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Binary Spring
The most basic modeling tool for all kinds of deformable things 

Spring defined by 
• which particles  and  it connects


• its spring stiffness 


• its rest length 


From Hooke’s law we know force is proportional to displacement from rest 
• 


The force acts along the direction of the spring 
•  where   (quick sanity check: pulls  towards  when stretched)


•

i j
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fi = ks(∥xij∥ − l0)x̂ij xij = xj − xi i j

fj = ks(∥xji∥ − l0)x̂ji = − fij



Adding damping
Springs are usually too springy! 

• a system of springs will oscillate forever…


Damping will dissipate energy 
• but using the drag forces  we use for free particles can slow things inappropriately


• this force opposes all motion; we only want to oppose the spring’s movement


Spring damping force opposes changes in spring length only 
• only opposes relative motion

• only opposes motion in the direction of the spring


•  where  (sanity check: pulls  towards  when elongating)

fd = − kdv

fi = kd(vij ⋅ x̂ij)x̂ij vij = vj − vi i j



Phenomena of damped springs
Oscillations of undamped springs 

• a 1D damped spring obeys 


• when  is negligible the solution is  where 


- stiffer spring  faster oscillation; higher mass  slower oscillation


• when  is negligible the solution is  where 


- higher mass  takes longer to stop; higher damping  takes less time to stop


• in general case we get  where  

 and 


- decaying oscillation combining the two above behaviors


- damping also slows the oscillation; when we reach   
the system is “critically damped”
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Modeling rods with springs
A rod is a long, slender, flexible object (essentially 1D) 

• can stretch or bend and elastically resist both


Basic plan: a chain of masses and springs 
•  springs of length  and spring constant …  (why?)


• this handles stretching but doesn’t oppose bending—too “floppy” and chain-like


Simple way to resist bending: bending springs 
• springs that skip one particle


•  springs of length  and spring constant  where  is usually quite a bit less than 

N L/N Nks

N − 1 2L/N Nk′￼s k′￼s ks



Modeling cloth with springs
Very similar idea to rods, but in a 2D grid 

• structural springs along the axes (stiff for woven cloth, softer for knitted)

• bending springs skipping one particle (weak to allow lots of bending)

• shear springs along the diagonals (weaker than structural, to allow shearing)


You’ll do this in the assignment! 
• it’s only cloth if it’s in 3D,  

so can’t really demo this ;)



Indexing in a spring mesh
index particles in 2D 

• avoids row-column indexing calculations


index springs the same way 
• think of all springs connected to one 

particle


• compute forces by visiting all particles 
and considering all springs connected 
to that particle


• (to enumerate the springs, visit particles 
and considering only the springs 
connected to later particles)



Modeling deformable solids with springs
2D: looks a lot like cloth 

• don’t need bending springs

• shear springs should probably be stronger than for cloth

• a triangular mesh only requires springs along the edges

• in a 2D space, a 2D object can resist compression


3D: need enough springs to prevent collapsing 
• for a cube mesh, various strategies are possible — bracing diagonals of faces, or bracing across 

the diagonals of the cube

• a tetrahedral mesh is naturally stable with just a spring along each edge



Deriving forces from energies
Binary springs are simple and are a lot of fun to play with 

but they eventually start to become limited 
• bending and shear springs contribute also to stretching stiffness

• difficult to achieve behavior matching particular measurements or material models

• bending springs are not very good at resisting slight bending 

(bending stiffness = 0 when straight!)

• difficult or impossible to express things like volume or area preservation


The spring force belongs to a useful class 
• it is a conservative force, meaning it takes the same amount of work to get from one 

configuration to another regardless of the path

• this means it is the derivative (gradient in this case) of a potential … and the potential is literally 

the potential energy stored in the spring!



Working out our spring force from the energy
Start with the spring energy 

•  (this is the contribution of one spring to the total system energy)


Force is minus the gradient of energy 

•  (remember  is a big vector of all the positions; this partial derivative is zero for 

all the particles that are not connected to this particular spring)


Take the computation one step at a time: 
• derivative of 


• derivative of  wrt. 


• derivative of  wrt 
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