CS5643 04 ODEs and procedural turbulence

Steve Marschner Cornell University Spring 2023

Towards higher order

- $\mathbf{y}(t) = \mathbf{y}(t_m) + \dot{\mathbf{y}}(t_m)(t t_m) + \frac{1}{2}\ddot{\mathbf{y}}(t_m)(t t_m)^2 + O((t t_m)^3)$
- evaluate at t_k and t_{k+1} to compute the step increment • $\mathbf{y}(t_{k+1}) - \mathbf{y}(t_k) = h\dot{\mathbf{y}}(t_m) + O(h^3)$ (try it yourself to see the canceling h^2 term)
- ...if only we knew $y(t_m)$! But we can use Forward Euler to estimate it
 - $\mathbf{y}(t_m) = \mathbf{y}(t_k) + \frac{h}{2}\dot{\mathbf{y}}(t_k) + O(h^2)$, so let \mathbf{y}_m
 - $f(y + O(h^2)) = f(y) + f'(y)O(h^2) + O(h^2)$
 - then $\mathbf{y}(t_{k+1}) = \mathbf{y}(t_k) + h(\mathbf{f}(\mathbf{y_m}) + O(h^2))$
 - so let $\mathbf{y}_{k+1} = \mathbf{y}_k + h\mathbf{f}(\mathbf{y}_m)$ and \mathbf{y}_{k+1} is a second-order estimate of $\mathbf{y}(t_{k+1})$

Let's try expanding around $t = (t_k + t_{k+1})/2$; call this time t_m for "midpoint"

$$\mathbf{y}_{k} = \mathbf{y}_{k} + \frac{h}{2}\mathbf{f}(\mathbf{y}_{k})$$

$$h^{2} = \mathbf{f}(\mathbf{y}) + O(h^{2}), \text{ so } \mathbf{f}(\mathbf{y}_{m}) = \dot{\mathbf{y}}(t_{m}) + O(h^{2})$$

$$+ O(h^{3}) = \mathbf{y}(t_{k}) + h\mathbf{f}(\mathbf{y}_{m}) + O(h^{3})$$

Midpoint method

Timestep equations

$$\mathbf{y}_m = \mathbf{y}_k + \frac{h}{2}\mathbf{f}(\mathbf{y}_k)$$

 $\mathbf{y}_{k+1} = \mathbf{y}_k + h\mathbf{f}(\mathbf{y}_m)$

This is

- an explicit integrator
- a two-step integrator (requires two evaluations of \mathbf{f})
- accurate to second order

It's also the first in a family of higher order integrators

- Runge-Kutta methods achieve order p accuracy with at least p function evaluations

• RK4 is a popular fourth-order scheme, good for smooth problems requiring high accuracy

• animation = not-so-smooth problems requiring low accuracy, hence we rarely go past second order

forward Euler

backward Euler

midpoint method

Demo!

accuracy of integration along circular paths

• Euler vs. midpoint

Integrators for second-order systems

Many useful systems have the form $\ddot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t))$

Look at what the second step of the midpoint method does

• $\mathbf{y}_{k+1} = \mathbf{y}_k + h\mathbf{f}(\mathbf{y}_m)$ translates to (naming \mathbf{y}_m as $\mathbf{y}_{k+0.5}$)

$$\mathbf{x}_{k+1} = \mathbf{x}_k + h\mathbf{v}_{k+0.5} \qquad \qquad \text{upd}$$
$$\mathbf{v}_{k+1} = \mathbf{v}_k + \mathbf{f}(\mathbf{x}_{k+0.5}) \qquad \qquad \text{and}$$

if we stagger the grids then we can have these values already!

$$\mathbf{x}_{k+1} = \mathbf{x}_k + h\mathbf{v}_{k+0.5}$$
$$\mathbf{v}_{k+1.5} = \mathbf{v}_{k+0.5} + h\mathbf{f}(\mathbf{x}_{k+1})$$

- this is an explicit method, and it's second order accurate for both position and velocity known as the Leapfrog integrator — elegant but prohibits velocity dependent forces

• note this equation skips over $\dot{\mathbf{x}}$; acceleration does not depend on velocity, only position.

- dating **x** only requires $\mathbf{v}_{k+0.5}$,
- updating v only requires $\mathbf{x}_{k+0.5}$

Symplectic Euler's method (aka. semi-implicit)

Leapfrog is nice but doesn't work for $\ddot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{v})$

- practical problem: can't evaluate \mathbf{f} without knowing \mathbf{x} and \mathbf{v} at the same time
- a practical solution: give up the interleaved steps but keep the timestep equations

 $\mathbf{x}_{k+1} = \mathbf{x}_k + h\mathbf{v}_k$ $\mathbf{v}_{k+1} = \mathbf{v}_k + h\mathbf{f}(\mathbf{x}_{k+1})$

- or: use the position update from Forward Euler and the velocity update from Backward Euler this integrator shares a very nice property with Leapfrog: each timestep preserves area in the (\mathbf{x}, \mathbf{v}) picture (really in position–momentum space)

$$\begin{bmatrix} \mathbf{x}_{k+1} \\ \mathbf{v}_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & h \\ -h & 1-h^2 \end{bmatrix} \begin{bmatrix} \mathbf{x}_k \\ \mathbf{v}_k \end{bmatrix}$$

det = 1

this property holds for any Hamiltonian (roughly, energy conserving) system

this looks just like Forward Euler except for the last +1

symplectic Euler

https://www.av8n.com/physics/symplectic-integrator.htm

forward Euler

backward Euler

midpoint method

symplectic Euler

midpoint for 10 laps

symplectic Euler

Procedural noise for animation

for moving particles around we want irregular flow fields

graphics has a long tradition of defining nice looking "random" functions

this is procedural noise

groundbreaking 1985 work of Ken Perlin established the basic approach:

- start with random values on a grid
- interpolate to get functions that are smooth locally but vary at the grid scale
- combine noise functions of different scales to get nice results

(newer methods make slightly better results)

this kind of noise can be leveraged into fake turbulence fields

Side by side comparison: Coarse, underlying simulation

Wavelet Turbulence (Kim et al. SIGGRAPH 2008; Technical Oscar 2012)

Side by side comparison: Coarse, underlying simulation

Wavelet Turbulence (Kim et al. SIGGRAPH 2008; Technical Oscar 2012)

Constructing Perlin noise in 2D

- 1. define randomly oriented unit-slope gradients at integer points

nearest-neighbor linear gradients

2. interpolate between points using cubic smoothstep function $3u^2 - 2u^3$

interpolated with smoothstep

Curl noise

can use Perlin or other noise to make vector fields

- but try advecting particles through them doesn't work so well
- want divergence-free fields
- define them as the curl of a vector potential!

add up multiple bands just like with regular Perlin noise

- f is proportional to $f^{-\frac{5}{6}}$
- close enough to f^{-1} that we might not worry about it...

additional ways to control the flow

- spatial modulation of the potential to make velocities avoid obstacles

• the "Kolmogorov spectrum" is a result about low-viscosity turbulent fluids: velocity at frequency

spatially varying weights for the different bands to make stronger turbulence in some areas

Bridson et al. 2007

Demos!

procedural noise

Perlin noise

line integral convolution

quick and easy way to visualize 2D vector fields

particle advection in fake turbulence fields

- first order advection
- random vector fields using curl noise