()S564301 Introduction

Physically Based Animation for Computer Graphics

Steve Marschner Cornell University Spring 2023

Physics Based Animation: History

- Early work established a set of problems
- **Particle Systems:** sparks, snow, fireworks; also fake fire, smoke, dust, ...
- **Deformable bodies:** rubber, soft tissue, cloth, string, ...
- **Rigid bodies:** falling objects, fracture, ...
- **Character motion:** walking, running, jumping, ...
 - hierarchies of rigid bodies
- Fluids: water, smoke, ...

PARTICLE DREAMS

Karl Sims

Optomystic

Terzopoulos, Platt, Barr, & Fleischer. "Elastically Deformable Models," 1987

David Baraff, 1991

Witkin & Kass. "Spacetime Constraints," 1988

Foster & Metaxas. "Modeling the Motion of a Hot, Turbulent Gas," 1997

Physics Based Animation: Progress!

Physics of all these things mainly understood

Simulation for graphics has particular goals:

- scalability and efficiency
- generality
- stability and robustness
- usability and controllability
- visual fidelity to reality

These goals drive a particular style of simulation

- engineering applications need accuracy or there is no point
- animation applications need generality and robustness or there is not point

3x slow

Efficient yarn-based cloth [Kaldor et. al, SIGGRAPH 2010]

https://www.cs.cornell.edu/projects/YarnCloth/

tetrahedra: 2314K contacts per step (max): 105K dt: 0.001 μ : O

Incremental Potential Contact [Minchen Li et. al, SIGGRAPH 2020]

C-IPC: Inelastic Thickness with Constraint Offset

88K nodes Contacts/step (max): 2.2M h: 0.04s 2x playback speed

Codimensinonal Incremental Potential Contact [Minchen Li et. al, SIGGRAPH 2021]

/ipc-sim.github.io/C-IPC https://

Adaptive Tearing and Cracking of Thin Sheets [Pfaff et al. SIGGRAPH 2014]

61GCMp <u>www.youtube.com/watch?v</u> https://

Real-Time Dynamic Fracture (NVIDIA demo 2013)

www.youtube.com/watch?v=ATU6IGCMpUA https://

Path Following (root position follows path)

Character Controllers Using Motion VAEs [Hung Yu Ling et al. SIGGRAPH 2020]

Schrödinger's Smoke [Chern et al. SIGGRAPH 2016]

and the state of the

Course overview

New course (everything subject to change!)

Organized around assignments

- particles and mass-spring systems
- deformable objects and collisions

Final project

- take something we did in 2D, make it 3D
- take something we did in one assignment, make it work with another
- do something we didn't make it to in the assignments (fluids? character motion?)

Course website

• rigid body motion (or maybe fluids instead - did I mention things are subject to change?)

3-week per-assignment structure

Written problem set (work together freely, write up solo)

- primarily paper & pencil
- sometimes include small numerical experiments in NumPy
- goal: understand the basic math & physics behind the implementation

Implementation project (solo or in pairs)

- implement standalone demos in Python + Taichi
- some 2D, some 3D simulations
- work in pairs

Quiz (solo)

- in-class test
- covers concepts used in the problem set and project

Prerequisites

Things you would learn in a graphics course (e.g. 4620)

- transformations and hierarchies
- meshes and triangles
- spatial data structures

Things you would learn in math courses (e.g. Math 1920/2940)

- calculus and vector calculus (Taylor series, div, grad, curl, ...)
- linear algebra (linear transformations, rank, null space, ...)

Things you would learn in physics courses (e.g. AP Physics, Physics 1112)

Newtonian mechanics (force, torque, momentum, angular velocity, ...)

I will assume you have heard of this stuff but might be rusty :)

Introductions

Steve Marschner (prof.)

- research area = realism, modeling materials
- 0

- yarn-based cloth simulation
- wave-based material appearance simulation

Joy Zhang (PhD TA)

 research area = yarn-based cloth simulation and CAD

Caroline Sun (PhD TA)

 research areas = yarn-based simulation; imaging & photography

[Wu, Zhang, et al. 2020]

cloth mechanics yarn-based cloth modeling

Jonathan Kaldor, Doug James, and Steve Marschner. "Simulating Knitted Cloth at the Yarn Level." SIGGRAPH 2008

Jonathan Kaldor, Doug James, and Steve Marschner. "Efficient Yarn-based Cloth with Adaptive Contact Linearization." SIGGRAPH 2010

Cem Yuksel, Jonathan Kaldor, Doug James, and Steve Marschner. "Stitch Meshes for Modeling Knitted Clothing with Yarn-level Detail." SIGGRAPH 2012

Cloth is not a continuum Discrete yarn behavior drives overall cloth behavior Particularly evident in knit fabrics

Why Yarns Are Important

http://toveb.typepad.com/

Structure-Dependent Behavior

- Thin, flexible rods, with many degrees of freedom
- Strongly resist stretching
- Weakly resist bending
- Can compress laterally
- Friction between yarns

Yarn Properties

Constrair C(q)Inexten Bending, Collision Velocity

nn dynamics

nts

ergies

mping

Modeling Dissipation

- Damp yarn-yarn contacts
- Damp non-rigid motion
 - [Müller et al. 2006]
 [Rivers and James 2007]
- Small regions: stabilizing collisions
- Large regions: damp cloth-level motion

Relaxed Models

Garter

Stockinette

Rib

Contact Matrix

54,340 knit loops, ~365K contact sets 6.7X contact force speedup, 4.2X overall 10.5m per 1/30s frame

¹/₃ speed

45,960 knit loops, ~295K contact sets 9.1X contact force speedup, 5.0X overall 8m per 1/30s frame

Stitch Meshes

Stitch Mesh

Stitch Mesh Faces

Stitch Type Library

SIGGRAPH2012

Stitch Mesh

Stitch Type Library

SIGGRAPH2012

					1				1									1			
•	\land	X	X	•		•		•		•		•		•		•		•		•	
•		•		٠		٠		•		•		•		•		٠		•		•	
•	Λ	X	X	•	V	•		•		•		•		•		•		•		•	
•		•		•		•		•		٠		٠		•		•		•		•	
•	Λ	X	X	•		•	V	•		•		•		•		•		•		•	
•		•		•		•		•		•		٠		•		•		•		•	
•	Λ	X	X	•		•		•	V	•		٠		•		•		•		•	
•		•		•		•		•		•		•		•		•		•		•	
•	Λ	X	X	•		٠		•		•	$ \Psi $	•		•		٠		•		•	
•		•		٠		٠		•		•		٠		•		٠		•		•	
•	Λ	X	X	•		٠		•		•		٠	V	•		•		•		•	
•		•		•		•		•		•		•		•		•		•		•	
•	Λ	X	X	•		•		•		•		•		•	V	•		•		•	
•		•		•		•		•		٠		٠		•		•		•		•	
•	Λ	X	X	•		•		•		•		•		•		٠	V	•		•	
•		•		•		٠		•		•		•		•		٠		•		•	
•		Х	X	•		•		•		•		٠		•		•		•	V	•	
•		Х	X	•		•		•		•		٠		•		•		•		•	
•		•		•		•		•		٠		٠		•		•	X	Х	Λ	•	
•		•		•		•		•		٠		٠		٠		•		•		•	
•		•		•		٠		•		٠		٠		•	V	•	X	Х	Λ	•	
•		•		•		•		•		•		٠		•		•		•		•	
•		•		•		٠		•		٠		٠	V	٠		•	X	Х	Λ	•	
•		•		•		٠		•		•		٠		•		•		•		•	
•		•		•		•		•		•	V	٠		•		•	X	X	Λ	•	
•		•		•		•		•		•		٠		٠		•		•		•	
•		•		•		•		•	V	•		٠		•		•	X	X	Λ	•	
•		•		٠		٠		•		•		٠		•		•		•		•	
•		•		•		•	V	•		•		٠		•		•	X	Х	Λ	•	
•		•		•		•		•		•		٠		•		•		•		•	
•		•		•	V	•		•		•		٠		•		•	X	Х	Λ	•	
•		•		•		•		•		•		•		•		•		•		•	
•		•	V	•		•		•		•		•		•		•	X	Х	Λ	•	
•		•		•		•		•		•		٠		•		•		•		•	
•	V	•		•		•		•		•		٠		•		•	X	X		•	
•		•		•		•		•		•		•		•		•	X	X		•	

	•		•		•		•		•		•	
	٠		٠		٠		٠		•		•	
	٠		•		٠		٠		•		•	
	•		•		•		٠		•		•	
	٠		•		٠		٠		•		•	
	٠		•		٠		•		•		•	
/	٠		•		•		٠		•		•	
	٠		•		•		٠		•		•	
	٠	V	•		•		٠		•		•	
	٠		•		٠		٠		•		•	
	٠		•	$ \mathbf{V} $	•		٠		•		•	
	•		•		•		•		•		•	
	٠		•		٠	V	٠		•		•	
	•		•		•		•		•		•	
	٠		•		٠		٠	K	•		•	
	•		•		٠		٠		•		•	
	•		•		•		•		•	V	•	
	٠		•		٠		٠		٠		•	
	٠		•		٠		٠	X	Х	۸	•	
	٠		•		٠		٠		٠		•	
	•		•		•	V	•	X	Х	۸	•	
	•		•		•		٠		•		•	
	•		•	\mathbf{V}	•		•	X	Х	۸	•	
	•		•		•		٠		•		•	
	•	$ \mathbf{V} $	٠		•		•	X	Х	۸	•	
	•		•		•		•		•		•	
/	٠		•		٠		٠	X	Х	۸	•	
	•		•		•		•		•		•	
	•		•		•		•	X	Х	۸	•	
	٠		•		•		٠		•		•	
	٠		٠		•		٠	X	Х	۸	•	
	٠		•		•		٠		•		•	
	•		•		•		٠	X	Х	۸	•	
	•		•		•		•		•		•	
	•		•		•		•	X	X		•	
	•		٠		•		•	X	Х		•	

Mrs. Montague's Pattern

Mrs. Montague's Pattern [Matthews 1984]

Ridged Feather Pattern [Matthews 1984]

Braid Cables Pattern [Allen et al. 2008]

Openwork Trellis Pattern [Matthews 1984]

Photo courtesy of Schoolhouse Press Flame Ribbing Pattern [Walker 2001]

Cable Work Pattern [Walker 2001]

Taichi Lang

Origins

- Dissertation work of Yuanming Hu at MIT •
- Introduced in a series of SIGGRAPH papers in 2019–2021
- Now maintained as an open source project by Yuanming at his spinoff company Taichi Graphics

What it is

- A language that looks a lot like Python
- A set of data structures for dense and sparse grids
- A just-in-time compiler targeting CPU and GPUs

What it does for us

- Lets us write simple simulation methods with simple code and without C_{++}
- Generates parallel code without a lot of extra effort on our part

Taichi Newton fractal demo

Implemented as a loop in Python

- the Python interpreter has to execute Python code for every pixel
- it does this serially on one core, so it is pretty slow

Implemented as a vectorized NumPy program

- the Python interpreter just executes code with a few calls to Numpy matrix ops
- the Numpy kernels are in fast C code but they still run single-core

Implemented as a Taichi kernel

- the Taichi compiler generates parallel code that runs on many CPU or GPU cores
- the Python interpreter just makes one call
- \cdot in many cases it is a lot faster than the other two options