CS5643

09 Collision response

Steve Marschner

Cornell University
Spring 2023

Starting simple: particle with fixed obstacle

Reality of collision

- kinetic energy is stored in elastic potential
- energy is released back into kinetic (partly)
- for hard objects this happens very fast

Modeling approximation

- our model doesn't have the DoFs to represent that deformation
- abstract away the details: what is the particle is doing after the collision is over?

Impluse: summarize force over a short event as a change in momentum

- force applied to ball by wall, and therefore acceleration of ball, varies over a short time
- only final velocity matters: integrate acceleration ($\mathrm{m} / \mathrm{s}^{2}$) over time (s) and forget details
- impulse: integrate force (N) over time (s) to have an analog of force for short events $(\mathrm{N} \cdot \mathrm{s})$

Particle-obstacle collision (frictionless)

Notation: pre-collision velocity \mathbf{v}; post-collision \mathbf{v}^{+}

- separate these into normal and tangential: $\mathbf{v}=\mathbf{v}_{n}+\mathbf{v}_{t} ; \mathbf{v}_{n}=v_{n} \hat{\mathbf{n}} ; \mathbf{v}_{n} \cdot \mathbf{v}_{t}=0$
- note $v_{n}<0$ otherwise the collision would not be happening

Collision impulse γ acts along contact normal $\hat{\mathbf{n}}: \mathbf{v}^{+}=\mathbf{v}+\frac{\gamma}{m} \hat{\mathbf{n}}$

- final velocity is not towards surface, or $v_{n}^{+} \geq 0 ; \mathbf{v}_{t}^{+}=\mathbf{v}_{t}$
n
© v

Decide magnitude of impulse by conservation of energy

- $E_{k}^{\text {before }}=\frac{1}{2} m \mathbf{v}^{2}=\frac{1}{2} m\left(\mathbf{v}_{n}^{2}+\mathbf{v}_{t}^{2}\right)=\frac{1}{2} m \mathbf{v}_{t}^{2}+\frac{1}{2} m v_{n}^{2}$
. $E_{k}^{\text {after }}=\frac{1}{2} m\left(\mathbf{v}^{+}\right)^{2}=\frac{1}{2} m\left(\left(\mathbf{v}_{n}^{+}\right)^{2}+\mathbf{v}_{t}^{2}\right)=\frac{1}{2} m \mathbf{v}_{t}^{2}+\frac{1}{2} m\left(v_{n}^{+}\right)^{2}$
- so normal component has to exactly reverse to conserve energy: $v_{n}^{+}=-v_{n}$, so $\gamma=-2 m v_{n}$

Particle-obstacle collision (friction)

Restitution

- model energy loss with heuristic "coefficient of restitution" c_{r} such that $v_{n}^{+}=-c_{r} v_{n}$;

$$
\gamma=-\left(1+c_{r}\right) v_{n}
$$

Friction impulse γ_{f} acts in the tangential direction

- Coulomb friction model: frictional force $f_{f} \leq \mu f_{n}$
- forces high during impact so $f_{f}=\mu f_{n}$, integrates to $\gamma_{f}=\mu \gamma_{n}$
- friction does not take tangential velocity past zero so $\gamma_{f}=\min \left(\mu \gamma_{n}, m v_{t}\right)$
- $v_{t}^{+}=v_{t}-\frac{\gamma_{f}}{m}$ and $\mathbf{v}_{t}^{+}=v_{t}^{+} \hat{\mathbf{v}}_{t}$

Elastic collision between particles in 1D

Momentum conservation: apply opposite impulses Δp and $-\Delta p$
. after applying collision impulse $\dot{x}^{+}=\dot{x}+\frac{\Delta p}{m_{x}}$ and $\dot{y}^{+}=\dot{y}-\frac{\Delta p}{m_{y}}$

Energy conservation ensured by reversing the relative velocity

- kinetic energy before collision: $E_{k}^{\text {before }}=\frac{1}{2}\left(m_{x} \dot{x}^{2}+m_{y} \dot{y}^{2}\right)$
. energy after collision: $E_{k}^{\text {after }}=\frac{1}{2}\left(m_{x}\left(\dot{x}+\frac{\Delta p}{m_{x}}\right)^{2}+m_{y}\left(\dot{y}-\frac{\Delta p}{m_{y}}\right)^{2}\right)$
. $E_{k}^{\text {after }}=E_{k}^{\text {before }}+(\dot{x}-\dot{y}) \Delta p+\frac{\Delta p^{2}}{2 m_{x}}+\frac{\Delta p^{2}}{2 m_{y}}$
- Set change to zero $\Longrightarrow \Delta p=0$ or $\Delta p=-2 m_{\text {eff }} v_{\text {rel }}$
where $v_{\text {rel }}=\dot{x}-\dot{y}$ and $m_{\text {eff }}=\left(\frac{1}{m_{x}}+\frac{1}{m_{y}}\right)^{-1}$

Collision response for elastic colliding particles

Collision impulse acts along the collision normal

- use of an impulse ensures momentum conservation
- $m_{x} \Delta \dot{\mathbf{x}}=-m_{y} \Delta \dot{\mathbf{y}}=\Delta \mathbf{p}$

To compute impulse, separate into normal and tangential components

. $\dot{\mathbf{x}}=\dot{\mathbf{x}}_{n}+\dot{\mathbf{x}}_{t}$ and $\dot{\mathbf{y}}=\dot{\mathbf{y}}_{n}+\dot{\mathbf{y}}_{t}$; kinetic energy of \mathbf{x} is $\frac{1}{2} m_{x} \dot{\mathbf{x}}_{n}^{2}+\frac{1}{2} m_{x} \dot{\mathbf{x}}_{t}^{2}$ and similar for \mathbf{y}

- normal impulse only affects the normal part of the energy, so conserve that
- ...but this is the same 1D problem again!
- $\Delta \mathbf{p}=\gamma \hat{\mathbf{n}} ; \gamma==-2 m_{\text {eff }} v_{n}$
- where $v_{n}=\hat{\mathbf{n}} \cdot(\dot{\mathbf{x}}-\dot{\mathbf{y}})$ is the normal component of the relative velocity

Restitution and friction in two-particle case

We've seen that conserving energy in a two-particle collision translates to exactly reversing the relative normal velocity

- this was the same as in the solid-wall collision
- we can compute normal and friction impulses using the same approach
- scale down normal impulse: $\Delta \mathbf{p}=\gamma \hat{\mathbf{n}} ; \gamma=-\left(1+c_{r}\right) m_{\text {eff }} \nu_{n}$ where c_{r} is the coeff. of restitution
- friction impulse acts along the tangential component of relative velocity
- still a fraction of the normal impulse
- still limited to zeroing out the tangential relative velocity
- $\gamma_{f}=-\min \left(\mu \gamma, m v_{t}\right) ; \Delta \mathbf{p}=\gamma_{f} \hat{\mathbf{v}}_{t}$

Collisions with deformables involving edges in 2D

In 2D remember that vertex-edge collisions are the ones we worry about

To resolve a collision we need to apply impulses to three vertices

- contact is between the moving vertex and a point on the moving edge
- moving point \mathbf{x}; edge vertices \mathbf{y} and \mathbf{z}
- colliding point $\mathbf{p}=\alpha \mathbf{y}+\beta \mathbf{z}$ where $\alpha+\beta=1$
- impulses are designed to achieve the desired change in relative velocity between \mathbf{x} and \mathbf{p}
- to derive required impulse, need to decide how the impulse will be distributed between ends
- typical: barycentric weighting
- $\gamma_{x}=\gamma ; \gamma y=-\alpha \gamma ; \gamma_{z}=-\beta \gamma$

Collisions with deformables involving edges in 2D

Positions:

$\cdot \mathbf{x}(t)=\mathbf{x}+t \dot{\mathbf{x}} ; \mathbf{y}(t)=\mathbf{y}+t \dot{\mathbf{y}} ; \mathbf{z}(t)=\mathbf{z}+t \dot{\mathbf{z}}$

- $\mathbf{p}(t)=\mathbf{p}+\alpha t \dot{\mathbf{y}}+\beta t \dot{\mathbf{z}} ; \dot{\mathbf{p}}=\alpha \dot{\mathbf{y}}+\beta \dot{\mathbf{z}}$
- $\mathbf{x}\left(t_{c}\right)=\mathbf{p}\left(t_{c}\right)$

Post-collision velocities:
$. \dot{\mathbf{x}}^{+}=\dot{\mathbf{x}}+\frac{\gamma}{m_{x}} \hat{\mathbf{n}} ; \dot{\mathbf{y}}^{+}=\dot{\mathbf{y}}-\frac{\alpha \gamma}{m_{y}} \hat{\mathbf{n}} ; \dot{\mathbf{z}}^{+}=\dot{\mathbf{z}}-\frac{\beta \gamma}{m_{z}} \hat{\mathbf{n}}$
$\cdot \dot{\mathbf{p}}^{+}=\alpha \dot{\mathbf{y}}^{+}+\beta \dot{\mathbf{z}}^{+}$

Collisions with deformables involving edges in 2D

Normal components:

. $\dot{x}_{n}^{+}=\dot{x}_{n}+\frac{\gamma}{m_{x}} ; \dot{p}_{n}^{+}=\dot{p}_{n}-\frac{\alpha^{2} \gamma}{m_{y}}-\frac{\beta^{2} \gamma}{m_{z}}$

- $v_{n}=\dot{x}_{n}-\dot{p}_{n}$
- $v_{n}^{+}=\dot{x}_{n}^{+}-\dot{p}_{n}^{+}=-c_{r} v_{n}$
. $-c_{r} v_{n}=\dot{x}_{n}-\dot{p}_{n}+\left(\frac{1}{m_{x}}+\frac{\alpha^{2}}{m_{y}}+\frac{\beta^{2}}{m_{z}}\right) \gamma$
$.\left(1+c_{r}\right) v_{n}=-\left(\frac{1}{m_{x}}+\frac{\alpha^{2}}{m_{y}}+\frac{\beta^{2}}{m_{z}}\right) \gamma$
- $\gamma=-\left(1+c_{r}\right) m_{\text {eff }} v_{n}$

Collisions with deformables involving edges in 2D

Positions:

$$
\begin{aligned}
& \mathbf{x}(t)=\mathbf{x}+t \dot{\mathbf{x}} ; \mathbf{y}(t)=\mathbf{y}+t \dot{\mathbf{y}} ; \\
& \mathbf{z}(t)=\mathbf{z}+t \dot{\mathbf{z}}
\end{aligned}
$$

- $\mathbf{p}(t)=\mathbf{p}+\alpha t \dot{\mathbf{y}}+\beta t \dot{\mathbf{z}} ; \dot{\mathbf{p}}=\alpha \dot{\mathbf{y}}+\beta \dot{\mathbf{z}}$
- $\mathbf{x}\left(t_{c}\right)=\mathbf{p}\left(t_{c}\right)$

Post-collision velocities:

. $\dot{\mathbf{x}}^{+}=\dot{\mathbf{x}}+\frac{\gamma}{m_{x}} \hat{\mathbf{n}} ; \dot{\mathbf{y}}^{+}=\dot{\mathbf{y}}-\frac{\alpha \gamma}{m_{y}} \hat{\mathbf{n}}$;

$$
\dot{\mathbf{z}}^{+}=\dot{\mathbf{z}}-\frac{\beta \gamma}{m_{z}} \hat{\mathbf{n}}
$$

$\cdot \dot{\mathbf{p}}^{+}=\alpha \dot{\mathbf{x}}+\beta \dot{\mathbf{y}}$

Normal components:
. $\dot{x}_{n}^{+}=\dot{x}_{n}+\frac{\gamma}{m_{x}} ; \dot{p}_{n}^{+}=\dot{p}_{n}-\frac{\alpha \gamma}{m_{y}}-\frac{\beta \gamma}{m_{z}}$

- $v_{n}=\dot{x}_{n}-\dot{p}_{n}$
- $v_{n}^{+}=\dot{x}_{n}^{+}-\dot{p}_{n}^{+}=-c_{r} v_{n}$
$-c_{r} v_{n}=\dot{x}_{n}-\dot{p}_{n}+\left(\frac{1}{m_{x}}+\frac{\alpha}{m_{y}}+\frac{\beta}{m_{z}}\right) \gamma$
$.\left(1+c_{r}\right) v_{n}=-\left(\frac{1}{m_{x}}+\frac{\alpha}{m_{y}}+\frac{\beta}{m_{z}}\right) \gamma$
- $\gamma=-\left(1+c_{r}\right) m_{\text {eff }} v_{n}$

Resolving multiple collisions

This is where it gets messy!

Resolving collisions one at a time can work in easy cases

- when there are not too many collisions
- when the collisions are generally well separated in time
- when there is no resting contact

In harder cases collisions are highly interdependent

- consider a stack of 5 boxes...
- adding friction makes things even worse
- collision problems can even encode NP-hard problems, in theory

Result: large variety of collision response algorithms, few ironclad guarantees

Broad map of collision methods

Penalties and barriers

- devise forces that vary smoothly and push objects apart
- older idea: penalty forces that activate when objects interpenetrate
- newer idea: barrier potentials that activate on proximity and prevent interpenetration
- the good: smoothly varying forces, fewer discrete decisions to make
- the bad: forces have to be very stiff to be effective, leading to integration challenges

Broad map of collision methods

Impulses

- instantaneous events that happen exactly at the time of collision
- really simple way to handle well separated collisions
- computing impulses separately doesn't always handle simultaneous collisions
- the good: impulses don't add stiffness, can be simple and fast
- the bad: no principled handling of simultaneous collisions

Broad map of collision methods

Constraints

- consider many simultaneous collisions as constraints on motion
- solve a system of equations to find a simultaneous solution to all constraints
- many solution methods, from heavy global solvers to simple iterations
- iterative solvers look a lot like resolving contacts separately
- the good: doesn't add stiffness, can solve complex cases
- the bad: methods can be complex, hard to guarantee robustness in all situations

Broad map of collision methods

Strategies for resolving collisions

- recall the Symplectic Euler integrator
- 1. compute acceleration $\mathbf{a}_{0}=M^{-1} \mathbf{f}\left(t_{0}\right)$
- 2. compute velocity $\mathbf{v}_{1}=\mathbf{v}_{0}+h \mathbf{a}_{0}$
- 3. compute position $\mathbf{x}_{1}=\mathbf{x}_{0}+h \mathbf{v}_{1}$
- "acceleration level" methods think about forces and accelerations and make changes at step 1
- "velocity level" methods think about impulses and velocities and make chances after step 2
- "position level" methods think about correcting positions directly and make changes after step 3

Choice of collision method

Depends on type of simulation

- deformables have many contacts but more local interactions
- rigid bodies have more global interactions (more on that later)
- solids can recover from interpenetration; thin objects (rods, sheets) can't

Collision response choice

- for robustness and accuracy with extreme deformations, barrier potentials
- for efficiency with rigid bodies or stiff solids, impulses or iterative constraint solvers
- for accuracy, global constraint solvers (becoming less used)

Collision detection choice

- for solids and rigid bodies, often instantaneous overlap query
- for cloth and rods, often continuous collision detection
- if using barrier potentials, proximity queries

Simple method \#1: sequential resolution

Strategy: simulate to the first collision, fix it, then continue

- assume Symplectic Euler, first updating velocities then positions
- 1. compute forces \mathbf{f}_{0} at the start of the step, t_{0}, set $t=t_{0}$
- 2. compute new velocities $\mathbf{v}_{1}=\mathbf{v}_{0}+h M^{-1} \mathbf{f}_{0}$
- 3. perform CCD over $\left[t, t_{1}\right]$ to find any collisions
- if there are any collisions, find the one that happens first, call that time t_{c}
- advance all positions to time $t=t_{c}$
- compute an impulse to resolve the collision, update the directly involved velocities
- repeat this step until there are no more collisions
- 4. advance all positions from t to t_{1}

Simple method \#2: parallel resolution

Strategy: fix all collisions in the timestep, then check if we broke anything

- assume Symplectic Euler, first updating velocities then positions
- 1. compute forces \mathbf{f}_{0} at the start of the step, t_{0}, set $t=t_{0}$
- 2. compute new velocities $\mathbf{v}_{1}=\mathbf{v}_{0}+h M^{-1} \mathbf{f}_{0}$
- 3. perform CCD over $\left[t_{0}, t_{1}\right]$ to find any collisions
- order collisions by their times
- for each collision:
- compute an impulse using vertex positions at the collision time
- apply the impulse to update the directly involved velocities
- after resolving all collisions, repeat this whole step until there are no more collisions
- 4. advance all positions from t_{0} to t_{1}

