
Numerical integration
for graphics simulation
Steve Marschner
CS 5643 Spring 2023
Cornell University

For simulation we need to solve ODEs. That is, there is an unknown function that we have to find
from an equation that tells us something about its derivative. One standard form is

In most interesting cases we can’t derive a closed-form solution for so we instead ask for an algorithm
that can call the function many times and compute sufficiently accurate approximations to for
many . Such algorithms are called ODE solvers, numerical integrators, or when the context is clear
just “solvers” or “integrators.”

Pretty much all integrators used for simulation are structured in terms of time steps: we assume we
know and we solve some equation to compute where and is
known as the step size. The process to get from to is called a “time step” (though sometimes is
called the time step).

An important question with ODE solvers is how accurate the answers are. At each step the
approximation we compute has some error, and that error will accumulate as we repeat this process to
travel far forward in time. For the integrator to be useful at all, we expect that the accumulated error at
some fixed time to decrease as we take more steps, and for this to happen the error in an individual
step has to decrease faster than does. Because the methods we use are all based on polynomial
approximations, our error bounds are normally polynomials, so this means the largest useful error in
one time step is .

For instance if we integrate our system from time to time in equal-sized steps, then and
if the error in each step is then the error after steps is . In this case we would call the
integrator a “first-order method” which means two things. An individual step is “first-order accurate”
meaning its approximation accounts for all the terms up through first order (so that its error is second
order). And the final result at a fixed time has first-order error.

y

y′ (t) = f (t, y (t))

y
f y (tk)

tk

yk = y (tk) yk+1 ≈ y (tk+1) tk+1 = tk + h h
tk tk+1 h

T
h

O(h2)

0 T N h = T /N
O(h2) N O(h)

Some basic integrators

Most integrators are derived by writing down a Taylor expansion of and using it to write some
equation involving and some values of that can be solved to find . If we expand around
we get

and if we disregard the error we have the simple timestep formula:

 .

This is known as Euler’s method, or “forward Euler,” or “explicit Euler.”

On the other hand if we expand around we get

and the timestep equation is

 .

Note that this is an equation that has to be solved numerically, since appears as an argument to .
This is known as the backward, or implicit, Euler’s method.

Another way to think of these is in terms of finite difference approximations to the derivative. The
familiar forward difference formula for estimating a is

Applying this formula for , multiplying both sides by , and solving for results in the
forward Euler step. If instead we use the backward difference formula

and apply it for then we get the (implicit) timestep equation for the backward Euler method.
This explains the names “forward” and “backward.”

In each of these cases the discarded error term was .

If we expand around , we can get a more accurate method. To neaten the notation I’m
going to use subscripts for “old,” “midpoint,” and “new” so that , , and

. Also , , and . Now let’s write the Taylor
series for around and keep one more term:

y
yk f yk+1 y (t) tk

y (t) = yk + y′ (tk)(t − tk) + …
y (tk+1) ≈ yk + h f (tk, yk)

yk+1 = yk + h f (tk, yk)

y (t) tk+1

y (t) = y (tk+1) + y′ (tk+1)(t − tk+1)
y (tk) ≈ yk+1 − h f (tk+1, yk+1)

yk+1 = yk + h f (tk+1, yk+1)

yk+1 f

y′ (tk)

y′ (t) ≈
y (t + h) − y (t)

h

t = tk h y (tk + h)

y′ (t) ≈
y (t) − y (t − h)

h

t = tk+1

O(h2)

t = (tk + tk+1)/2
to = tk tm = tk + h /2

tn = tk+1 = tk + h yo = yk = y (to) ym ≈ y (tm) yn = yk+1 ≈ y (tn)
y tm

Now if we compute the step the quadratic term cancels and we have:

 [1]

To use this formula we need an estimate for , and to avoid losing our nice cubic
error, we need its error to be . We can get a suitable estimate using Euler’s method.

so we can use the estimate

to compute an estimate of :

(Here by I mean the derivative of with respect to .) Plugging this into our formula above for
 we get

This leads to an integration method known as the Midpoint method, which uses two evaluations of but
gives more accuracy:

I feel the argument with the Taylor series is the clearest, but there is a quicker explanation you might
also like. The central difference formula

is a more accurate way to estimate a derivative; its error is second-order. The midpoint method is using
a first-order-accurate estimate of with this formula to get a second-order-accurate estimate of

.

y (t) = y (tm) + y′ (tm)(t − tm) +
1
2

y′ ′ (tm)(t − tm)2 + O[(t − tm)3]

yn − yo

y (to) = y (tm) +
h
2

y′ (tm) +
h2

8
y′ ′ (tm) + O(h3)

y (tn) = y (tm) −
h
2

y′ (tm) +
h2

8
y′ ′ (tm) + O(h3)

y (tn) − y (to) = hy′ (tm) + O(h3)

y′ (tm) = f (tm, y (tm))
O(h2)

y (tm) = yo +
h
2

f (to, yo) + O(h2)

ym = yo +
h
2

f (to, yo) = y (tm) + O(h2)

y′ (tm)

f (tm, y (tm)) = f (tm, ym) + f ′ (tm, ym)(y (tm) − ym) + O[(y (tm) − ym)2]
= f (tm, ym) + f ′ (tm, ym)O(h2) + O(h)4

= f (tm, ym) + O(h2)

f ′ f y
y (tm) − y (to)

y (tn) − y (to) = h[f (tm, ym) + O(h2)] + O(h3)
= h f (tm, ym) + O(h3)

f

ym = yk + h f (tk, yk)/2
yk+1 = yk + h f (tk + h /2,ym)

y′ (t) ≈
f (t + h /2) − f (t − h /2)

h

y′ (tm)
y (tn)

This kind of approach can be continued to cancel out the contributions of higher order derivatives to
the error, leading to integrators with higher orders of accuracy. The best known such integrators are
the Runge-Kutta family, which includes methods that use at least evaluations of to compute a
timestep with order of accuracy . The forward Euler and midpoint methods are both Runge-Kutta
methods, and a fourth-order Runge-Kutta integrator (often abbreviated RK4) is often recommended for
problems requiring high accuracy.

However, one rarely sees higher than second-order integrators being used for animation, and there are
a few reasons for this. First, stability and conservation of energy are often of more importance than
accuracy, so low order methods that have these properties may be preferred. Also, animation problems
often produce systems that are not differentiable to high enough order to satisfy the conditions required
for methods like RK4 to deliver the accuracy they are designed for.

Generalizing the problem

ODEs always have a single independent variable (time, for animation), but they can have many
dependent variables. This does not actually change much in the derivation of the methods, but it
changes our mental picture a bit! The unknown function is vector valued so we write

and when it’s easy to solve for the derivative, we can put it in the form

 .

I’m switching to dots as a notation for time derivatives, as is conventional in mechanics, and to as the
name for the unknown function of time. You’ll notice I left out as an argument of . If we want to
depend on we can just add another component to that has constant derivative , and can depend
on that. So even though time might be handled specially in practice we don’t need it cluttering up our
notation.

Now that the unknown is vector valued, you can think of the solution as a path through a
multidimensional space, often known as a “state space” since a single value of represents the complete
state of the system (i.e. nothing else is remembered from one step to the next). An ODE with a vector-
valued unknown function can also be thought of as a system of single-variable ODEs.

The other thing we need to generalize is to allow for higher order derivatives. For animation we
normally only need up to second derivatives so we can write

or in the common case that the equations come already solved for the second derivative,

 .

In principle this also doesn’t change things much, because of a standard trick: by introducing extra
variables we can express the same problem as a first-order ODE. The idea is to expand the state to
include both the unknown and its first derivative:

p f
p

f(x(t), ·x(t)) = 0

·x(t) = f(x(t))

x
t f f

t y 1 f

x

f(x(t), ·x(t), ··x(t)) = 0

··x(t) = f(x(t), ·x(t))

(I’m using the letter to suggest velocity, which makes sense if is a position.) Without actually
changing the function , we have managed to write our second-order ODE as a first-order ODE
(meaning that it has only first derivatives in it).

One way of seeing why we needed to include the velocity in the system state is that once you have a
second-order system the position is no longer enough to predict the future. For the simplest possible
example consider the second-order equation for a free particle:

The particle will keep moving at its current velocity forever; clearly predicting where it will be in the
future requires knowing what velocity it has now.

Integrators for second-order systems

After reading the preceding section you might think we are done, that the second-order nature of our
ODEs can be safely encapsulated some very useful integrators have been developed that are specialized
for second-order systems.

Two integrators that are well known in mechanics are the Verlet methods and the Leapfrog method.
Both are second-order integrators specialized for conservative systems where forces depend only on
position:

The “velocity Verlet” method uses ideas similar to the midpoint method to construct second-order
approximations of the new position and velocity. and uses an estimate of to update . Start with
the second-order midpoint step from [1]:

and use an Euler step to estimate :

Substituting gets us the step equation for the position

u(t) = [x(t)
v(t)] [

·x(t)
·v(t)] = [v(t)

f(x(t), v(t))]
v x

f

··x = 0

··x(t) = f(x(t))

v(tm) x

x(tn) = x(to) + hv(tm) + O(h3)

v(tm)

v(tm) = v(to) +
h
2

a(to) + O(h2)

x(tn) = x(to) + h(v(to) +
h
2

a(to) + O(h2)) + O(h3)

= x(to) + hv(to) +
h2

2
a(to) + O(h3)

xn = xo + hvo +
h2

2
ao

With this second-order approximation of we can compute an approximation to :

and we name it . Now having approximations to both and we can average them to
get a first-order approximation to :

To prove this order of approximation:

And as in the midpoint method, this first-order approximation to the derivative of enables a second-
order approximation of :

and the time-step formulas are

Note that the previous step’s value of is remembered, so only one call to is required for each time
step. The values of both and are second-order accurate—remember it took two calls to per
iteration for the midpoint method to achieve this accuracy.

A similar but arguably more elegant method is the leapfrog method. The idea here is to sample position
and velocity at interleaved times, so that if is sampled at times , , , …, then is sampled at
times , , , …. Then for every step we already have the velocity at the midpoint of
the time interval for updating , and we can easily compute the acceleration at the midpoint of the time
interval for updating . This leads to very simple time-step formulas:

These equations look as simple as for Euler’s method, and use the same number of evaluations, but
because of the half-step offset (which is only possible because depends only on) it achieves second-
order accuracy.

So Verlet and leapfrog integration give you second-order accuracy essentially for free, but this property
depends on being independent of , which is often not the case in animation applications (where we
want damping, friction, and atmospheric drag which all introduce velocity dependent forces). We can

x(tn) a(tn)

a(tn) = f(x(tn)) = f(xn) + O(x(tn) − xn) = f(xn) + O(h3)

an = f(xn) a(to) a(tn)
a(tm)

a(tm) =
ao + an

2
+ O(h2)

a(t) = a(tm) + ·a(tm)(t − tm) + O[(t − tm)2]

a(to) + a(tn) = 2a(tm) −
h
2

·a(tm) +
h
2

·a(tm) + O(h2)

v
v(tn)

v(tn) = v(to) + h
ao + an

2
+ O(h3)

xk+1 = xk + hvk +
h2

2
ak

ak+1 = f(xk+1)

vk+1 = vk + h
ak + ak+1

2

a f
x v f

x t t + h t + 2h v
t + 0.5 t + 1.5 t + 2.5

x
v

xk+1 = xk + hvk+0.5

vk+1.5 = vk+0.5 + h f(xk+1)

f
f x

f v

hack in an approximation for at a nearby point in time, but this will take us back to first-order
accuracy.

Another feature of these two integrators that explains their popularity in mechanics is that they exactly
preserve some invariants that ought to be preserved. Some familiar invariants that are conserved in
closed mechanical systems are total energy, linear momentum, and angular momentum. When the
equations properly model a closed system, the exact solutions to the equation will conserve
these invariants, and since our solutions approximate exact solutions as , all the methods we’ve
discussed approximately conserve the invariants. But for any particular value of h there will be some
error, and after the error accumulates for a while the solution can be qualitatively implausible, showing
a pendulum that swings higher and higher or a spinning object that slows for no reason. In practice,
these errors can mean having to use very small step sizes to get qualitatively reasonable behavior. This
is a particularly important concern for animation, where we often don’t need high accuracy and don’t
want to have to pay for it in order to get long-term stability.

In particular, these methods both are symplectic integrators, meaning that they preserve state-space
volume in a certain sense. This is not the same as preserving energy, but it does mean that when
integrating oscillatory systems (with no damping or other dissipation) they are able to produce
consistent orbits that don’t grow or shrink. In the context of animation this tends to mean they can
produce lively motion (small wiggles don’t damp out too fast) without blowing up (small wiggles
growing uncontrollably), often at step sizes much larger than you would need with one of the earlier
methods that don’t have this property. But these methods can’t be applied directly when the
acceleration needs to depend on both position and velocity. (If you run across code that claims to be
using Verlet but their models include dissipation, they are doing it wrong and not seeing the second-
order accuracy.)

This brings us to the last of the simple mechanics-oriented integrators we’ll look at, and one which is a
good first method to try for most physics-based animations. You can think of it as the leapfrog method
without the interleaving, or as a merger of the explicit and implicit Euler methods. Its time-step
formulas are:

Since this can be described as applying explicit Euler to velocity and implicit Euler to position, one
name for it is “the semi-implicit Euler method.” This is how we usually write it in graphics but it’s a
special case of something a little more general, where the system takes the form

v

f ··x = f(x, ·x)
h → 0

vk+1 = vk + h f(xk, vk)
xk+1 = xk + hvk+1

[
·x
·v] = [f(x, v)

g(x, v)]

	Some basic integrators
	Generalizing the problem
	Integrators for second-order systems

