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Basics of efficiency for meshes

Use triangle or quad meshes 
• general polygon meshes lead to too much complexity

• quad meshes are great for some applications but more constrained


Use shared-vertex triangle meshes for GPU applications 
• major memory/bandwidth savings over separate triangles

• if you get separate triangles, merge them in a pre-process


Store most data at vertices 
• there are ~half as many vertices as faces

• vertex data may be interpolated across faces

• in typical GPU mesh representation, vertices must be duplicated to create discontinuities



More sophistication in mesh storage

Optimizing vertex order 
• strips and fans as classic examples (when per-frame bandwidth was the concern)

• modern systems don’t use these but optimize for hit rate in vertex cache


Reducing the number of triangles 
• ultimately this is needed to save more time and space

• many levels of detail are useful


- simpler meshes for faraway objects

- simpler meshes for lower-resolution screens 

- simpler meshes for lower-performance hardware or networks



• Take advantage of the  
mesh property


– each triangle is usually 
adjacent to the previous

– let every vertex create a triangle by reusing the second and third vertices of 
the previous triangle

– every sequence of three vertices produces a triangle (but not in the same 
order)

– e. g., 0, 1, 2, 3, 4, 5, 6, 7, … leads to 
(0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), …

– for long strips, this requires about one index per triangle
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• array of vertex positions


– float[nV][3]: 12 bytes per vertex
• (3 coordinates x 4 bytes) per vertex

• array of index lists


– int[nS][variable]: 2 + n indices per strip

– on average, (1 + ε) indices per triangle (assuming long strips)
• 2 triangles per vertex (on average)
• about 4 bytes per triangle (on average)

• total is 20 bytes per vertex (limiting best case)

– factor of 3.6 over separate triangles; 1.8 over indexed mesh
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• Same idea as triangle strips, but keep oldest rather than 
newest


– every sequence of three vertices produces a triangle
– e. g., 0, 1, 2, 3, 4, 5, … leads to 

(0 1 2), (0 2 3), (0 3 4), (0 4 5), …
– for long fans, this requires  

about one index per triangle
• Memory considerations exactly the 

same as triangle strip
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Vertex cache and mesh ordering

Triangle strips gain efficiency by caching the most recent two vertices 

• we are essentially using a FIFO cache policy with a size of 2

• cache miss rate approaches 1 miss / triangle



Optimizing for larger caches

With indexed meshes, saving indices is less important 
• we store lots of data at vertices; ~6 indices is the least of our worries

• just putting meshes in triangle-strip order gives you the same vertex caching behavior 

(“transparent” vertex caching)


GPU pipelines are built with post-transform vertex caches 
• cache the results of the vertex processing stage

• cache hits can save substantial computation

• (for parallelism newer systems process primitives in batches, but the effect is similar)


As with other applications of caches, now order of data access matters 



[Hoppe 1999]

r is the average  
cache miss rate



[Sander et al. 2007 “Fast Triangle Reordering for Vertex Locality and Reduced Overdraw”]



Mesh simplification

Many ways to simplify meshes 
• remove chunks, retriangulate hole

• quantize vertices to centers of voxels


Particularly simple and effective is edge collapses, or edge contractions:



Quadric Error Metric

Edge-collapse simplification produces a sequence of meshes 
• each mesh has one fewer face

• each is derived from the previous by a single edge collapse


Key question: where to put the vertex after the collapse? 
• at first vertex? at second? at midpoint?

• can choose location as the solution to an optimization



Where to put the new vertex?

It depends on the mesh geometry: 

• one way to formalize: the new vertex should be close to the planes of the triangles around it 
before the edge collapse



Garland & Heckbert QEM

A particularly convenient error metric: sum of squared distances to planes 
• each plane has an equation, can be represented as a 4-vector (a, b, c, d)  

with (a, b, c) components normalized

• distance of a vertex v from the plane p is then the inner product pTv 
• squared distance from plane is in the form vTMv for a 4x4 M (a quadric) 

• and better yet, the sum-squared distance from several planes is still in the form vTQv



QEM simplification

With the error in the form of a quadric per vertex: 
• the matrix is easy to compute from the surrounding triangles

• the error is easy to optimize.  Given Q1 and Q2 belonging to a pair of vertices v1 and v2, we 

simply sum the errors of the two vertices:


• minimizing this error is a 4x4 linear system—very fast

• algorithm


- 0. compute Qs for all vertices, compute errors for all potential edge collapses.

- 1. use priority queue to find smallest-error edge.  Collapse it; update the neighboring Qs.

- 2. repeat until mesh is small enough!

�(v) = �1(v) +�2(v)

= vTQ1v + vTQ2v

= vT (Q1 +Q2)v
<latexit sha1_base64="CuIkw7Zzlgy9z1iFLE8caL2K53E="></latexit>



69k faces 1k faces surfaces of constant 
cost for reducing to  

999 faces

[Garland & Heckbert 1997 “Surface Simplification Using Quadric Error Metrics”]



Continuous level-of-detail: Progressive Meshes

Key observation: edge collapse is invertible 

• just need to store (offsets to) the locations of the two new vertices


Thus a sequence of edge collapses, reversed, is a representation for a mesh

[Hoppe 1996  
“Progressive Meshes”]



Progressive Meshes

Store full representation, load various levels of detail 
• just load or transmit a prefix of the list of edge splits

• can change level of detail smoothly depending on size/distance/salience/etc.


Can interpolate (“geomorphs”) 
• sudden edge splits/collapses are jarring

• interpolate new vertices from merged position to new positions

• leads to truly continuous LoD


Extra details (of QEM and PM) 
• boundaries, creases—want to preserve them

• merging of small pieces—otherwise can’t simplify enough

• maintenance of additional attributes—throw them in the metric too



[Hoppe 1996 “Progressive Meshes”]



[Hoppe 1996 “Progressive Meshes”]


