Cob643
06 Intro to laich

Steve Marschner
Cornell University
Spring 2023

laicn!

A domain-specific language for parallel computation on sparse spatial data

- motivation: decouple the data structures from the computation

Decoupled

Data Structure

Computation Code

Hierarchical Tree of Sparse Grids oti. func

def gnoise(p : vec2):
the four corners of the integer square where p falls
i00 = tm.floor(p)

. i10 = 100 + vec2(1,0)
First-level i01 = 100 + vec2(0,1)
Grid Divider i11 = i80 + vec2(1,1)
the values of the four pseudorandom gradients, evaluated at p
veo = (p - 100).dot(randunit(ie@))
Ezr]Cj—lea\/Eal vd1 = (p - i01).dot(randunit(i01))

: C vie = (p - 110).dot(randunit(i10))
Grld DIVIder v11 (p - 111).dot(randunit(i11))
the two blending factors (f.x and f.y) we will use to interpolate
a=p - 100
f = 3*%a*a - 2*a*a*a
bilinear interpolation between the four gradient values
return (
(vee * (1-f[@]) + vi@ * f[0]) * (1 - f[1]) +
(ve1 * (1-f[0]) + v11 * f[0]) * f[1]
)

DS DS2 Perlin Noise Code

lalcn| e
(‘ Taichi Lang

Origins
+ dissertation work of Yuanming Hu at MIT, introduced at SIGGRAPH in 2019-2021

+ now maintained as an open source project by Yuanming at his spinoff company Taichi Graphics

What it provides

+ a domain-specific language (DSL) suitable for simulation on the GPU
- a flexible set of data structures for dense and sparse grids

- an automatic differentiation system

What we will use

- we rely on the Taichi language as our way to express fast computations
- we will mainly use dense-grid data structures and will likely not use autodiff

- for your final projects you might like to explore the fancier features!

https://www.taichi-lang.org

SOmMe Important Issues for performance

To go fast:

- focus performance effort on a few bottlenecks
- do work in parallel

- minimize time spent waiting for data

Compute in many independent tasks

- need lots of tasks to make good use of GPUs
- one task’s behavior should not depend on another’s result

- Streaming computation: many tasks each consuming a separate
input and writing a separate output

Organize data in memory to maximize locality

- data accessed close together in time should be located close
together in space

- Increases effectiveness of memory hierarchy

- bottom line: store data close together and access it in order

Nehalem-EP

Core,
32KB L1

and L1-d

r

Core,
32KB L1+

Core,
32KB L1-i

and L1-d

v

Core.
32KB L1+

and L1-d

v

and L1-d

256KB L2
(NINE)

256KB L2
(NINE)

256KB L2
(NINE)

256KB L2

(NINE)

v

8MB shared L3 cache

(Inclusive of L1 and L2 caches)

4

‘ MC \

DDR3
DDR3
DDR3

e,

0

a typical memory hierarchy

(newer examples have bigger numbers)

Intel via Wikimedia Commons

to other
= chip

Oraganization of a Taichi program

Python code

- runs serially on CPU via Python interpreter

- keep things that don’t need to be fast in here because it is easier!

Taichi kernels
+ compiled to optimized parallel code for CPU or GPU

»can be broken into Taichi functions for modularity/reuse

+ cannot access data in regular Python variables directly

Taichi data containers

- are stored in memory that is fast for kernels to access
+ provide control over how data is organized in memory

- data often must be copied between CPU and GPU memory to interoperate with Python

nitialization: th.init()

Call it before you create your first field or call your first kernel

- OK to define functions and kernels before initialization

At inttialization time you select a backend

- ti.init(arch=ti.cpu) and Taichi kernels run on your CPU
- ti.init(arch=ti.gpu) and Taichi chooses a default GPU backend
- can specify GPU API specifically with architectures cuda, metal, opengl, vulkan

- note: on Mac, metal is the default GPU option but vulkan is often the better/newer choice

- fancier features are only

You can also set some other useful parameters
- ti.init(arch=ti.cpu, cpu_max_num_threads=1) ensures serial execution for nicer debug output

- ti.init(arch=ti.cpu, debug=True) will enable bounds checking on all array accesses

laichi datatypes

Taichi has the usual data types and GLSL-like vector/matrix types

- to define by example: ti.i32 (signed 32-bit int), ti.f64 (double-precision floating point),
ti.ul6 (unsigned 16-bit int)

- can use python types int and float as aliases for default integer and floating-point types
(defaults set at initialization)

- vector types generated like this
- ti.types.vector(4, ti.f64) — a 64-bit floating-point 4D vector type
- ti.types.matrix(4, 3, int) — a 4x3 integer matrix type
+ swizzling for 2,3,4 dimension vectors works like in GLSL (v.x or v.r is v[0], etc.)

- there are also structure types (we have not used them yet)

Types are Python objects so you can store them in variables to make aliases
« veck = ti.types.vector(2, ti.f32)

laicni data containers

To store data where you can access it from Taichi code, put it in containers

Most common: fields

- afield is an ND array of scalars, vectors, or matrices

- g =ti.field(ti.u8, (480,640)) — an 8-bit grayscale image

- ¢ =ti.Vector.field(3, ti.u8, (480,640)) — an RGB color image

- f=tifield(ti.f32, ()) — a 0D floating point field, aka. a single scalar

- dimensions are fixed at creation time

You can access data in fields from Python code
» 8[20,30] =4
- ¢[30,20]=148,4,9]; ¢c[30,20][1] =4; not c[50,20,1] =4
- ¢.fill(4), c.to_numpy(), c.from_numpy(ar) — where ar.shape is (30,20,3)

laicni kernels

A kernel is a piece of Taichi code that can be called from Python

- syntax is Python, code is parsed by Python interpreter
-+ semantics are a bit different; code is compiled by Taichi compiler

+various restrictions exist that don’t exist in Python

Kernels are written by decorating Python functions

- Taichi code is statically typed
@ti.kernel

- argument and return types must be provided def square(x : ti.f32) -> ti.f32:
return Xxxx
- max of one return statement allowed
| | square(42)
- global Python variables are accessible but are 764 0

read at compile time and become constants

Taichi functions

A Taichi function is a piece of Taichi code that can be called from Taichi

- kernels can call functions; functions can call functions
- functions cannot call kernels; functions cannot be called from Python
+ functions are always inlined (therefore no recursion)

- functions don’t require type hints when

types can be inferred @ti.func
def sqr(x):
return Xxxx
@ti.kernel
def fourth(x : ti.f32) -> ti.f32:

return sqr(sqr(x))

fourth(4)
256.0

Getting data into Taich

Constants

* you can just read them from Python globals

- their values are fixed at the time that compilation happens

Kernel parameters and return values

+ pass them to and from python kernels when you call them

- their values differ across invocations

Fields

- fields are global data that can be read or written by
Taichi code or Python code

- be aware that accessing individual elements from
Python is slow

@ti.kernel
def power(x : ti.f32) -> ti.f32:
return tm.pow(x, p)

p=4
print(power(3))
p =2
print(power(3))

81.0
81.0

@ti.kernel
def power(x : ti.f32) -> ti.f32:
return tm.pow(x, p[Nonel)

p = ti.field(ti.f32, ())

p[None] = 3
print(power(3))
p[None] = 2
print(power(3))
27.0

9.0

- fields are compile time constants in Taichi but their values are not

L OOpSs IN laicn

Typical uses: range for or structure for

- looping over a field gives you multiple indices

+ looping with ti.grouped() gives you a multi-index

Loops over constant lists

- the function ti.static() asks for an unrolled loop over a

list of constant data

Loops in kernels at outermost scope are

automatically parallelized

- this is where much of the performance comes from

+ can be defeated for range loops with

ti.loop_con

ig(serialize=True)

@ti.kernel
def loopy():
for i in range(3):
print("a", i)
for i in fieldl:
print("b", i)
for i,j in field2:
print("c", i, j)
for k in ti.grouped(field2):
print("d", k)

fieldl
field2

ti.field(int, 3)
ti.field(int, (3,2))

Lloopy ()

r QO Q
N P O

@ti.kernel
def loopme():
for v in ti.static(ar):
f[None] = f[Nonel + v[0] x v[1]

ar = [[1,2],12,11,1[3,2]1]
f = ti.field(ti.i32, ())
Loopme ()

print(f [None])

10
c 21 d [2, 1
c 22 d [2, 2]
c 23 d [2, 3

seware data races 5 it archeti. oo

def prefix_sum():

If you forget your code is parallel you can i
for i in f:
get wrong answers cund = sumd + £I4]
- on GPU architectures, for speed, concurrent it ot s
accesses to the same memory location do not o
. . SsumlL =
happen in any reliable order sﬂmz - 0
| _ | ti.loop_config(serialize=True)
+ concurrent read-modify-write operations are unsafe for i in range(f.shape([0]):
suml = suml + f[i]
by default sum2 += f[i]

: . , . print(suml, sum2)
- architecture provides atomic add and other atomic

: [Taichi] Starting on arch=metal
operations that ensure concurrent accesses

behave as If serialized in some order f = ti.field(ti.i32, 128)
f.from_numpy(np.arange(128, dtype=np.int32))
- Taichi uses atomic operations for += and friends prefix_sum()
32 8128

8128 8128

Reterence

A Hands-on Tutorial of The Taichi Programming Language @ Siggraph 2020

- https://yuanming.taichi.graphics/publication/2020-taichi-tutorial/taichi-tutorial.pdf

Taichi Paper:
- https://dl.acm.org/doi/pdf/10.1145/3355089.3356506

Taichi intro documentation:

- https://docs.taichi-lang.org/

Taichi detailed API docs:
- https://docs.taichi-lang.org/api/

https://yuanming.taichi.graphics/publication/2020-taichi-tutorial/taichi-tutorial.pdf
https://dl.acm.org/doi/pdf/10.1145/3355089.3356506
https://docs.taichi-lang.org
https://docs.taichi-lang.org/api/

