CS5643 11 Rigid body motion

Steve Marschner Cornell University Spring 2023

Overview

Kinematics of rigid bodies (emphasis on 2D case)

state includes position and rotation for each body

Dynamics of a free body

- how to compute time derivative of state
- forces, torques, impulses

Rigid body collisions

- isolated body-obstacle collision
- isolated body-body collision

Rigid body state

A position

- I'll call it \mathbf{X}
- it's the position of the center of mass (keeps things simpler)

A rotation

- can be represented with a rotation matrix ${\boldsymbol{R}}$
- defines the mapping from the body's local space to world space:
 - $\mathbf{r} = \mathbf{x} + \mathbf{R}\mathbf{r}_b \mathbf{r}$ is in world space, \mathbf{r}_b is in body space

Representing rigid body state

In 2D

• **x** is simple (2 numbers)

$$\mathbf{R} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \text{ so let's write down } \mathbf{q} = \begin{bmatrix} c \\ s \end{bmatrix}$$

• so state has 4 numbers but 3 DoF since $\|\mathbf{q}\| = 1$

In 3D

- **x** is simple (3 numbers)
- rotation is best represented as a unit quaternion

$$-\mathbf{q} = \begin{bmatrix} w & x & y & z \end{bmatrix}^T$$
$$-\mathbf{R}(t) = \mathbf{R}(\mathbf{q}(t))$$

• so state has 7 DoF but 6 DoF since $\|\mathbf{q}\| = 1$

 $R = \left(r_{1}, r_{2} \right)$

S

Rigid body velocity

Motion of a point on a moving body

- $\mathbf{r}(t) = \mathbf{x} + \mathbf{R}(t)\mathbf{r}_b$ (\mathbf{r}_b is not changing)
- $\dot{\mathbf{r}}(t) = \dot{\mathbf{r}}(t) + \dot{\mathbf{R}}(t)\mathbf{r}_b = \mathbf{v}(t) + \dot{\mathbf{R}}(t)\mathbf{r}_b$
- so \dot{R} maps a body-space point to the rotational part of its world-space velocity

Angular velocity in 2D

The matrix **R** is special, just like **R**

- we also don't need to write down the whole matrix
- look at 2D case with a steady rotation

. conclusion:
$$\dot{\mathbf{R}} = \omega^{\times} \mathbf{R}$$
 where $\omega^{\times} = \begin{bmatrix} 0 \\ \omega \end{bmatrix}$

- $\cdot \omega$ is called the angular velocity
- since **q** is the first column of **R**, $\dot{\mathbf{q}} = \omega^{\times} \mathbf{q} = \omega \times \mathbf{q}$

Rigid body kinetic energy (2D)

What is the kinetic energy of a body with velocity v?

- can arrive at this by integrating kinetic energy density over the body
 - let $\rho(\mathbf{r})$ be the mass density of the body (mass per unit area, in 2D, **r** in body coords)
 - differential area dA has velocity v and kinetic energy $\frac{1}{2}\rho(\mathbf{r})\mathbf{v}^2(\mathbf{r})\,dA$

- integrate over the body to get $\frac{1}{2}m\mathbf{v}^2$ where $m = \int \rho(\mathbf{r}) dA$

$$- E_k^{\text{tr}} = \frac{1}{2}m\mathbf{v}^2 = \frac{1}{2}\mathbf{v} \cdot m\mathbf{v} = \frac{1}{2}\mathbf{v} \cdot \mathbf{p} -$$

– where **p** is momentum

Rigid body kinetic energy (2D)

What is the kinetic energy of a body with angular velocity ω ?

- apply same to rotating body to get rotational kinetic energy
 - differential area dA at **r** has velocity $\omega \|\mathbf{r}\|$ and kinetic energy $\frac{1}{2}\rho(\mathbf{r})\omega^2\mathbf{r}^2\,dA$
 - integrate over the body to get $\frac{1}{2}I\omega^2$

$$-E_k^{\text{rot}} = \frac{1}{2}I\omega^2 = \frac{1}{2}\omega \cdot I\omega = \frac{1}{2}\omega \cdot L$$

What is this *I*?

- total body mass weighted by squared distance from origin
- measures how much energy is needed to get the body spinning
- value depends on center; but remember we standardized on having the body origin at the center of mass: $\mathbf{r}_c = \frac{1}{m} \int \mathbf{r} \rho(\mathbf{r}) \, dA = \mathbf{0}$ in body coordinates

where
$$I = \int \mathbf{r}^2 \rho(\mathbf{r}) \, dA$$

— where L is angular momentum

Rigid body kinetic energy (2D)

- remember our body origin is at the center of mass
- in this case just add the two energies together: $E_k = \frac{1}{2}m\mathbf{v}^2 + \frac{1}{2}I\omega^2$

What is the kinetic energy of a body with velocity v and angular velocity ω ?

Forces and torques

When a force is applied to a point r on a body

the force affects the center-of-mass velocity

-
$$\mathbf{f} = m\dot{\mathbf{v}} = \dot{\mathbf{p}}$$

- the force also affects the angular velocity
 - effect depends on offset $\mathbf{r}' = \mathbf{r} \mathbf{x}$
 - only the component perpendicular to ${f r}'$ affects the body's rotation
 - effect is proportional to $\|\mathbf{r}'\|$
 - hence define torque $\tau = \mathbf{r}' \times \mathbf{f}$

$$- \tau = I\dot{\omega} = \dot{L}$$

- *L* is constant in the absence of torques

Impulses

Just like with particles, impulses cause instantaneous change in velocity

- for linear velocity, $m\Delta \mathbf{v} = \mathbf{j}$ just like with a particle
- and for angular velocity, $I\Delta\omega = \mathbf{r}' \times \mathbf{j}$ (a torque impulse)

This will be useful for collisions

$$\cdot \mathbf{v}^+ = \mathbf{v}^- + m^{-1}\mathbf{j}$$

$$\cdot \ \omega^+ = \omega^- + I^{-1} \mathbf{r}' \times \mathbf{j}$$

POLL

bar with length l = 4, mass m = 3 and I = 4 starts with $\mathbf{v} = \mathbf{0}$ and $\omega = 0$

impulse $\mathbf{j} = (1,0)$ is applied (1) at the center of the bar or (2) at the end of the bar

bar moves freely (no pivot, friction, etc.)

Collisions: rigid body-obstacle

Body collides with fixed obstacle

- want to apply an impulse at the point of contact so that $v_n^+ = -c_r v_n^-$
- before collision: $v_n^- = \hat{\mathbf{n}} \cdot (\mathbf{v}^- + \omega^- \times \mathbf{r}')$ where $\mathbf{r}' = \mathbf{r} \mathbf{x}$
- impulse is along normal: $\mathbf{j} = \gamma \hat{\mathbf{n}}$
- after collision: $\mathbf{v}^+ = \mathbf{v}^- + m^{-1}\mathbf{j}$; $\omega^+ =$
- relate normal velocities before and after to find γ :

$$v_n^+ = \hat{\mathbf{n}} \cdot \left(\mathbf{v}^- + m^{-1} \mathbf{j} + (\omega^- + I^{-1} \mathbf{r}' \times \mathbf{j}) \times \mathbf{r}' \right)$$

= $\hat{\mathbf{n}} \cdot \left(\mathbf{v}^- + m^{-1} \gamma \hat{\mathbf{n}} + \omega^- \times \mathbf{r}' + I^{-1} \gamma (\mathbf{r}' \times \hat{\mathbf{n}}) \times \mathbf{r}' \right)$
= $v_n^- + \gamma \left(m^{-1} + \hat{\mathbf{n}} \cdot I^{-1} (\mathbf{r}' \times \hat{\mathbf{n}}) \times \mathbf{r}' \right)$

• so $\gamma = -(1 + c_r)m_{\text{eff}}v_n^-$ where $m_{\text{eff}} = (m_{\text{eff}} + c_r)m_{\text{eff}}v_n^-$

$$\omega^{-} + I^{-1} \mathbf{r}' \times \mathbf{j}$$

$$n^{-1} + \hat{\mathbf{n}} \cdot I^{-1}(\mathbf{r}' \times \hat{\mathbf{n}}) \times \mathbf{r}')^{-1}$$

Collisions: two rigid bodies

Bodies A and B collide at point r

- pre-collision velocities are $\mathbf{v}_a, \omega_a, \mathbf{v}_b, \omega_b$
- velocity of colliding point on body A: \mathbf{v}_a + where $\mathbf{r}_a = \mathbf{r} - \mathbf{x}_a$
- velocity of colliding point on body B: \mathbf{v}_h + where $\mathbf{r}_{h} = \mathbf{r} - \mathbf{x}_{h}$
- relative normal velocity:

 $v_n = \hat{\mathbf{n}} \cdot (\mathbf{v}_a - \mathbf{v}_b + \omega_a \times \mathbf{r}_a - \omega_b \times \mathbf{r}_k)$

- will apply an impulse in the normal direction point of contact
- decide size of impulse using restitution hy $v_n^+ = -c_r v_n^-$

$$\omega_a \times \mathbf{r}_a$$

 $\omega_b \times \mathbf{r}_b$
 ω_b)
on at the
pothesis:

- will apply impulse ${f j}$ to body A and $-{f j}$ to body B, both at point ${f r}$

• for body A,
$$\Delta \mathbf{v}_a = m_a^{-1} \mathbf{j}$$
 and $\Delta \omega_a = I_a^{-1}$

- for body B, $\Delta \mathbf{v}_b = -m_b^{-1}\mathbf{j}$ and $\Delta \omega_b = -$
- the impulse is in the direction of the collision normal: ${f j}=\gamma \hat{f n}$
- so the post-collision relative velocity is

$$v_{n}^{+} = \hat{\mathbf{n}} \cdot \left(\mathbf{v}_{a}^{+} - \mathbf{v}_{b}^{+} + \omega_{a}^{+} \times \mathbf{r}_{a} - \omega_{b}^{+} \times \mathbf{r}_{b} \right)$$

$$= v_{n}^{-} + \hat{\mathbf{n}} \cdot \left(\Delta \mathbf{v}_{a} - \Delta \mathbf{v}_{b} + \Delta \omega_{a} \times \mathbf{r}_{a} - \Delta \omega_{b} \times \mathbf{r}_{b} \right)$$

$$= \hat{\mathbf{n}} \cdot \left(m_{a}^{-1} \gamma \hat{\mathbf{n}} + m_{b}^{-1} \gamma \hat{\mathbf{n}} + I_{a}^{-1} (\mathbf{r}_{a} \times \gamma \hat{\mathbf{n}}) \times \mathbf{r}_{a} + I_{b}^{-1} (\mathbf{r}_{b} \times \gamma \hat{\mathbf{n}}) \times \mathbf{r}_{b} \right)$$

$$= v_{n}^{-} + \left(\underbrace{m_{a}^{-1} + m_{b}^{-1} + I_{a}^{-1} (\mathbf{r}_{a} \times \hat{\mathbf{n}}) \times \mathbf{r}_{a} + I_{b}^{-1} (\mathbf{r}_{b} \times \hat{\mathbf{n}}) \times \mathbf{r}_{b} \right) \gamma$$

$$= v_{n}^{-} + \underbrace{\left(m_{a}^{-1} + m_{b}^{-1} + I_{a}^{-1} (\mathbf{r}_{a} \times \hat{\mathbf{n}}) \times \mathbf{r}_{a} + I_{b}^{-1} (\mathbf{r}_{b} \times \hat{\mathbf{n}}) \times \mathbf{r}_{b} \right) \gamma}_{\mathcal{M}_{e} \notin \mathbf{r}_{b}^{-1}}$$

• setting $v_n^+ = -c_r v_n^-$ leads to $\gamma = -(1 + c_r)m_{\text{eff}}v_n^-$

body B, both at point $\mathbf{I}^{\mathbf{I}}\mathbf{r}_{a} \times \mathbf{j}$

$$-I_b^{-1}\mathbf{r}_b \times \mathbf{j}$$

+XN

poll: Three collisions

Same two bodies in all three cases, equal m and I, $c_r = 1$

initial velocities are the same for all three; contact point is the same for B and C

Collision detection (overlap) for polygons

The easy case for overlap testing is convex polygons

- for convex shapes, a separating axis exists if and only if the polygons don't overlap
- for convex polygons, if a separating axis exists then one of the edge normals is a separating axis
- so, to test two convex polygons for overlap:

distance($e \rightarrow x$): normal(e) $\cdot (x - point_on(e))$

separation($e \rightarrow P$): min of distance($e \rightarrow v$) for v in vertices(P)

separation(P \rightarrow Q): max of separation(e \rightarrow Q) for e in edges(P)

separation(P, Q): max(separation(P \rightarrow Q), separation(Q \rightarrow P)) overlap(P, Q): separation(P, Q) > 0

https://en.wikipedia.org/wiki/Hyperplane_separation_theorem

Collision detection (overlap) for polygons

- so, to test two convex polygons for overlap:
 - distance($e \rightarrow x$): normal(e) \cdot (x point_on(e))
 - separation($e \rightarrow P$): min of distance($e \rightarrow v$) for v in vertices(P)
 - separation(P \rightarrow Q): max of separation(e \rightarrow Q) for e in edges(P)
 - separation(P, Q): max(separation(P \rightarrow Q), separation(Q \rightarrow P)) overlap(P, Q): separation(P, Q) > 0
 - ...and for later use in collision computations, remember which vertex and edge produced the maximum minimum distance
 - we call this the "incident vertex" and the "reference" edge"