
16 Basic Particle Systems

Steve Marschner 
(slides coauthored with Eston Schweickart)

CS5625 Spring 2022

Overview

Particles and Springs
• Matrix notation and the Mass Matrix

• Equations of motion

• Forces as derivatives of energy and the Stiffness matrix

Time Integration Algorithms
• Forward, Backward, and Symplectic Euler

Constraints and Solvers
• Iterative Methods

• Manifold Projection

Examples of Particle Systems

Particle Dreams [Karl Sims, 1988]

Examples of Particle Systems

Balloon Burst [Macklin et. al, SIGGRAPH 2015]

Examples of Particle Systems

Unified Particle Physics for Real-Time Applications [Macklin et. al, SIGGRAPH 2014]

Unified Particle Physics for Real-Time Applications [Macklin et. al, SIGGRAPH 2014]

Particle System Review

Each particle has a mass

Each particle’s movement is determined by a sum of forces
• Forces depend on particles’ positions and velocities, and maybe time

F = ma determines how the particle moves
• Forces determine acceleration at any given time given the position and velocity

• Differential equation determines the entire motion given initial position and velocity

Basic Algorithm

1) Clear forces from previous calculations

2) Calculate/accumulate forces for each particle

3) Solve for particle’s state (position, velocity) for the next time step

Unary Forces

Constant
• Gravity

Position/Time-Dependent
• Force fields, e.g. wind

Velocity-Dependent
• Drag

Matrix Notation

If we have multiple particles, it is nice to group variables together
• Example: 1D System

• Example: 3D System

Mass matrix
• An n x n matrix that represents the mass distribution of n particles

• For simple systems, this is block-diagonal, where the ith block represents the mass of the ith

particle

• Each block is a scaled identity matrix mI where m is the particle’s mass and the size of I is the

number of dimensions of the domain

Integration Algorithm 1

Calculating Particle State from Forces: First attempt
• Use forces to update velocity

• Use old velocity to update position

Issues
• Unstable in certain cases!

• Reducing time step can help, but this becomes computationally expensive

This technique is called Forward (Explicit) Euler Integration

Binary, n-ary Forces

Much more interesting behaviors to be had from particles that interact

Simplest: binary forces, e.g. springs

Nice example project with mass-spring systems:
• https://vimeo.com/73188339

More sophisticated models for deformable things use forces relating 3 or more
particles

fi(xi,xj) = �ks(|xi � xj |� r0)
xi � xj

|xi � xj |

https://vimeo.com/73188339

Integration Algorithms

Another attempt
• Update velocity with forces at next time step determined by solving a (non-)linear system

• Use new velocity to update position

Benefits
• Unconditionally stable if the system is linear!

Issues
• Solving a system at each step can become expensive

• Can introduce artificial viscous damping

This technique is called Backward (Implicit) Euler Integration

Integration Algorithms

Next attempt: A compromise
• Update velocity using current forces

• Use this updated velocity to update the position

Benefits
• All the speed benefits of Forward Euler, but much more stable!

• You should basically always choose this algorithm over Forward Euler

Issues
• Still not unconditionally stable, though

This technique is called Symplectic (Semi-implicit) Euler Integration

Euler variants viewed in phase space

Exact solutionSymplectic Euler Forward Euler

St
eli

an
 C

or
os

, C
M

U

Other Integration techniques

Midpoint

Newmark-β

Verlet

RK-4

Many more (complicated) schemes
• RK family

• Exponential Integrators

Computational Stiffness

E.g. Bead on Wire
• Can use a spring force to bind bead (particle) to a wire

• If the spring is weak, the particle may drift too far away

• If the spring is strong, we need very small time steps to ensure stability

Known as a “stiff” problem
• One stiff spring makes the whole system stiff!

Constraints

At the end of each step (i.e. after integration), enforce certain properties of the
system
• e.g., the bead should not leave the wire

Idea: push unconstrained system towards acceptable configuration by
modifying particle momentum as little as possible

Constraint Equations

Usually of the form C(x) = 0 or C(x) ≥ 0

When finding a solution, we are usually interested in the derivatives of these
equations with respect to position (x)

These are similar to forces, but are non-physical

Constraint Jacobian Matrix

Collection of derivatives of constraints into a single matrix

Not necessarily square: relates n particle positions to m constraints

Similar to a stiffness matrix

Enforcing Constraints

First attempt: Apply constraint equation derivatives iteratively

Benefits
• Fast, parallelizable over particles

Issues
• Constraint application order matters!

• Convergence not guaranteed!

• Successive Over-Relaxation can help (i.e., apply a scaled version of the constraint derivative)

- But this is finicky, finding the right scaling value can be difficult (or it might not exist)

Enforcing Constraints

Another attempt: Lagrange Multipliers
• Solve a global linear system over all constraints

• Add an extra row/column for each 1D constraint

Benefits
• Order of constraints doesn’t matter

• Solves simultaneous constraints exactly in one pass

Issues
• Non-parallelizable, global linear solve (but this can be done quickly using, e.g., conjugate

gradient

Enforcing Constraints

Another attempt: Fast Manifold Projection
• Solve a linear equation over constraints to project particles to “nearest” valid position

• Iterate until convergence

Benefits
• Typically very few iterations needed; system size depends on number of constraints, not number

of particles

Issues
• Again, requires a global, non-parallelizable system solve

The New Algorithm

1) Clear forces from previous calculations

2) Calculate/accumulate forces for each particle

3) Use time integration algorithm of choice to update particle to unconstrained
position

4) Enforce constraints with algorithm of choice

