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Working out our spring force from the energy
Start with the spring energy 

•  (this is the contribution of one spring to the total system energy)


Force is minus the gradient of energy 

•  (remember  is a big vector of all the positions; this partial derivative is zero for all 

the particles that are not connected to this particular spring)


Take the computation one step at a time: 
• derivative of  is  wrt.  and  wrt. 


• derivative of  wrt.  is 


• derivative of  wrt  is 


• put it all together:  and 

Eij(x) = 1
2 ks(∥xi − xj∥ − l0)2

fi(x) = −
∂E
∂xi

(x) x

xi − xj I xi −I xj

∥v∥ v v̂
Eij ∥v∥ ks(∥v∥ − l0)

fi = − ∂E/∂xi = − ks(∥xij∥ − l0)x̂ij fj = − ∂E/∂xj = ks(∥xij∥ − l0)x̂ij

where xij = xi − xj



Alternative “variational” notation
Derivative is a linear transformation; write down the output 

• instead of  write 


• when the matrix  is awkward to write down this can be neater…


• 


• 


• 


• substitute to get 


• read off  and 

∂f
∂x

= A δf = A δx

A

δxij = δxi − δxj

δ∥v∥ = v̂ ⋅ δv
δE = ks(l − l0)δl

δE = ks(∥xij∥ − l0)x̂ij ⋅ δxi − ks(∥xij∥ − l0)x̂ij ⋅ δxj

fi fj



Deformable models
Mass-spring models can get you somewhere 

• but only so far

• they were used a lot back in the Old Days


They have their limitations 
• hard to separate different stiffnesses (e.g. bend/shear springs contribute to stretch)

• hard to control preservation of volume in deformations

• hard to make them agree with measurements


Let’s keep the idea of deriving forces from energies 
• define energies to get the behavior we want

• borrow energies from other fields to get more accurate models



Example: hinge energy
We made a rope before using linear springs 

• connect springs between every other point

• when rope bends, the springs fight one another, indirectly cause bending resistance


More direct approach 
• just make the energy depend on the bending angle  (well, )θ sin θ

2



Deformation map
A deforming object is described by a time varying function 

• 

• maps the rest position of a chunk of material to its current deformed position

• aka. a map from material space to world space

• varies as a function of time

x = ϕ(X, t)



Deformation gradient
The material of the deformable object “wants” to return to the rest shape 

• how do we describe this behavior exactly?

• bits of material can’t communicate at a distance or “know” where they are in space

• all interactions are local — the motion of a point depends only on its neighborhood


Result: deformation models are based only on the derivative of  

•  or 


•  is a matrix—2x2 or 3x3 depending on  
the dimension of the simulation

ϕ

F =
∂ϕ
∂X

=
∂x
∂X

δx = F δX

F



Computing deformation gradient
This is all very abstract — how do I compute it for a deforming mesh? 

• very much like the computation used to get tangent vectors on a surface for shading

• in 2D, a triangle defines a unique affine map; in 3D a tetrahedron does the same

• can get that linear map by looking at triangle edge vectors

[x1 − x0 x2 − x0] = F [X1 − X0 X2 − X0]
D = FD0

F = DD−1
0



Infinitesimal vs. finite
When formulating elasticity problems there are multiple branches 

• when things change just a bit from the rest config, linearized models are good

• when things change a lot, linearized models are very much not good


Two cases to distinguish 
• small (infinitesimal) displacements  


- the deformation map (and gradient) is close to the identity

- the deformation map (and gradient) can be approximated  

with a linear model


• small (infinitesimal) strains 

- the deformation gradient is close to rigid

- the deformation gradient can be approximated with a  

linear model in the appropriate coordinates

→

→



Rotation invariance
Behavior of deformable model should be the same in all coordinate systems 

• translation invariant — that is guaranteed by building on 


• rotation invariant — rotating the object changes  but should not change behavior


Look at the SVD of  for insight 




• measures of deformation should not depend on 


Isotropic material: material has no special orientation 
• in this case quantities like energy should be independent of both s 


• the key information about deformation is contained just in the s

F
F

F

F = UΣVT = [u1 u2] [σ1 0
0 σ2] [v1 v2]T = Rworld [σ1 0

0 σ2] Rmaterial

Rworld

R
σi



Hyperelastic materials
Elastic deformation: the material springs back to its original shape 

Plastic deformation: the material changes internally and remains deformed 

The idealization of a material that is elastic for all deformations is hyperelastic 

Hyperelastic materials: 
• deform without losing energy

• can be entirely described using a potential energy: strain energy 

• strain energy is analogous to the familiar  potential for linear springs


• strain energy is the integral of a volume density: strain energy density 

• for homogeneous materials there is a single function  
that computes strain energy density from 

1
2 kx2

ψ
F E[ψ] = ∫B

ψ(F(X)) dX



Measuring strain
Strain measures 

• functions of deformation gradient 


• should be zero for 

• should be rotation-invariant in the world (for large displacements)


• looking at SVD , strain should be independent of 


Two routes to rotation invariance 
• use a product to cancel :   

• use a matrix decomposition to separate out rotation:


- compute the polar decomposition:  
and measure strain from just 

F
F = I

F = UΣVT U

U FTF = VΣUTUΣVT = VΣ2VT

F = RS = (UVT)(VΣVT)
S

(this is the “right Cauchy-Green 
deformation tensor”)



Three basic strain measures
Green’s strain:  

• simple to compute

• rotation invariant in world

• …but measures the square of the stretch factor


- 


Corotated linear strain:  
• “corotated” meaning computed in a coordinate system that rotates with the object


• strain defined based only on the  factor from the polar decomposition (ignore )

• measures the stretch factor directly


-

E(F) = 1
2 (FTF − I)

E = 1
2 (VΣ2VT − I) = 1

2 (VΣ2VT − VVT) = V ( 1
2 (Σ2 − I)) VT

ϵc = S − I

S R

E = VΣVT − VVT = V(Σ − I)VT



Aside: how it plays out in 1D
A 1D deformable object living in a 1D space 

• no rotation, no distinction between deformation and strain


• deformation map is just a function 


• deformation gradient is its derivative 


• strain is measuring the deviation of  from 


• linear strain: 


• Green’s strain: 


• these match for small strains (near ) but diverge as strain increases

x = ϕ(X) : ℝ → ℝ

F(X) =
dϕ
dX

= ϕ′ (X)

F 1

ϵ = F − 1

E = 1
2 (F2 − 1)

F = 1



Linear algebra aside
Frobenius norm 

• a measure of “size” for matrices


• amounts to thinking of the  matrix as a -vector and using the Euclidean norm


-



• rotation invariance: F-norm is invariant to rotation on either side

- proof: think of matrix as a stack of columns or rows


N × N N2

∥A∥2
F = ∑

i,j

a2
ij

A = [v1⋯vn]
QA = [Qv1⋯Qvn]

∥A∥2
F = ∑

k

∥v∥2
2 = ∑

k

∥Qv∥2
2



Linear algebra aside
Double contraction aka. “double dot product” 

•
like a dot product operation for matrices: 


• leads to another way to write the F-norm: 


• handy identities: 


- 


- 


-

A : B = ∑
i,j

aijbij

∥A∥2
F = A : A

A : BC = BTA : C = ACT : B
δ[A : B] = δ[A] : B + A : δ[B]
δ[∥A∥2

F] = δ[A : A] = 2A : δA



More matrix invariants
Invariants = functions that are invariant to change of basis 

• Frobenius norm is an invariant


Trace of matrix: sum of diagonal elements 

•
         another way to write this: 


• useful facts:  ;  ;   (prove by writing out the sums)


• corollary: 


•
for symmetric matrices  and 

tr A = ∑
i

aii tr A = I : A

tr A = tr AT tr AB = tr BA tr ATB = A : B
tr QAQT = tr (AQT)Q = tr A

A = VΣVT tr A = tr Σ = ∑
i

σi



More matrix invariants
Determinant of matrix: (signed) volume spanned by columns 

• determinant tells how much the transformation magnifies area or volume


• useful facts:  ; 


• corollary:     — determinant invariant to rotations on both sides


•
since , 


So all together we have three invariants that are easy to compute 
• Frobenius norm:  is the sum of squares of the singular values


• trace:  is the sum of the singular values for symmetric  (which will be the case for us)


• determinant:  is the product of the singular values

det AB = det A det B det A = det AT

det QA = 1 det A = det A

A = UΣVT det A = det Σ = ∏
i

σi

∥A∥2
F

tr A A
det A



Constitutive models
For hyperelastic materials, just need to define a strain energy density 

• function of strain at a point

• for isotropic materials, should be rotation invariant in the material space

• this means they ultimately are just functions of the singular values of strain

• typically they are defined as simple functions of the invariants on the previous slide


Three basic linear models 
• Linear elasticity

• St. Venant-Kirchoff model

• Corotated linear elasticity


• they all define  in the same way, but they start with the three different strain measuresψ



Properties of elastic materials
Materials are described in terms of observable macroscopic properties 

• take a block of material, apply uniaxial tension or compression

• object behaves like a spring (pushes back proportional to displacement)

• spring constant is proportional to cross-section:


-   ;  


-  is known as Young’s modulus (force/area)

• material also changes along the other axis (aka. laterally)


- most materials resist changing volume

- with no lateral force, lateral shrinkage is 

proportional to axial extension


-   ;   is known as Poisson’s ratio 


- in 3D  is exact volume preservation 
(in 2D, corresponding parameter is )

f = kΔL k = AE/L
E

Δw = − νΔL ν
ν = 0.5

ν = 1



Linear elasticity
Simplest model for this small-deformation behavior 

• make energy a linear combination of the two easiest-to-compute invariants


• first think about just , assuming 


• want spring energy to be , so energy/volume is 


•  ;  where  is lengthwise strain and there is no transverse strain


• to account for  as well, add a term for the trace


• 


• if you solve for  and  to provide the same energy when  you get the formulas:


•   and   (in 3D) or  (in 2D)

E ν = 0
1
2 k(ΔL)2 1

2 Eϵ2
l

ψ(F) = μ∥ϵ∥2
F = μϵ2

l μ = E/2 ϵl

ν

ψ(F) = μ∥ϵ∥2
F +

λ
2

(tr ϵ)2

μ λ ϵt = − νϵl

μ =
E

2(1 + ν)
λ =

Eν
(1 + ν)(1 − 2ν)

λ =
Eν

(1 + ν)(1 − ν)



Linear strain
For small deformations we can use a first-order approximation to  

• 


•




infinitesimal (linear) strain: 

E
E(F) ≈ E(I) + δE(I) |δF=F−I + …
E(F) ≈ δE(I) |δF=F−I

=
1
2 ((F − I)T + (F − I))

=
1
2 (F + FT) − I

ϵ = 1
2 (F + FT) − I

δE(F) =
1
2

δ[FTF − I]

=
1
2 (δ[F]TF + FTδ[F])

δE(I) ≈
1
2 (δ[F]TI + ITδ[F])

=
1
2 (δ[F]T + δ[F])



Linear elasticity
The first constitutive model for an isotropic material 

• measure deformation using the linear strain 


• define strain energy density as 


To determine forces on mesh vertices we need  
• the chain-rule chain is 


• we already derived  and  will be simple


• we still need  and  (these are the ones that depend on the material model)

• will work these two out using variational notation and derive a formula for


   known as the “first Piola-Kirchoff stress”

ϵ = 1
2 (F + FT) − I

ψ = μ∥ϵ∥2
F + λ

2 (tr ϵ)2

∂ψ/∂xi
x → F → ϵ → ψ → E

∂F/∂x ∂E/∂ψ

∂ϵ/∂F ∂ψ/∂ϵ

P(F) =
∂ψ(F)

∂F



Energy density gradient for linear elasticity
First the derivative of elastic energy density with respect to strain 

•



next the derivative of strain with respect to deformation gradient 
• 


•    where   


substituting: 
•    —simplified via  for symmetric 


•    —this is 

δψ(F) = δ[μ∥ϵ(F)∥2
F +

λ
2

(tr ϵ(F))2]

= 2μϵ : δϵ + λ(tr ϵ)I : δϵ

ϵ = 1
2 (F + FT) − I

δϵ = δ[sym F] = sym δF sym A = 1
2 (A + AT)

δψ(F) = (2μϵ + λ(tr ϵ)I) : δF S : sym A = S : A S

P = 2μϵ + λ(tr ϵ)I ∂ψ/∂F



Computing nodal forces
Now we have the complete chain of derivatives for the first model 

• let’s compute the forces as 


• 


•



• recall that , so 


• we have , so 


• for triangle , 


• thus  where 


•  and 

fi = − ∂E/∂xi

E[ϕ] = ∫B
ψ(F(X)) dX

E[ϕ] = ∑
k

∫Tk

ψ(F(X)) dX = ∑
k

|Tk |ψ(Fk)

F = DD−1
0 δF = δ[D] D−1

0

δψ = P : δF δψ = P : (δ[D] D−1
0 ) = PD−T

0 : δD

k δE = |Tk |δψ = |Tk |PD−T
0 : δD

δE = − H : δD H = − |Tk |PD−T
0

H = [f1 f2] f0 = − (f1 + f2)



To sum up…
So you are writing a simulator and need to compute forces on your vertices? 

No problem, follow these 5 steps: 
To compute the forces due to one triangle:


1. Ahead of time compute  and .


2. Compute  from the current vertex positions.


3. Compute the strain from  using the formulas appropriate to your model.


4. Compute the stress  from the strain using the formulas appropriate to your model.


5. Compute , and the forces are sitting in the columns of .


To compute the total force on each vertex you need to loop over all the triangles  
and accumulate their contributions.  That’s all there is to it!

D−1
0 |Tk |

F = DD−1
0

F
P

H = − |Tk |PD−T
0 H



Forces for nonlinear models
Two other models are commonly used that are built similarly to linear elasticity 

St. Venant–Kirchoff model 
• based on Green’s strain: 


• uses same strain energy density formula as linear elasticity: 


• to differentiate energy, the first step is the same as linear: 


• to differentiate strain, 


• remember  and  and  are symmetric. so:


• 


• read off 

E(F) = 1
2 (FTF − I)

ψ = μ∥E∥2
F +

λ
2

(tr E)2

δψ = 2μE : δE + λ(tr E)I : δE

δE = sym (FTδF)

S : sym A = S : A E I

δψ = 2μFE : δF + λ(tr E)F : δF = F (2μE + λ(tr E)I) : δF

P = F [2μE + λ(tr E)I]



Forces for nonlinear models
Corotated linear model 

• based on corotated strain:  where ; 


• to differentiate energy,  and 


• lemma:  (at right)


• lemma:  is antisymmetric (at right) 

• then substituting above:


-



• read off 

ϵc = S − I F = RS ψ = μ∥ϵc∥2
F +

λ
2

(tr ϵc)2

δψ = 2μϵc : δϵc + λ(tr ϵc)I : δϵc δϵc = δS

δS = RTδF − (RTδR) S

RTδR

δψ = (2μϵc + λ(tr ϵc)I) : RTδF + (2μϵc + λ(tr ϵc)I) : (RTδR) S

= R (2μϵc + λ(tr ϵc)I) : δF + (2μϵcS + λ(tr ϵc)S) : (RTδR)
= R (2μϵc + λ(tr ϵc)I) : δF

P = R [2μϵc + λ(tr ϵc)I]

δF = δ[R]S + Rδ[S]
Rδ[S] = δF − δ[R]S

δS = RTδF − (RTδR) S

δ(RTR) = 0 = δRTR + RTδR = RTδR + (RTδR)T



One more nonlinear model
To be useful for significant compression, push back against  

• the determinant measures volume change accurately for large strains


• incorporating the logarithm of  in the energy makes it diverge as volume 


• a widely used neo-Hookean model is: 


• to differentiate this, make use of Jacobi’s formula 


• omitting a few details, the three terms in  are:


-   ;    ; 




• end result 

det F

det F → 0

ψ(F) = μ
2 (∥F∥2

F − 3) − μ log det F + λ
2 (log det F)2

δ[det A] = (det A) A−T : δA
δψ

μ
2 δ[∥F∥2

F] = μF : δF μδ[log det F] = μF−T : δF
λ
2 δ [(log det F)2] = λ(log det F) F−T : δF

P(F) = μ(F − F−T) + λ(log det F) F−T


