CS5643

11 Rigid body motion

Steve Marschner

Cornell University
Spring 2023

Overview

Kinematics of rigid bodies (emphasis on 2D case)

- state includes position and rotation for each body

Dynamics of a free body

- how to compute time derivative of state
- forces, torques, impulses

Rigid body collisions

- isolated body-obstacle collision
- isolated body-body collision

Rigid body state

A position

- I'll call it \mathbf{x}
- it's the position of the center of mass (keeps things simpler)

A rotation

- can be represented with a rotation matrix \mathbf{R}

- defines the mapping from the body's local space to world space:
$-\mathbf{r}=\mathbf{x}+\mathbf{R} \mathbf{r}_{b}-\mathbf{r}$ is in world space, \mathbf{r}_{b} is in body space

Representing rigid body state

In 2D

$$
R=\left[r_{1} r_{2}\right]
$$

- \mathbf{x} is simple (2 numbers)
. $\mathbf{R}=\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right]$ so let's write down $\mathbf{q}=\left[\begin{array}{l}c \\ s\end{array}\right]$
- so state has 4 numbers but 3 DoF since $\|\mathbf{q}\|=1$

In 3D

- \mathbf{x} is simple (3 numbers)
- rotation is best represented as a unit quaternion
- $\mathbf{q}=\left[\begin{array}{llll}w & x & y & z\end{array}\right]^{T}$
- $\mathbf{R}(t)=\mathbf{R}(\mathbf{q}(t))$
- so state has 7 DoF but 6 DoF since $\|\mathbf{q}\|=1$

Rigid body velocity

Motion of a point on a moving body
$\cdot \mathbf{r}(t)=\mathbf{x}+\mathbf{R}(t) \mathbf{r}_{b} \quad\left(\mathbf{r}_{b}\right.$ is not changing)

- $\dot{\mathbf{r}}(t)=\dot{\mathbf{r}}(t)+\dot{\mathbf{R}}(t) \mathbf{r}_{b}=\mathbf{v}(t)+\dot{\mathbf{R}}(t) \mathbf{r}_{b}$
- so $\dot{\mathbf{R}}$ maps a body-space point to the rotational part of its world-space velocity

Angular velocity in 2D

The matrix $\dot{\mathbf{R}}$ is special, just like \mathbf{R}

- we also don't need to write down the whole matrix
- look at 2D case with a steady rotation
. conclusion: $\dot{\mathbf{R}}=\omega^{\times} \mathbf{R}$ where $\omega^{\times}=\left[\begin{array}{cc}0 & -\omega \\ \omega & 0\end{array}\right]$

- ω is called the angular velocity
- since \mathbf{q} is the first column of $\mathbf{R}, \dot{\mathbf{q}}=\omega^{\times} \mathbf{q}=\omega \times \mathbf{q}$

Rigid body kinetic energy (2D)

What is the kinetic energy of a body with velocity \mathbf{v} ?

- can arrive at this by integrating kinetic energy density over the body
- let $\rho(\mathbf{r})$ be the mass density of the body (mass per unit area, in 2D, \mathbf{r} in body coords)
- differential area $d A$ has velocity \mathbf{v} and kinetic energy

$$
\frac{1}{2} \rho(\mathbf{r}) \mathbf{v}^{2}(\mathbf{r}) d A
$$

- integrate over the body to get $\frac{1}{2} m \mathbf{v}^{2}$ where $m=\int \rho(\mathbf{r}) d A$
- $E_{k}^{\mathrm{tr}}=\frac{1}{2} m \mathbf{v}^{2}=\frac{1}{2} \mathbf{v} \cdot m \mathbf{v}=\frac{1}{2} \mathbf{v} \cdot \mathbf{p}-$ where \mathbf{p} is momentum

Rigid body kinetic energy (2D)

What is the kinetic energy of a body with angular velocity ω ?

- apply same to rotating body to get rotational kinetic energy
- differential area $d A$ at \mathbf{r} has velocity $\omega\|\mathbf{r}\|$ and kinetic energy

$$
\frac{1}{2} \rho(\mathbf{r}) \omega^{2} \mathbf{r}^{2} d A
$$

- integrate over the body to get $\frac{1}{2} I \omega^{2}$ where $I=\int \mathbf{r}^{2} \rho(\mathbf{r}) d A$
- $E_{k}^{\mathrm{rot}}=\frac{1}{2} I \omega^{2}=\frac{1}{2} \omega \cdot I \omega=\frac{1}{2} \omega \cdot L$ - where L is angular momentum

What is this $I ?$

- total body mass weighted by squared distance from origin
- measures how much energy is needed to get the body spinning
- value depends on center; but remember we standardized on having the body origin at the center of mass: $\mathbf{r}_{c}=\frac{1}{m} \int \mathbf{r} \rho(\mathbf{r}) d A=\mathbf{0}$ in body coordinates

Rigid body kinetic energy (2D)

What is the kinetic energy of a body with velocity v and angular velocity ω ?

- remember our body origin is at the center of mass
. in this case just add the two energies together: $E_{k}=\frac{1}{2} m \mathbf{v}^{2}+\frac{1}{2} I \omega^{2}$

Forces and torques

When a force is applied to a point \mathbf{r} on a body

- the force affects the center-of-mass velocity
- $\mathbf{f}=m \dot{\mathbf{v}}=\dot{\mathbf{p}}$
- the force also affects the angular velocity
- effect depends on offset $\mathbf{r}^{\prime}=\mathbf{r}-\mathbf{x}$
- only the component perpendicular to \mathbf{r}^{\prime}
affects the body's rotation
- effect is proportional to $\left\|\mathbf{r}^{\prime}\right\|$
- hence define torque $\tau=\mathbf{r}^{\prime} \times \mathbf{f}$
- $\tau=I \dot{\omega}=\dot{L}$
- L is constant in the absence of torques

Impulses

Just like with particles, impulses cause instantaneous change in velocity

- and for angular velocity, $I \Delta \omega=\mathbf{r}^{\prime} \times \mathbf{j}$ (a torque impulse)

This will be useful for collisions

- $\mathbf{v}^{+}=\mathbf{v}^{-}+m^{-1} \mathbf{j}$
- $\omega^{+}=\omega^{-}+I^{-1} \mathbf{r}^{\prime} \times \mathbf{j}$

POLL

bar with length $l=4$, mass $m=3$ and $I=4$ starts with $\mathbf{v}=\mathbf{0}$ and $\omega=0$
impulse $\mathbf{j}=(1,0)$ is applied (1) at the center of the bar or (2) at the end of the bar
bar moves freely (no pivot, friction, etc.)

Collisions: rigid body-obstacle

Body collides with fixed obstacle

- want to apply an impulse at the point of contact so that $v_{n}^{+}=-c_{r} v_{n}^{-}$
- before collision: $v_{n}^{-}=\hat{\mathbf{n}} \cdot\left(\mathbf{v}^{-}+\omega^{-} \times \mathbf{r}^{\prime}\right)$ where $\mathbf{r}^{\prime}=\mathbf{r}-\mathbf{x}$
- impulse is along normal: $\mathbf{j}=\gamma \hat{\mathbf{n}}$
- after collision: $\mathbf{v}^{+}=\mathbf{v}^{-}+m^{-1} \mathbf{j} ; \omega^{+}=\omega^{-}+I^{-1} \mathbf{r}^{\prime} \times \mathbf{j}$
- relate normal velocities before and after to find γ :

$$
\begin{aligned}
v_{n}^{+} & =\hat{\mathbf{n}} \cdot\left(\mathbf{v}^{-}+m^{-1} \mathbf{j}+\left(\omega^{-}+I^{-1} \mathbf{r}^{\prime} \times \mathbf{j}\right) \times \mathbf{r}^{\prime}\right) \\
& =\hat{\mathbf{n}} \cdot\left(\mathbf{v}^{-}+m^{-1} \gamma \hat{\mathbf{n}}+\omega^{-} \times \mathbf{r}^{\prime}+I^{-1} \gamma\left(\mathbf{r}^{\prime} \times \hat{\mathbf{n}}\right) \times \mathbf{r}^{\prime}\right) \\
& =v_{n}^{-}+\gamma\left(m^{-1}+\hat{\mathbf{n}} \cdot I^{-1}\left(\mathbf{r}^{\prime} \times \hat{\mathbf{n}}\right) \times \mathbf{r}^{\prime}\right)
\end{aligned}
$$

. so $\gamma=-\left(1+c_{r}\right) m_{\mathrm{eff}} v_{n}^{-}$where $m_{\mathrm{eff}}=\left(m^{-1}+\hat{\mathbf{n}} \cdot I^{-1}\left(\mathbf{r}^{\prime} \times \hat{\mathbf{n}}\right) \times \mathbf{r}^{\prime}\right)^{-1}$

Collisions: two rigid bodies

Bodies A and B collide at point r

- pre-collision velocities are $\mathbf{v}_{a}, \omega_{a}, \mathbf{v}_{b}, \omega_{b}$
- velocity of colliding point on body A: $\mathbf{v}_{a}+\omega_{a} \times \mathbf{r}_{a}$ where $\mathbf{r}_{a}=\mathbf{r}-\mathbf{x}_{a}$
- velocity of colliding point on body B: $\mathbf{v}_{b}+\omega_{b} \times \mathbf{r}_{b}$ where $\mathbf{r}_{b}=\mathbf{r}-\mathbf{x}_{b}$
- relative normal velocity:

$$
v_{n}=\hat{\mathbf{n}} \cdot\left(\mathbf{v}_{a}-\mathbf{v}_{b}+\omega_{a} \times \mathbf{r}_{a}-\omega_{b} \times \mathbf{r}_{b}\right)
$$

- will apply an impulse in the normal direction at the point of contact
- decide size of impulse using restitution hypothesis:

$$
v_{n}^{+}=-c_{r} v_{n}^{-}
$$

- will apply impulse \mathbf{j} to body A and $-\mathbf{j}$ to body B, both at point \mathbf{r}
- for body $\mathrm{A}, \Delta \mathbf{v}_{a}=m_{a}^{-1} \mathbf{j}$ and $\Delta \omega_{a}=I_{a}^{-1} \mathbf{r}_{a} \times \mathbf{j}$
- for body B, $\Delta \mathbf{v}_{b}=-m_{b}^{-1} \mathbf{j}$ and $\Delta \omega_{b}=-I_{b}^{-1} \mathbf{r}_{b} \times \mathbf{j}$
- the impulse is in the direction of the collision normal: $\mathbf{j}=\gamma \hat{\mathbf{n}}$
- so the post-collision relative velocity is

$$
\begin{aligned}
v_{n}^{+} & =\hat{\mathbf{n}} \cdot\left(\mathbf{v}_{a}^{+}-\mathbf{v}_{b}^{+}+\omega_{a}^{+} \times \mathbf{r}_{a}-\omega_{b}^{+} \times \mathbf{r}_{b}\right) \\
& =v_{n}^{-}+\hat{\mathbf{n}} \cdot\left(\Delta \mathbf{v}_{a}-\Delta \mathbf{v}_{b}+\Delta \omega_{a} \times \mathbf{r}_{a}-\Delta \omega_{b} \times \mathbf{r}_{b}\right) \\
& =\hat{\mathbf{n}} \cdot\left(m_{a}^{-1 \gamma} \gamma \hat{\mathbf{n}}+m_{b}^{-1} \gamma \hat{\mathbf{n}}+I_{a}^{-1}\left(\mathbf{r}_{a} \times \gamma \hat{\mathbf{n}}\right) \times \mathbf{r}_{a}+I_{b}^{-1}\left(\mathbf{r}_{b} \times \gamma \hat{\mathbf{n}}\right) \times \mathbf{r}_{b}\right) \\
& =v_{n}^{-}+\underbrace{\left(m_{a}^{-1}+m_{b}^{-1}+I_{a}^{-1}\left(\mathbf{r}_{a} \times \hat{\mathbf{n}}\right) \times \mathbf{r}_{a}+I_{b}^{-1}\left(\mathbf{r}_{b} \times \hat{\mathbf{n}}\right) \times \mathbf{r}_{b}\right) \gamma}_{m_{\text {eff }}^{--1}}
\end{aligned}
$$

- setting $v_{n}^{+}=-c_{r} v_{n}^{-}$leads to $\gamma=-\left(1+c_{r}\right) m_{\mathrm{eff}} v_{n}^{-}$

poll: Three collisions

Same two bodies in all three cases, equal m and $I, c_{r}=1$

- initial velocities are the same for all three; contact point is the same for B and C

A

B

C

Collision detection (overlap) for polygons

The easy case for overlap testing is convex polygons

- for convex shapes, a separating axis exists if and only if the polygons don't overlap
- for convex polygons, if a separating axis exists then one of the edge normals is a separating axis
- so, to test two convex polygons for overlap:

```
distance(e }->\mathrm{ x): normal(e) • (x - point_on(e))
separation(e->P): min of distance(e }->v\mathrm{ v) for v in vertices(P)
separation(P -> Q): max of separation(e }->\mathrm{ Q) for e in edges(P)
separation(P, Q): max(separation(P ->Q), separation(Q }->P\mathrm{ ))
overlap(P, Q): separation(P, Q) > 0
```


Collision detection (overlap) for polygons

- so, to test two convex polygons for overlap:

```
distance(e }->\textrm{x}):\mathrm{ : normal(e) • (x - point_on(e))
separation(e->P): min of distance(e }->v\mathrm{ v) for v in vertices(P)
separation(P ->Q): max of separation(e }->\mathrm{ Q) for e in edges(P)
separation(P, Q): max(separation(P -> Q), separation(Q ->P))
overlap(P, Q): separation(P, Q) > 0
```

- ... and for later use in collision computations, remember which vertex and edge produced the maximum minimum distance
- we call this the "incident vertex" and the "reference
edge"

