S5643
09 Collision response

Steve Marschner
Cornell University
Spring 2023

Starting simple: particle with fixed obstacle

Reality of collision

- Kkinetic energy is stored in elastic potential
+energy Is released back into kinetic (partly)

- for hard objects this happens very fast

Modeling approximation

- our model doesn’t have the DoFs to represent that deformation

+ abstract away the details: what is the particle is doing after the collision is over?

Impluse: summarize force over a short event as a change in momentum

- force applied to ball by wall, and therefore acceleration of ball, varies over a short time
- only final velocity matters: integrate acceleration (m/ 82) over time (S) and forget details

- impulse: integrate force (N) over time (S) to have an analog of force for short events (N - S)

Particle-obstacle collision (frictionless)

Notation: pre-collision velocity v; post-collision v*
- separate these into normal and tangential: v=v, +v,;v. =vn;v,-v,=0
- note v, < 0 otherwise the collision would not be happening

. . - A 7/ A
Collision impulse y acts along contact normal n: v = v + —1l

. final velocity is not towards surface, or v > 0; v =,

Decide magnitude of impulse by conservation of energy

1 1 1 1
. I?efore — EWLVZ — EWL(V% + Vtz) — Emvtz -+ Emv,%
2 2 2 2 2
. E]?fter = EWZ(V_I_) — EWZ((V;:) -+ Vt) — Emvt + Em(v;)

+ 80 normal component has to exactly reverse to conserve energy: v,j =—v,s0y =—2my,

Particle-obstacle collision (friction)

Restitution
- model energy loss with heuristic “coefficient of restitution” ¢, such thatv
y=—U+c)v,

Friction impulse y,acts in the tangential direction

- Coulomb friction model: frictional force f; < uf,
. forces high during impact so f = pf,, integrates to y, = uy,

. friction does not take tangential velocity past zero so y, = min(uy,, mv,) CK

’f
+ _ ., _ + _ 1, : I

—lastic collision between particles in 1D

Momentum conservation: apply opposite impulses Ap and —Ap
Ap . Ap

m, m,

. after applying collision impulse X7 = x +

Energy conservation ensured by reversing the relative velocity

. kinetic energy before collision: E¢0" = %(mx)'c2 + myyz)

. . pafter _ 1 ., Apo ._Apz

. energy after collision: £, = 2(mx(x-|_ mx) + my(y my))
after __ p before S Ap? Ap?
BT =BT+ (= Y)Ap + —+

X Y

- Set change to zero = Ap = 0 or Ap = — 2m gV,

1
where v, = X —y and m g = (L + i)

m, m,

Collision response for elastic colliding particles

Collision impulse acts along the collision normal

+ use of an impulse ensures momentum conservation

. mAX = —mAy = Ap

To compute impulse, separate into normal and tangential components

. X=X +X,andy =Yy, +Yy, ; kinetic energy of Xis %mxx,% + %mxxt2 and similar for'y

- normal impulse only affects the normal part of the energy, so conserve that

- ...but this is the same 1D problem again!
- Ap =y y = = - 2my,

- where v, = n - (X — y) is the normal component of the relative velocity

Restitution and friction In two-particle case

We’ve seen that conserving energy in a two-particle collision
translates to exactly reversing the relative normal velocity

- this was the same as In the solid-wall collision

+ we can compute normal and friction impulses using the same approach

- scale down normal impulse: Ap = yn; y = — (1 + ¢,)m v, where c, is the coeff. of restitution

- friction impulse acts along the tangential component of relative velocity
- still a fraction of the normal impulse

- still imited to zeroing out the tangential relative velocity

- ¥y = —mun(uy, mv,); Ap = Vfi\’t

Collisions with deformables involving edges in 2D

In 2D remember that vertex-edge collisions are the ones we worry about

To resolve a collision we need to apply impulses to three vertices

+ contact is between the moving vertex
and a point on the moving edge

- moving point X; edge vertices y and Z

- colliding pointp = ay + fzwherea + ff = 1 4
+ Impulses are designed to achieve the desired J
change in relative velocity between X and p
z

+ to derive required impulse, need to decide how
the impulse will be distributed between ends

- typical: barycentric weighting
-7x=}’§7’y=—057§}’z=—,57 \

Collisions with deformables involving edges in 2D

Positions: /
c X(O) =X+1X;y0) =y +1y;z(t) =2+ 17 }’
- p)=p+aty+piz;p=ay+pz
- X(7.) = p(t,)

Post-collision velocities: A
Y ay Dy \ o(\)(*c‘fd()ﬁ
° _ ° A . ._|_ _ ° A . ._|_ _ ° A < -
.x+—x+;xn,y _y—?yn,z —Z_En)W\/ f,.,,z\y*tfﬁ

. p+ — ay++ﬁz+

Collisions with deformables involving edges in 2D

Normal components: /

2 2
o_l_ o }/ o—l— o a}/ ﬂy y
X =x,+—;pr=p,—— ——
n n m, n n my mZ

' vnzxn_pn
' Vr_zl_:xi_ftl__pi_le_:_crvn

| | (1 il ﬁ2) N& \~A &
=YV, =X, —p, | —F+—+— |7

m, m, m

2 2
. (1+cr)vn=—<i+a—+ﬂ—)}/

m, m, m

. — — (1
Y (+ Cr)meffvn Z\

Collisions with deformables involving edges in 2D

Positions: Normal components:
, _ . _ . : : . . ay Py
X(f)—X‘HX,OY(f)—Y‘l‘ty, .x:=xn+;,p;{=pn—?—?
2(t) =2+ 17 * Y ¢
. p(H) =p+aty+ ptz;p = ay + pz "V = AT Pn
S S S
. X(tc) — p(tc) Vo =Xn = Pn = 7 GVy
.. .. L I a p
Post-collision velocities: =V, =X, —p,+t| —+—+— |7y
T U A My My 1
. X'=X+—n;y =y——n;
m, m, i IB
: . D A a
Z+=Z—;n (1+Cr)vn=—(—+—+—)j/
¢ ‘ m, m, m,
- P =ax+ py

- y=—+c)mpv,

—esolving multiple collisions

This Is where it gets messy!

Resolving collisions one at a time can work In easy cases

- when there are not too many collisions
- when the collisions are generally well separated in time

- when there Is no resting contact

In harder cases collisions are highly interdependent

- consider a stack of 5 boxes...
- adding friction makes things even worse

+ collision problems can even encode NP-hard problems, in theory

Result: large variety of collision response algorithms, few ironclad guarantees

Broad map of collision methods

Penalties and barriers

- devise forces that vary smoothly and push objects apart

- older idea: penalty forces that activate when objects interpenetrate

+ newer idea: barrier potentials that activate on proximity and prevent interpenetration
- the good: smoothly varying forces, fewer discrete decisions to make

- the bad: forces have to be very stiff to be effective, leading to integration challenges

Broad map of collision methods

Impulses
- Instantaneous events that happen exactly at the time of collision

- really simple way to handle well separated collisions
- computing impulses separately doesn’t always handle simultaneous collisions
- the good: impulses don’t add stiffness, can be simple and fast

- the bad: no principled handling of simultaneous collisions

Broad map of collision methods

Constraints

- consider many simultaneous collisions as constraints on motion

- solve a system of equations to find a simultaneous solution to all constraints
- many solution methods, from heavy global solvers to simple iterations

- iterative solvers look a lot like resolving contacts separately

- the good: doesn’t add stiffness, can solve complex cases

- the bad: methods can be complex, hard to guarantee robustness in all situations

Broad map of collision methods

Strategies for resolving collisions

- recall the Symplectic Euler integrator

- 1. compute acceleration a, = M‘lf(to)
- 2. compute velocity v = v + ha,
- 3. compute position X; = X, + AV,

- “acceleration level” methods think about forces and accelerations
and make changes at step 1

- “velocity level” methods think about impulses and velocities
and make chances after step 2

- “position level” methods think about correcting positions directly
and make changes after step 3

Choice of collision method

Depends on type of simulation

+ deformables have many contacts but more local interactions
- rigid bodies have more global interactions (more on that |ater)

+ solids can recover from interpenetration; thin objects (rods, sheets) can’t

Collision response choice

+ for robustness and accuracy with extreme deformations, barrier potentials
- for efficiency with rigid bodies or stiff solids, impulses or iterative constraint solvers

- for accuracy, global constraint solvers (becoming less used)

Collision detection choice

+ for solids and rigid bodies, often instantaneous overlap query
- for cloth and rods, often continuous collision detection

- If using barrier potentials, proximity queries

——

SImple method #1: sequential resolution

——

Strategy: simulate to the first collision, fix it, then continue

+assume Symplectic Euler, first updating velocities then positions
- 1. compute forces f, at the start of the step, 7, set 1 = 1,

- 2. compute new velocities Vi = v, + hM‘lfO

- 3. perform CCD over [#, t,] to find any collisions

- if there are any collisions, find the one that happens first, call that time 7.

- advance all positions to time 7 = 7,

- compute an impulse to resolve the collision, update the directly involved velocities
- repeat this step until there are no more collisions

- 4. advance all positions from 7 to ;

—

Simple method #2: parallel resolution

——

Strategy: fix all collisions In the timestep, then check if we broke anything

+assume Symplectic Euler, first updating velocities then positions

- 1. compute forces {j, at the start of the step, #,, set r = 1,
- 2. compute new velocities Vi = v, + hM‘lfO

- 3. perform CCD over [1,, ;] to find any collisions

- order collisions by their times
- for each collision:
- compute an impulse using vertex positions at the collision time
- apply the impulse to update the directly involved velocities
- after resolving all collisions, repeat this whole step until there are no more collisions

- 4. advance all positions from £, to f,

