
CS5643
01 Introduction

Steve Marschner
Cornell University

Spring 2023

Physically Based Animation
for Computer Graphics

Physics Based Animation: History

Early work established a set of problems

Particle Systems: sparks, snow, fireworks; also fake fire, smoke, dust, …

Deformable bodies: rubber, soft tissue, cloth, string, …

Rigid bodies: falling objects, fracture, …

Character motion: walking, running, jumping, …
• hierarchies of rigid bodies

Fluids: water, smoke, …

Particle Dreams [Karl Sims, 1988]

Terzopoulos, Platt, Barr, & Fleischer. “Elastically Deformable Models,” 1987

David Baraff, 1991

Witkin & Kass. “Spacetime Constraints,” 1988

Foster & Metaxas. “Modeling the Motion of a Hot, Turbulent Gas,” 1997

Physics Based Animation: Progress!

Physics of all these things mainly understood

Simulation for graphics has particular goals:
• scalability and efficiency

• generality

• stability and robustness

• usability and controllability

• visual fidelity to reality

These goals drive a particular style of simulation
• engineering applications need accuracy or there is no point

• animation applications need generality and robustness or there is not point

Efficient yarn-based cloth [Kaldor et. al, SIGGRAPH 2010]

ht
tp

s:
//w

w
w.

cs
.c

or
ne

ll.e
du

/p
ro

jec
ts

/Y
ar

nC
lo

th
/

https://www.cs.cornell.edu/projects/YarnCloth/

Incremental Potential Contact [Minchen Li et. al, SIGGRAPH 2020]

ht
tp

s:
//i

pc
-s

im
.g

ith
ub

.io
/

https://ipc-sim.github.io/

Incremental Potential Contact [Minchen Li et. al, SIGGRAPH 2020]

Codimensinonal Incremental Potential Contact [Minchen Li et. al, SIGGRAPH 2021]

ht
tp

s:
//i

pc
-s

im
.g

ith
ub

.io
/C

-IP
C/

https://ipc-sim.github.io/C-IPC/

Adaptive Tearing and Cracking of Thin Sheets [Pfaff et al. SIGGRAPH 2014]

ht
tp

s:
//w

w
w.

yo
ut

ub
e.

co
m

/w
at

ch
?v

=A
TU

6I
G

CM
pU

A

https://www.youtube.com/watch?v=ATU6IGCMpUA

Real-Time Dynamic Fracture (NVIDIA demo 2013)

ht
tp

s:
//w

w
w.

yo
ut

ub
e.

co
m

/w
at

ch
?v

=A
TU

6I
G

CM
pU

A

https://www.youtube.com/watch?v=ATU6IGCMpUA

Character Controllers Using Motion VAEs [Hung Yu Ling et al. SIGGRAPH 2020]

Adversarial Motion Priors for Stylized Physics-Based Character Control [Xue Bin Peng et al. SIGGRAPH 2021]

Schrödinger’s Smoke [Chern et al. SIGGRAPH 2016]

ht
tp

s:
//w

w
w.

yo
ut

ub
e.

co
m

/w
at

ch
?v

=J
62

bv
iA

nL
9I

Beach waves in Blender (Max Nadolny using Blender’s FLIP simulator)

https://www.youtube.com/watch?v=J62bviAnL9I

Unified Particle Physics for Real-Time Applications [Macklin et. al, SIGGRAPH 2014]

Course overview

New course (everything subject to change!)

Organized around assignments
• particles and mass-spring systems

• deformable objects and collisions

• rigid body motion (or maybe fluids instead—did I mention things are subject to change?)

Final project
• take something we did in 2D, make it 3D

• take something we did in one assignment, make it work with another

• do something we didn’t make it to in the assignments (fluids? character motion?)

Course website

https://www.cs.cornell.edu/courses/cs5643/2023sp

3-week per-assignment structure

Written problem set (work together freely, write up solo)
• primarily paper & pencil

• sometimes include small numerical experiments in NumPy

• goal: understand the basic math & physics behind the implementation

Implementation project (solo or in pairs)
• implement standalone demos in Python + Taichi

• some 2D, some 3D simulations

• work in pairs

Quiz (solo)
• in-class test

• covers concepts used in the problem set and project

Prerequisites

Things you would learn in a graphics course (e.g. 4620)
• transformations and hierarchies

• meshes and triangles

• spatial data structures

Things you would learn in math courses (e.g. Math 1920/2940)
• calculus and vector calculus (Taylor series, div, grad, curl, …)

• linear algebra (linear transformations, rank, null space, …)

Things you would learn in physics courses (e.g. AP Physics, Physics 1112)
• Newtonian mechanics (force, torque, momentum, angular velocity, …)

I will assume you have heard of this stuff but might be rusty :)

Introductions

Steve Marschner (prof.)
• research area = realism, modeling  

materials

• yarn-based cloth simulation

• wave-based material appearance  

simulation

Joy Zhang (PhD TA)
• research area = yarn-based cloth  

simulation and CAD

Caroline Sun (PhD TA)
• research areas = yarn-based simulation;  

imaging & photography
[Kaldor et al. 2008][Kaldor et al. 2010][Y

uk
se

l e
t a

l.
20

10
]

[Wu, Zhang, et al. 2020]

cloth mechanics
yarn-based cloth modeling

Jonathan Kaldor, Doug James, and Steve Marschner. “Simulating Knitted Cloth at
the Yarn Level.” SIGGRAPH 2008

Jonathan Kaldor, Doug James, and Steve Marschner. “Efficient Yarn-based Cloth
with Adaptive Contact Linearization.” SIGGRAPH 2010

Cem Yuksel, Jonathan Kaldor, Doug James, and Steve Marschner. “Stitch Meshes
for Modeling Knitted Clothing with Yarn-level Detail.” SIGGRAPH 2012

Why Yarns Are Important

Cloth is not a continuum

Discrete yarn behavior drives
overall cloth behavior

Particularly evident in knit fabrics

http://toveb.typepad.com/

http://toveb.typepad.com/photos/patterns/frilly_scarf.html

Structure-Dependent Behavior

Garter RibStockinette

Yarn Properties

Thin, flexible rods, with
many degrees of freedom

Strongly resist stretching

Weakly resist bending

Can compress laterally

Friction between yarns

Constrained Lagrangian dynamics

Inextensibility constraints

Bending, twisting energies

Collision energy

Velocity filter for damping

Mq̈ = f �rE�rD
C(q) = 0

Modeling Dissipation

Damp yarn-yarn contacts

Damp non-rigid motion
[Müller et al. 2006]
[Rivers and James 2007]

Small regions: stabilizing
collisions

Large regions: damp
cloth-level motion

Small regions
Large regions

Relaxed Models

Garter RibStockinette

Contact Matrix

262400

26
24

00

54,340 knit loops, ~365K contact sets
6.7X contact force speedup, 4.2X overall
10.5m per 1/30s frame

⅓ speed

45,960 knit loops, ~295K contact sets
9.1X contact force speedup, 5.0X overall
8m per 1/30s frame

½ speed

Stitch Meshes

Stitch Mesh Stitch Mesh Faces

Stitch Type Library
Stich Type Library

… Stitch Mesh

Stitch Type Library
Stich Type Library

… Stitch Mesh

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.X X
X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X
X X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.X X
X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X
X X

Mrs. Montague’s Pattern [Matthews 1984] Openwork Trellis Pattern [Matthews 1984]

Photo courtesy of Schoolhouse Press

Ridged Feather Pattern [Matthews 1984] Flame Ribbing Pattern [Walker 2001]

Photo courtesy of Schoolhouse Press

Braid Cables Pattern [Allen et al. 2008] Cable Work Pattern [Walker 2001]
Stitch Mesh color coding (odd rows are slightly darker): k p ky yk yky d12k d21k

Figure 16: Comparison to real knitted samples: (Left images) Stitch meshes after mesh-based relaxation, (Middle images) knit patterns after

yarn-level relaxation, and (Right images) photographs of real-world knitted samples using the same knitting patterns.

stitch mesh. An anisotropic, biphasic force is then defined from an
energy term as follows:

E tracks
k =

N(n
T
k vk) (n

T
k vk)

2 + T v
T
k (I� nkn

T
k)vkP

Sj2Pk

P
i2Sj

wk
j

, (6)

vk =
X

Sj2Pk

X

i2Sj

wk
j qi �

X

Sj2Pk

X

i2Sj

wk
j q̄i, (7)

where N() is a linearly biphasic stiffness function in the normal di-
rection which stiffens when |nT

k vk| is greater than a defined thresh-
old, T is the constant stiffness in the tangential direction, nk is the
normal of the cloth surface at the center of the patch at the start
of relaxation, and wk

j is a tent function which falls off according
to the topological distance of yarn loop Sj from the center of Pk.
This encourages patches to stay close to their original starting po-
sitions (which are on the subdivision surface), while allowing them
to move and change shape as necessary for relaxation.

Detection of Yarn Pull-through: Perhaps the most important im-
provement over prior yarn-level simulators, though, is a method to
guarantee that the knit topology remains consistent through the en-
tire process by detecting when a piece of yarn could pass through
another, an event we call yarn pull-through, and preventing pull-
through from occuring. To begin with, the simulator enforces a rate
limit ⌧ on the maximum movement of any point on the yarn curves
per step, where ⌧ is some fraction of the yarn radius. This reduces
the problem of detecting yarn pull-through per step to only those
pieces of yarn already in contact at the beginning of the step.

We represent the yarn curves using cubic Catmull-Rom splines,
hence directly solving for the intersection of two cubic curves

within a timestep forms a multivariate nonlinear equation which,
in general, is challenging to solve both robustly and efficiently. In-
stead, we place a number of bounding spheres with regular param-
eter intervals along the two parametric curves, and check for the
intersection of these spheres within the time step interval, which in-
volves solving a quadratic equation. If an intersection is found, we
replace each intersecting sphere with a number of smaller spheres
that bound the same part of the curve, and repeat the intersection
test until the sizes of the spheres are sufficiently small. If an inter-
section still exists at the finest bounding sphere level, we conclude
that step size would cause a pull-through and reduce the step size
to avoid it.

However, performing this for every pair of contacting segments at
every timestep is still expensive. We can further accelerate this
detection by computing safe bounds for each control point at the
end of the timestep and using this bound to possibly avoid intersec-
tion test for the next timestep. Suppose that while detecting pull-
through, we evaluate bounding spheres f[s1,s2](t) and g[s3,s4](t),
which respectively bound the parametric intervals [s1, s2] and
[s3, s4] on the two spline segments over the timestep t 2 [0, 1],
and determine that they do not intersect at the end of the step, thus
kf[s1,s2](1)� g[s3,s4](1)k2 = d > 0. This implies that each point
within the intervals [s1, s2] and [s3, s4] can move by up to d

2 with-
out possibly causing pull-through. Let s0 2 [s1, s2] be arbitrary,
bi(s) be the spline basis functions, and ei (which we want to bound)
be the allowable movement for the i-th control point before these
computed bounding spheres will intersect. Then, we can write

�����

4X

i=1

bi(s
0) ei

�����
2

4X

i=1

|bi(s0)| keik2 , (8)

Introducing di as any partition of d
2 such that

P
di = d

2 , we can

Taichi

Origins
• Dissertation work of Yuanming Hu at MIT

• Introduced in a series of SIGGRAPH papers in 2019–2021

• Now maintained as an open source project by Yuanming at his spinoff company Taichi Graphics

What it is
• A language that looks a lot like Python

• A set of data structures for dense and sparse grids

• A just-in-time compiler targeting CPU and GPUs

What it does for us
• Lets us write simple simulation methods with simple code and without C++

• Generates parallel code without a lot of extra effort on our part

https://www.taichi-lang.org

Taichi Newton fractal demo

Implemented as a loop in Python
• the Python interpreter has to execute Python code for every pixel

• it does this serially on one core, so it is pretty slow

Implemented as a vectorized NumPy program
• the Python interpreter just executes code with a few calls to Numpy matrix ops

• the Numpy kernels are in fast C code but they still run single-core

Implemented as a Taichi kernel
• the Taichi compiler generates parallel code that runs on many CPU or GPU cores

• the Python interpreter just makes one call

• in many cases it is a lot faster than the other two options

