂ ⋅ (v+

a − v+
b + ω+

a × ra − ω+
b × rb)

= v−
n + n̂ ⋅ (Δva − Δvb + Δωa × ra − Δωb × rb)

= n̂ ⋅ (m−1
a γn̂ + m−1

b γn̂ + I−1
a (ra × γn̂) × ra + I−1

b (rb × γn̂) × rb)
= v−

n + (m−1
a + m−1

b + I−1
a (ra × n̂) × ra + I−1

b (rb × n̂) × rb) γ

v+
n = − crv−

n γ = − (1 + cr)meffv−
n



poll: Three collisions
Same two bodies in all three cases, equal  and ,  

• initial velocities are the same for all three; contact point is the same for B and C

m I cr = 1



Collision detection (overlap) for polygons
The easy case for overlap testing is convex polygons 

• for convex shapes, a separating axis exists if and only if the 
polygons don’t overlap


• for convex polygons, if a separating axis exists then one of the 
edge normals is a separating axis


• so, to test two convex polygons for overlap:

distance(e  x): normal(e)  (x – point_on(e)) 

separation(e  P): min of distance(e  v) for v in vertices(P) 

separation(P  Q): max of separation(e  Q) for e in edges(P) 

separation(P, Q): max(separation(P  Q), separation(Q  P)) 
overlap(P, Q): separation(P, Q) > 0

→ ⋅
→ →
→ →

→ →



Collision detection (overlap) for polygons
• so, to test two convex polygons for overlap:


• …and for later use in collision computations, remember 
which vertex and edge produced the maximum 
minimum distance

- we call this the “incident vertex” and the “reference 

edge”

distance(e  x): normal(e)  (x – point_on(e)) 

separation(e  P): min of distance(e  v) for v in vertices(P) 

separation(P  Q): max of separation(e  Q) for e in edges(P) 

separation(P, Q): max(separation(P  Q), separation(Q  P)) 
overlap(P, Q): separation(P, Q) > 0

→ ⋅
→ →
→ →

→ →


