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Overview

Particles and Springs 
• Matrix notation and the Mass Matrix

• Equations of motion

• Forces as derivatives of energy and the Stiffness matrix


Time Integration Algorithms 
• Forward, Backward, and Symplectic Euler


Constraints and Solvers 
• Iterative Methods

• Manifold Projection



Examples of Particle Systems

Particle Dreams [Karl Sims, 1988]



Examples of Particle Systems

Balloon Burst [Macklin et. al, SIGGRAPH 2015]



Examples of Particle Systems

Unified Particle Physics for Real-Time Applications [Macklin et. al, SIGGRAPH 2014]



Unified Particle Physics for Real-Time Applications [Macklin et. al, SIGGRAPH 2014]



Particle System Review

Each particle has a mass 

Each particle’s movement is determined by a sum of forces 
• Forces depend on particles’ positions and velocities, and maybe time


F = ma determines how the particle moves 
• Forces determine acceleration at any given time given the position and velocity

• Differential equation determines the entire motion given initial position and velocity



Basic Algorithm

1) Clear forces from previous calculations 

2) Calculate/accumulate forces for each particle 

3) Solve for particle’s state (position, velocity) for the next time step 



Unary Forces

Constant 
• Gravity


Position/Time-Dependent 
• Force fields, e.g. wind


Velocity-Dependent 
• Drag




Matrix Notation

If we have multiple particles, it is nice to group variables together 
• Example: 1D System

• Example: 3D System


Mass matrix 
• An n x n matrix that represents the mass distribution of n particles

• For simple systems, this is block-diagonal, where the ith block represents the mass of the ith 

particle

• Each block is a scaled identity matrix mI where m is the particle’s mass and the size of I is the 

number of dimensions of the domain



Integration Algorithm 1

Calculating Particle State from Forces: First attempt 
• Use forces to update velocity

• Use old velocity to update position


Issues 
• Unstable in certain cases!

• Reducing time step can help, but this becomes computationally expensive


This technique is called Forward (Explicit) Euler Integration



Binary, n-ary Forces

Much more interesting behaviors to be had from particles that interact 

Simplest: binary forces, e.g. springs 

Nice example project with mass-spring systems: 
• https://vimeo.com/73188339


More sophisticated models for deformable things use forces relating 3 or more 
particles

fi(xi,xj) = �ks(|xi � xj |� r0)
xi � xj

|xi � xj |

https://vimeo.com/73188339


Integration Algorithms

Another attempt 
• Update velocity with forces at next time step determined by solving a (non-)linear system

• Use new velocity to update position


Benefits 
• Unconditionally stable if the system is linear!


Issues 
• Solving a system at each step can become expensive

• Can introduce artificial viscous damping


This technique is called Backward (Implicit) Euler Integration



Integration Algorithms

Next attempt: A compromise 
• Update velocity using current forces

• Use this updated velocity to update the position


Benefits 
• All the speed benefits of Forward Euler, but much more stable!

• You should basically always choose this algorithm over Forward Euler


Issues 
• Still not unconditionally stable, though


This technique is called Symplectic (Semi-implicit) Euler Integration



Euler variants viewed in phase space
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Other Integration techniques

Midpoint 

Newmark-β 

Verlet 

RK-4 

Many more (complicated) schemes  
• RK family

• Exponential Integrators



Computational Stiffness

E.g. Bead on Wire 
• Can use a spring force to bind bead (particle) to a wire

• If the spring is weak, the particle may drift too far away

• If the spring is strong, we need very small time steps to ensure stability


Known as a “stiff” problem 
• One stiff spring makes the whole system stiff!



Constraints

At the end of each step (i.e. after integration), enforce certain properties of the 
system 
• e.g., the bead should not leave the wire


Idea: push unconstrained system towards acceptable configuration by 
modifying particle momentum as little as possible



Constraint Equations

Usually of the form C(x) = 0 or C(x) ≥ 0 

When finding a solution, we are usually interested in the derivatives of these 
equations with respect to position (x) 

These are similar to forces, but are non-physical



Constraint Jacobian Matrix

Collection of derivatives of constraints into a single matrix 

Not necessarily square: relates n particle positions to m constraints 

Similar to a stiffness matrix



Enforcing Constraints

First attempt: Apply constraint equation derivatives iteratively 

Benefits 
• Fast, parallelizable over particles


Issues 
• Constraint application order matters!

• Convergence not guaranteed!

• Successive Over-Relaxation can help (i.e., apply a scaled version of the constraint derivative)


- But this is finicky, finding the right scaling value can be difficult (or it might not exist)



Enforcing Constraints

Another attempt: Lagrange Multipliers 
• Solve a global linear system over all constraints

• Add an extra row/column for each 1D constraint


Benefits 
• Order of constraints doesn’t matter

• Solves simultaneous constraints exactly in one pass


Issues 
• Non-parallelizable, global linear solve (but this can be done quickly using, e.g., conjugate 

gradient



Enforcing Constraints

Another attempt: Fast Manifold Projection 
• Solve a linear equation over constraints to project particles to “nearest” valid position

• Iterate until convergence


Benefits 
• Typically very few iterations needed; system size depends on number of constraints, not number 

of particles


Issues 
• Again, requires a global, non-parallelizable system solve



The New Algorithm

1) Clear forces from previous calculations 

2) Calculate/accumulate forces for each particle 

3) Use time integration algorithm of choice to update particle to unconstrained 
position 

4) Enforce constraints with algorithm of choice


