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Starting simple: particle with fixed obstacle
Reality of collision 

• kinetic energy is stored in elastic potential

• energy is released back into kinetic (partly)

• for hard objects this happens very fast


Modeling approximation 
• our model doesn’t have the DoFs to represent that deformation

• abstract away the details: what is the particle is doing after the collision is over?


Impluse: summarize force over a short event as a change in momentum 
• force applied to ball by wall, and therefore acceleration of ball, varies over a short time


• only final velocity matters: integrate acceleration ( ) over time ( ) and forget details


• impulse: integrate force ( ) over time ( ) to have an analog of force for short events ( )
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Particle-obstacle collision (frictionless)
Notation: pre-collision velocity ; post-collision  

• separate these into normal and tangential:  ;  ; 


• note  otherwise the collision would not be happening


Collision impulse  acts along contact normal :  

• final velocity is not towards surface, or ; 


Decide magnitude of impulse by conservation of energy 
• 


• 


• so normal component has to exactly reverse to conserve energy: , so 
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Particle-obstacle collision (friction)
Restitution 

• model energy loss with heuristic “coefficient of restitution”  such that  ; 



Friction impulse  acts in the tangential direction 

• Coulomb friction model: frictional force 


• forces high during impact so , integrates to 


• friction does not take tangential velocity past zero so 


•  and 
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Elastic collision between particles in 1D
Momentum conservation: apply opposite impulses  and  

• after applying collision impulse  and  


Energy conservation ensured by reversing the relative velocity 
• kinetic energy before collision: 


• energy after collision: 


• 


• Set change to zero   or   

where  and 
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Collision response for elastic colliding particles
Collision impulse acts along the collision normal 

• use of an impulse ensures momentum conservation


• 


To compute impulse, separate into normal and tangential components 
•  and    ;   kinetic energy of  is  and similar for 


• normal impulse only affects the normal part of the energy, so conserve that

• …but this is the same 1D problem again!


• ;  


- where  is the normal component of the relative velocity
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Restitution and friction in two-particle case
We’ve seen that conserving energy in a two-particle collision 

translates to exactly reversing the relative normal velocity 
• this was the same as in the solid-wall collision

• we can compute normal and friction impulses using the same approach


• scale down normal impulse: ;  where  is the coeff. of restitution


• friction impulse acts along the tangential component of relative velocity

- still a fraction of the normal impulse

- still limited to zeroing out the tangential relative velocity
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Collisions with deformables involving edges in 2D
In 2D remember that vertex-edge collisions are the ones we worry about 

To resolve a collision we need to apply impulses to three vertices 
• contact is between the moving vertex  

and a point on the moving edge


- moving point ; edge vertices  and 


- colliding point  where 

• impulses are designed to achieve the desired  

change in relative velocity between  and 

• to derive required impulse, need to decide how  

the impulse will be distributed between ends

- typical: barycentric weighting


- ; ; 
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Collisions with deformables involving edges in 2D
Positions: 

•  ;  ; 


•  ; 


• 


Post-collision velocities: 

•  ;  ; 


• 
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Collisions with deformables involving edges in 2D
Normal components: 

•  ; 


• 


• 


•



•



•
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Collisions with deformables involving edges in 2D
Positions: 

•  ;  ; 



•  ; 


• 


Post-collision velocities: 

•  ;  ; 




• 


Normal components: 

•  ; 


• 


• 


•



•



•
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Resolving multiple collisions
This is where it gets messy! 

Resolving collisions one at a time can work in easy cases 
• when there are not too many collisions

• when the collisions are generally well separated in time

• when there is no resting contact


In harder cases collisions are highly interdependent 
• consider a stack of 5 boxes…

• adding friction makes things even worse

• collision problems can even encode NP-hard problems, in theory


Result: large variety of collision response algorithms, few ironclad guarantees



Broad map of collision methods
Penalties and barriers 

• devise forces that vary smoothly and push objects apart

• older idea: penalty forces that activate when objects interpenetrate

• newer idea: barrier potentials that activate on proximity and prevent interpenetration

• the good: smoothly varying forces, fewer discrete decisions to make

• the bad: forces have to be very stiff to be effective, leading to integration challenges




Broad map of collision methods
Impulses 

• instantaneous events that happen exactly at the time of collision

• really simple way to handle well separated collisions

• computing impulses separately doesn’t always handle simultaneous collisions

• the good: impulses don’t add stiffness, can be simple and fast

• the bad: no principled handling of simultaneous collisions



Broad map of collision methods
Constraints 

• consider many simultaneous collisions as constraints on motion

• solve a system of equations to find a simultaneous solution to all constraints

• many solution methods, from heavy global solvers to simple iterations

• iterative solvers look a lot like resolving contacts separately

• the good: doesn’t add stiffness, can solve complex cases

• the bad: methods can be complex, hard to guarantee robustness in all situations



Broad map of collision methods
Strategies for resolving collisions 

• recall the Symplectic Euler integrator


- 1. compute acceleration 


- 2. compute velocity 


- 3. compute position 


• “acceleration level” methods think about forces and accelerations  
and make changes at step 1


• “velocity level” methods think about impulses and velocities  
and make chances after step 2


• “position level” methods think about correcting positions directly  
and make changes after step 3

a0 = M−1f(t0)
v1 = v0 + ha0

x1 = x0 + hv1



Choice of collision method
Depends on type of simulation 

• deformables have many contacts but more local interactions

• rigid bodies have more global interactions (more on that later)

• solids can recover from interpenetration; thin objects (rods, sheets) can’t


Collision response choice 
• for robustness and accuracy with extreme deformations, barrier potentials

• for efficiency with rigid bodies or stiff solids, impulses or iterative constraint solvers

• for accuracy, global constraint solvers (becoming less used)


Collision detection choice 
• for solids and rigid bodies, often instantaneous overlap query

• for cloth and rods, often continuous collision detection

• if using barrier potentials, proximity queries



Simple method #1: sequential resolution
Strategy: simulate to the first collision, fix it, then continue 

• assume Symplectic Euler, first updating velocities then positions


• 1. compute forces  at the start of the step, , set 


• 2. compute new velocities 


• 3. perform CCD over  to find any collisions


- if there are any collisions, find the one that happens first, call that time 


- advance all positions to time 

- compute an impulse to resolve the collision, update the directly involved velocities

- repeat this step until there are no more collisions


• 4. advance all positions from  to 
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Simple method #2: parallel resolution
Strategy: fix all collisions in the timestep, then check if we broke anything 

• assume Symplectic Euler, first updating velocities then positions


• 1. compute forces  at the start of the step, , set 


• 2. compute new velocities 


• 3. perform CCD over  to find any collisions

- order collisions by their times

- for each collision:


- compute an impulse using vertex positions at the collision time

- apply the impulse to update the directly involved velocities


- after resolving all collisions, repeat this whole step until there are no more collisions


• 4. advance all positions from  to 

f0 t0 t = t0
v1 = v0 + hM−1f0

[t0, t1]

t0 t1


