CS5643

05 Mass-and-spring models

Steve Marschner

Cornell University
Spring 2023

Binary Spring

The most basic modeling tool for all kinds of deformable things

Spring defined by

- which particles i and j it connects
- its spring stiffness k_{s}
- its rest length l_{0}

From Hooke's law we know force is proportional to displacement from rest

- $f=k_{s}\left(l-l_{0}\right)$

The force acts along the direction of the spring

- $\mathbf{f}_{i}=k_{s}\left(\left\|\mathbf{x}_{i j}\right\|-l_{0}\right) \hat{\mathbf{x}}_{i j}$ where $\mathbf{x}_{i j}=\mathbf{x}_{j}-\mathbf{x}_{i}$ (quick sanity check: pulls i towards j when stretched)
- $\mathbf{f}_{j}=k_{s}\left(\left\|\mathbf{x}_{j i}\right\|-l_{0}\right) \hat{\mathbf{x}}_{j i}=-\mathbf{f}_{i j}$

Adding damping

Springs are usually too springy!

- a system of springs will oscillate forever...

Damping will dissipate energy

- but using the drag forces $\mathbf{f}_{d}=-k_{d} \mathbf{v}$ we use for free particles can slow things inappropriately
- this force opposes all motion; we only want to oppose the spring's movement

Spring damping force opposes changes in spring length only

- only opposes relative motion
- only opposes motion in the direction of the spring

- $\mathbf{f}_{i}=k_{d}\left(\mathbf{v}_{i j} \cdot \hat{\mathbf{x}}_{i j}\right) \hat{\mathbf{x}}_{i j}$ where $\mathbf{v}_{i j}=\mathbf{v}_{j}-\mathbf{v}_{i}$ (sanity check: pulls i towards j when elongating)

Phenomena of damped springs

Oscillations of undamped springs

- a 1D damped spring obeys $m \ddot{x}+k_{d} \dot{x}+k_{s} x=0$
- when k_{d} is negligible the solution is $x(t)=C_{1} \cos \left(\omega t+C_{2}\right)$ where $\omega^{2}=\frac{k_{s}}{m}$
- stiffer spring \rightarrow faster oscillation; higher mass \rightarrow slower oscillation
. when k_{s} is negligible the solution is $x(t)=c_{0}+c_{1} T\left(1-e^{t / T}\right)$ where $T=\frac{m}{k_{d}}$
- higher mass \rightarrow takes longer to stop; higher damping \rightarrow takes less time to stop
- in general case we get $x(t)=C e^{-t / T} \cos \left(\omega t+C_{2}\right)$ where

$$
T=\frac{2 m}{k_{d}} \text { and } \omega=\sqrt{k_{s} / m-(1 / T)^{2}}
$$

- decaying oscillation combining the two above behaviors
- damping also slows the oscillation; when we reach $\omega=0$ the system is "critically damped"

Modeling rods with springs

A rod is a long, slender, flexible object (essentially 1D)

- can stretch or bend and elastically resist both

Basic plan: a chain of masses and springs

- N springs of length L / N and spring constant $\ldots N k_{s}$ (why?)

- this handles stretching but doesn't oppose bending-too "floppy" and chain-like

Simple way to resist bending: bending springs

- springs that skip one particle
- $N-1$ springs of length $2 L / N$ and spring constant $N k_{s}^{\prime}$ where k_{s}^{\prime} is usually quite a bit less than k_{s}

Modeling cloth with springs

Very similar idea to rods, but in a 2D grid

- structural springs along the axes (stiff for woven cloth, softer for knitted)
- bending springs skipping one particle (weak to allow lots of bending)
- shear springs along the diagonals (weaker than structural, to allow shearing)

You'll do this in the assignment!

- it's only cloth if it's in 3D, so can't really demo this ;)

Indexing in a spring mesh

index particles in 2D

- avoids row-column indexing calculations

index springs the same way

- think of all springs connected to one particle
- compute forces by visiting all particles and considering all springs connected to that particle
- (to enumerate the springs, visit particles and considering only the springs connected to later particles)

Modeling deformable solids with springs

2D: looks a lot like cloth

- don't need bending springs
- shear springs should probably be stronger than for cloth
- a triangular mesh only requires springs along the edges
- in a 2D space, a 2D object can resist compression

3D: need enough springs to prevent collapsing

- for a cube mesh, various strategies are possible - bracing diagonals of faces, or bracing across the diagonals of the cube
- a tetrahedral mesh is naturally stable with just a spring along each edge

Deriving forces from energies

Binary springs are simple and are a lot of fun to play with but they eventually start to become limited

- bending and shear springs contribute also to stretching stiffness
- difficult to achieve behavior matching particular measurements or material models
- bending springs are not very good at resisting slight bending
(bending stiffness $=0$ when straight!)
- difficult or impossible to express things like volume or area preservation

The spring force belongs to a useful class

- it is a conservative force, meaning it takes the same amount of work to get from one configuration to another regardless of the path
- this means it is the derivative (gradient in this case) of a potential ... and the potential is literally the potential energy stored in the spring!

Working out our spring force from the energy

Start with the spring energy

- $E_{i j}(\mathbf{x})=\frac{1}{2} k_{s}\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|-l_{0}\right)^{2}$ (this is the contribution of one spring to the total system energy)

Force is minus the gradient of energy

$\mathbf{f}_{i}(\mathbf{x})=\frac{\partial E}{\partial \mathbf{x}_{i}}(\mathbf{x})$ (remember \mathbf{x} is a big vector of all the positions; this partial derivative is zero for all the particles that are not connected to this particular spring)

Take the computation one step at a time:

- derivative of $\mathbf{x}_{i}-\mathbf{x}_{j}$
- derivative of $\|\mathbf{v}\|$ wrt. \mathbf{v}
- derivative of $E_{i j}$ wrt $\|\mathbf{v}\|$

