15 Hificient meshes

Follows chapter 16 In

RT

1 4e

Steve Marschner
CS5625 Spring 2022

BasIics Of efficiency for mesnes

Use triangle or quad meshes

+ general polygon meshes lead to too much complexity

+ quad meshes are great for some applications but more constrained

Use shared-vertex triangle meshes for GPU applications

- major memory/bandwidth savings over separate triangles

- If you get separate triangles, merge them in a pre-process

Store most data at vertices

- there are ~half as many vertices as faces
- vertex data may be interpolated across faces

- In typical GPU mesh representation, vertices must be duplicated to create discontinuities

\Vlore sopnistication In mesh storage

Optimizing vertex order

- strips and fans as classic examples (when per-frame bandwidth was the concern)

- modern systems don’t use these but optimize for hit rate in vertex cache

Reducing the number of triangles

- ultimately this is needed to save more time and space

 many levels of detail are useful
- simpler meshes for faraway objects
- simpler meshes for lower-resolution screens
- simpler meshes for lower-performance hardware or networks

[riangle strips 0 2 4 6

4 § f f
* Take advantage of the // f/ // e

mesh property b J b) /

— each triangle Is usually 1 3 5 7
adjacent to the previous

— let every vertex create a triangle by reusing the second and third vertices of
the previous triangle

— every sequence of three vertices produces a triangle (but not in the same
order)

— e.9,0,1,2,3,4,56,/,... leads to
O 12),213),1234),435),@56),(657),...

— for long strips, this requires about one index per triangle

Cornell C54620 Fall 2018 © 2018 Steve Marschner 4

[riangle strips

verts[O] | Xo, Yo: 2o

verts[1] | xq,¥1,21 , ®Ps
X2 Y223 "8
X3,Y3,Z3
tStrip[0] [4,0 .1,2.5 8 '
tStrip[1] [6,9,0,3,2,10,7 - |

Cornell C54620 Fall 2018 © 2018 Steve Marschner » 5

[riangle strips

verts[O] | Xo, Yo: 2o

verts[l] X1: Y121 . A&
X2:Y2:22 "8
X3,Y3,43
totrip[O] | 4,0,1,2,5,8 ' ‘ "
tStrip[l] | 6,9,0,3,2,10,7 : *

Cornell C54620 Fall 2018 © 2018 Steve Marschner » 5

[riangle strips

* array of vertex positions

— float[ny][3]: 12 bytes per vertex

* (3 coordinates x 4 bytes) per vertex

e array of index lists

— Int[ng][variable]: 2 + n indices per strip

— on average, (I + €) indices per triangle (assuming long strips)

») triangles per vertex (on average)

* about 4 bytes per triangle (on average)

e total is 20 bytes per vertex (limiting best case)

— factor of 3.6 over separate triangles; 1.8 over indexed mesh

Cornell C54620 Fall 2018 © 2018 Steve Marschner « 6

Triangle fans

e Same idea as triangle strips, but keep oldest rather than
nhewest

— every sequence of three vertices produces a triangle
- e.g,0,1,2,3,4,5,... leads to
0 12),023),034),04)5),...
— for long fans, this requires
about one Index per triangle 1

* Memory considerations exactly the
same as triangle strip

Cornell CS4620 Fall 2018 © 2018 Steve Marschner « 7

Vertex cache and mesn ordering

Triangle strips gain efficiency by caching the most recent two vertices

- we are essentially using a FIFO cache policy with a size of 2

+ cache miss rate approaches 1 miss / triangle

Optimizing for larger caches

With indexed meshes, saving indices is less important

- we store lots of data at vertices; ~6 indices is the least of our worries

- Just putting meshes in triangle-strip order gives you the same vertex caching behavior
(“transparent” vertex caching)

GPU pipelines are built with post-transform vertex caches

- cache the results of the vertex processing stage
» cache hits can save substantial computation

- (for parallelism newer systems process primitives in batches, but the effect is similar)

As with other applications of caches, now order of data access matters

AL ~ . ris the average
(a) Original mesh (704 faces) (b) Traditional strips (r = 0.99; b = 1.29; C = 34. 3) cache miss rate

[Hoppe 1 999] (c) Greedy strip-growing (r = 0.62; b = 1.28; C =22.3) (d) Local optimization (r = 0.60; b = 1.32; C =21.7)

.
=
=
—
<
-
=
—~
&

N

AT RN RO AN
- SNty ey e
ARSI TR R4 WdL)

Sandhi Sl
v

L
-t

- = -~
S TUAN A
? = AN Lty
P \J e r:i'f/,n
A s ot
s - anitd_
{‘l‘(*r/ﬂ;"ﬂ'/ :'///‘
I AE P z;,/"
St At 4
: © L A
N Ay Sy, wSAIRIE ST
o I IRSALNALIE 77 Vot P e Wit 7.
R BIYs / s s /) A N o (o ™ %
- D B ’ A5 LA 3 . 3 ar e
SRt e e S R e
ZARVA AANNT RN R T S W T b 2 E e
59 '\i. A X, o B L N A ,--;,A_.‘,@':v‘\%\‘..-;,.;«;i.\:iséii:ﬁib'qi.':':iiméz
AFe7Z. VAV L IR R Gl AN r o e oo WY, 3 PHL DN BN AC LA
7 e B B oA N A T SN L) 3 £ i
SATIre LGS (AR ARG A T IR
S G (AP S TR ,;ygigl&;.i_.,;v QIS L S
; WSTALGE ERlS N ROV SN AR o
. Vet 27 lb ot Y IL 3] a7 A (.
R I ANS SR A N 7 X S R O N 0 Iy Tk 8 £
AR &4 o =/ e Nt (Q'.?_’Z\"&*(‘ fMAVAV?‘/‘V/‘K LIPS TR NN BIE
) WS, A A R A e e A NN N GLVAR
TATARS VNS L enn WY e Sues " !,»5, REN N R e TN P MUINILS S Soldr
2 S IS o AV AL -:«]u;M‘“f'-‘/wfﬂ.a’/ﬁ»?'y‘&-"'{:"\;?"
S ' RN [S [
- —“ ” ~

AN S
ENINIPA S

1\

A\

AN T A0
N u‘.’f.«l}‘ Wt

SRS

0N

0N

Jd

£d

Sl

=

(a) K-Cache-Reorder (b) D3DXMesh (c) OpenCCL (d) dfsrendseq (e) Our work
Lin and Yu [2006] based on [Hoppe 1999] Yoon and Lindstrom [2006] Bogomjakov et al. [2001]

Sander et al. 2007 “Fast Triangle Reordering for Vertex Locality and Reduced Overdraw”

\Vlesh simplification

Many ways to simplify meshes

- remove chunks, retriangulate hole

+ gquantize vertices to centers of voxels

Particularly simple and effective is edge collapses, or edge contractions:

contract

Quadric Error Metric

Edge-collapse simplification produces a sequence of meshes

- each mesh has one fewer face

- each is derived from the previous by a single edge collapse

Key question: where to put the vertex after the collapse?

- at first vertex? at second? at midpoint?

»+ can choose location as the solution to an optimization

infnl nfnliad

VWhere to put the new vertex’?

It depends on the mesh geometry:

Y P Qv

Figure 16.19. The left figure shows a cube with an extra point along one edge. The middle figure
shows what happens if this point e is collapsed to corner e¢. The right figure shows ¢ collapsed to e.

-+ one way to formalize: the new vertex should be close to the planes of the triangles around it
before the edge collapse

Garland & Heckbert QEM

A particularly convenient error metric: sum of squared distances to planes

- each plane has an equation, can be represented as a 4-vector (a, b, c, d)
with (a, b, ¢) components normalized

- distance of a vertex v from the plane p is then the inner product pTv

- squared distance from plane is in the form vIMv for a 4x4 M (a quadric)

Y PV

p<planes(v)

Y vi(pp")V

peplanes(v)

p<planes(v)

- and better yet, the sum-squared distance from several planes is still in the form viQv

QEM simplification

With the error in the form of a quadric per vertex:

- the matrix is easy to compute from the surrounding triangles

- the error is easy to optimize. Given Q1 and Q2 belonging to a pair of vertices vi1 and vz, we
simply sum the errors of the two vertices:

A(v) = A1(v) + Az(v)
=v Qiv+v Qv
— VT(Q1 + Q2)v
* minimizing this error is a 4x4 linear system—very fast

- algorithm
- 0. compute Qs for all vertices, compute errors for all potential edge collapses.
- 1. use priority queue to find smallest-error edge. Collapse it; update the neighboring Qs.
- 2. repeat until mesh is small enough!

o9k faces 1k faces surfaces of constant
cost for reducing to
999 faces

[Garland & Heckbert 1997 “Surface Simplification Using Quadric Error Metrics”]

Continuous level-of-detail: Progressive Meshes

Key observation: edge collapse is invertible

» just need to store (offsets to) the locations of the two new vertices

Thus a sequence of edge collapses, reversed, is a representation for a mesh

MO vsplit 1 vsplit . vsplit, — (M M)

[Hoppe 1996
“Progressive Meshes”]

Progressive Mesnes

Store full representation, load various levels of detalil

- Just load or transmit a prefix of the list of edge splits

+ can change level of detail smoothly depending on size/distance/salience/etc.

Can interpolate (“geomorphs”)

+ sudden edge splits/collapses are jarring
- Interpolate new vertices from merged position to new positions

- leads to truly continuous LoD

Extra details (of QEM and PM)

 boundaries, creases—want to preserve them
- merging of small pieces—otherwise can’t simplify enough

- maintenance of additional attributes —throw them in the metric too

LOD— #Faces
0.000 122

[Hoppe 1996 “Progressive Meshes”]

LOD— #Faces
0.000 122

[Hoppe 1996 “Progressive Meshes”]

