
CS5643 
06 Intro to Taichi

Steve Marschner 
Cornell University 

Spring 2023

Taichi
A domain-specific language for parallel computation on sparse spatial data

• motivation: decouple the data structures from the computation

Data Structure

Hierarchical Tree of Sparse Grids

Computation Code

DS2DS1

First-level

Grid Divider

2nd-level

Grid Divider

Decoupled

Perlin Noise Code

Taichi

Origins
• dissertation work of Yuanming Hu at MIT, introduced at SIGGRAPH in 2019–2021

• now maintained as an open source project by Yuanming at his spinoff company Taichi Graphics

What it provides
• a domain-specific language (DSL) suitable for simulation on the GPU

• a flexible set of data structures for dense and sparse grids

• an automatic differentiation system

What we will use
• we rely on the Taichi language as our way to express fast computations

• we will mainly use dense-grid data structures and will likely not use autodiff

• for your final projects you might like to explore the fancier features!

https://www.taichi-lang.org

Some important issues for performance
To go fast:

• focus performance effort on a few bottlenecks

• do work in parallel

• minimize time spent waiting for data

Compute in many independent tasks
• need lots of tasks to make good use of GPUs

• one task’s behavior should not depend on another’s result
• streaming computation: many tasks each consuming a separate

input and writing a separate output

Organize data in memory to maximize locality
• data accessed close together in time should be located close

together in space

• increases effectiveness of memory hierarchy

• bottom line: store data close together and access it in order

In
te

l v
ia

W
iki

m
ed

ia
Co

m
m

on
s

a typical memory hierarchy

(newer examples have bigger numbers)

Oraganization of a Taichi program
Python code

• runs serially on CPU via Python interpreter

• keep things that don’t need to be fast in here because it is easier!

Taichi kernels
• compiled to optimized parallel code for CPU or GPU

• can be broken into Taichi functions for modularity/reuse

• cannot access data in regular Python variables directly

Taichi data containers
• are stored in memory that is fast for kernels to access

• provide control over how data is organized in memory

• data often must be copied between CPU and GPU memory to interoperate with Python

Initialization: ti.init()
Call it before you create your first field or call your first kernel

• OK to define functions and kernels before initialization

At initialization time you select a backend
• ti.init(arch=ti.cpu) and Taichi kernels run on your CPU

• ti.init(arch=ti.gpu) and Taichi chooses a default GPU backend

• can specify GPU API specifically with architectures cuda, metal, opengl, vulkan
• note: on Mac, metal is the default GPU option but vulkan is often the better/newer choice

• fancier features are only

You can also set some other useful parameters
• ti.init(arch=ti.cpu, cpu_max_num_threads=1) ensures serial execution for nicer debug output

• ti.init(arch=ti.cpu, debug=True) will enable bounds checking on all array accesses

Taichi datatypes
Taichi has the usual data types and GLSL-like vector/matrix types

• to define by example: ti.i32 (signed 32-bit int), ti.f64 (double-precision floating point),  
ti.u16 (unsigned 16-bit int)

- can use python types int and float as aliases for default integer and floating-point types

(defaults set at initialization)

• vector types generated like this

- ti.types.vector(4, ti.f64) — a 64-bit floating-point 4D vector type

- ti.types.matrix(4, 3, int) — a 4x3 integer matrix type

• swizzling for 2,3,4 dimension vectors works like in GLSL (v.x or v.r is v[0], etc.)

• there are also structure types (we have not used them yet)

Types are Python objects so you can store them in variables to make aliases
• vec2 = ti.types.vector(2, ti.f32)

Taichi data containers
To store data where you can access it from Taichi code, put it in containers

Most common: fields
• a field is an ND array of scalars, vectors, or matrices

• g = ti.field(ti.u8, (480,640)) — an 8-bit grayscale image

• c = ti.Vector.field(3, ti.u8, (480,640)) — an RGB color image

• f = ti.field(ti.f32, ()) — a 0D floating point field, aka. a single scalar

• dimensions are fixed at creation time

You can access data in fields from Python code
• g[20,30] = 4

• c[30,20] = [3,4,5]; c[30,20][1] = 4; not c[30,20,1] = 4

• c.fill(4), c.to_numpy(), c.from_numpy(ar) — where ar.shape is (30,20,3)

Taichi kernels
A kernel is a piece of Taichi code that can be called from Python

• syntax is Python, code is parsed by Python interpreter

• semantics are a bit different; code is compiled by Taichi compiler

• various restrictions exist that don’t exist in Python

Kernels are written by decorating Python functions
• Taichi code is statically typed

• argument and return types must be provided

• max of one return statement allowed

• global Python variables are accessible but are  

read at compile time and become constants

Taichi functions
A Taichi function is a piece of Taichi code that can be called from Taichi

• kernels can call functions; functions can call functions

• functions cannot call kernels; functions cannot be called from Python

• functions are always inlined (therefore no recursion)

• functions don’t require type hints when  

types can be inferred

Getting data into Taichi
Constants

• you can just read them from Python globals

• their values are fixed at the time that compilation happens

Kernel parameters and return values
• pass them to and from python kernels when you call them

• their values differ across invocations

Fields
• fields are global data that can be read or written by  

Taichi code or Python code

• be aware that accessing individual elements from  

Python is slow

• fields are compile time constants in Taichi but their values are not

Loops in Taichi
Typical uses: range for or structure for

• looping over a field gives you multiple indices

• looping with ti.grouped() gives you a multi-index

Loops over constant lists
• the function ti.static() asks for an unrolled loop over a 

list of constant data

Loops in kernels at outermost scope are  
automatically parallelized
• this is where much of the performance comes from

• can be defeated for range loops with

ti.loop_config(serialize=True)

Beware data races
If you forget your code is parallel you can  

get wrong answers
• on GPU architectures, for speed, concurrent

accesses to the same memory location do not
happen in any reliable order

• concurrent read-modify-write operations are unsafe
by default

• architecture provides atomic add and other atomic
operations that ensure concurrent accesses
behave as if serialized in some order

• Taichi uses atomic operations for += and friends

Reference
A Hands-on Tutorial of The Taichi Programming Language @ Siggraph 2020

• https://yuanming.taichi.graphics/publication/2020-taichi-tutorial/taichi-tutorial.pdf

Taichi Paper:
• https://dl.acm.org/doi/pdf/10.1145/3355089.3356506

Taichi intro documentation:
• https://docs.taichi-lang.org/

Taichi detailed API docs:
• https://docs.taichi-lang.org/api/

https://yuanming.taichi.graphics/publication/2020-taichi-tutorial/taichi-tutorial.pdf
https://dl.acm.org/doi/pdf/10.1145/3355089.3356506
https://docs.taichi-lang.org
https://docs.taichi-lang.org/api/

