CS5643 05 Mass-and-spring models

Steve Marschner Cornell University Spring 2023

Binary Spring

The most basic modeling tool for all kinds of deformable things Spring defined by

- which particles i and j it connects
- its spring stiffness k_{s}
- its rest length l_0

$$\cdot f = k_s(l - l_0)$$

The force acts along the direction of the spring

•
$$\mathbf{f}_i = k_s(\|\mathbf{x}_{ij}\| - l_0)\hat{\mathbf{x}}_{ij}$$
 where $\mathbf{x}_{ij} = \mathbf{x}_j - \mathbf{x}_i$

•
$$\mathbf{f}_j = k_s(\|\mathbf{x}_{ji}\| - l_0)\hat{\mathbf{x}}_{ji} = -\mathbf{f}_{ij}$$

From Hooke's law we know force is proportional to displacement from rest

(quick sanity check: pulls *i* towards *j* when stretched)

Adding damping

Springs are usually too springy!

• a system of springs will oscillate forever...

Damping will dissipate energy

- but using the drag forces $\mathbf{f}_d = -k_d \mathbf{v}$ we use for free particles can slow things inappropriately • this force opposes all motion; we only want to oppose the spring's movement

Spring damping force opposes changes in spring length only

- only opposes relative motion
- only opposes motion in the direction of the spring

•
$$\mathbf{f}_i = k_d (\mathbf{v}_{ij} \cdot \hat{\mathbf{x}}_{ij}) \hat{\mathbf{x}}_{ij}$$
 where $\mathbf{v}_{ij} = \mathbf{v}_j - \mathbf{v}_i$ (set

anity check: pulls i towards j when elongating)

Phenomena of damped springs

Oscillations of undamped springs

- a 1D damped spring obeys $m\ddot{x} + k_d\dot{x} + k_d$
- when k_d is negligible the solution is x(t) =
 - stiffer spring \rightarrow faster oscillation; higher mass \rightarrow slower oscillation
- . when k_{s} is negligible the solution is x(t) =
- in general case we get $x(t) = Ce^{-t/T} \cos(\omega t + C_2)$ where $T = \frac{2m}{k_{J}} \text{ and } \omega = \sqrt{k_{s}/m - (1/T)^{2}}$
 - decaying oscillation combining the two above behaviors
 - damping also slows the oscillation; when we reach $\omega = 0$ the system is "critically damped"

$$k_s x = 0$$

= $C_1 \cos(\omega t + C_2)$ where $\omega^2 = \frac{k_s}{m}$

$$= c_0 + c_1 T(1 - e^{t/T})$$
 where $T = \frac{m}{k_d}$

- higher mass \rightarrow takes longer to stop; higher damping \rightarrow takes less time to stop

Modeling rods with springs

A rod is a long, slender, flexible object (essentially 1D)

can stretch or bend and elastically resist both

Basic plan: a chain of masses and springs

- N springs of length L/N and spring constant ... Nk_s (why?) 0
 - this handles stretching but doesn't oppose bending—too "floppy" and chain-like

Simple way to resist bending: bending springs

- springs that skip one particle

• N-1 springs of length 2L/N and spring constant Nk'_s where k'_s is usually quite a bit less than k'_s

Modeling cloth with springs

Very similar idea to rods, but in a 2D grid

- structural springs along the axes (stiff for woven cloth, softer for knitted)
- bending springs skipping one particle (weak to allow lots of bending)
- shear springs along the diagonals (weaker than structural, to allow shearing)

You'll do this in the assignment!

 it's only cloth if it's in 3D, so can't really demo this ;)

Indexing in a spring mesh

index particles in 2D

avoids row-column indexing calculations

index springs the same way

 think of all springs connected to one particle

- compute forces by visiting all particles and considering all springs connected to that particle
- (to enumerate the springs, visit particles and considering only the springs connected to later particles)

Modeling deformable solids with springs

2D: looks a lot like cloth

- don't need bending springs
- shear springs should probably be stronger than for cloth
- a triangular mesh only requires springs along the edges
- in a 2D space, a 2D object can resist compression

3D: need enough springs to prevent collapsing

- for a cube mesh, various strategies are possible bracing diagonals of faces, or bracing across the diagonals of the cube
- a tetrahedral mesh is naturally stable with just a spring along each edge

Deriving forces from energies

Binary springs are simple and are a lot of fun to play with but they eventually start to become limited

- bending and shear springs contribute also to stretching stiffness
- difficult to achieve behavior matching particular measurements or material models
- bending springs are not very good at resisting slight bending (bending stiffness = 0 when straight!)
- difficult or impossible to express things like volume or area preservation

The spring force belongs to a useful class

- it is a conservative force, meaning it takes the same amount of work to get from one configuration to another regardless of the path
- this means it is the derivative (gradient in this case) of a potential ... and the potential is literally the potential energy stored in the spring!

Working out our spring force from the energy

Start with the spring energy

• $E_{ii}(\mathbf{x}) = \frac{1}{2}k_s(||\mathbf{x}_i - \mathbf{x}_i|| - l_0)^2$ (this is the contribution of one spring to the total system energy)

Force is minus the gradient of energy

. $\mathbf{f}_i(\mathbf{x}) = \frac{\partial E}{\partial \mathbf{x}_i}(\mathbf{x})$ (remember \mathbf{x} is a big vector of all the positions; this partial derivative is zero for all the particles that are not connected to this particular spring)

Take the computation one step at a time:

- derivative of $\mathbf{x}_i \mathbf{x}_j$
- derivative of $||\mathbf{v}||$ wrt. \mathbf{v}
- derivative of E_{ii} wrt $\|\mathbf{v}\|$

