
15 Efficient meshes

Steve Marschner

CS5625 Spring 2022Follows chapter 16 in RTR 4e

Basics of efficiency for meshes

Use triangle or quad meshes
• general polygon meshes lead to too much complexity

• quad meshes are great for some applications but more constrained

Use shared-vertex triangle meshes for GPU applications
• major memory/bandwidth savings over separate triangles

• if you get separate triangles, merge them in a pre-process

Store most data at vertices
• there are ~half as many vertices as faces

• vertex data may be interpolated across faces

• in typical GPU mesh representation, vertices must be duplicated to create discontinuities

More sophistication in mesh storage

Optimizing vertex order
• strips and fans as classic examples (when per-frame bandwidth was the concern)

• modern systems don’t use these but optimize for hit rate in vertex cache

Reducing the number of triangles
• ultimately this is needed to save more time and space

• many levels of detail are useful

- simpler meshes for faraway objects

- simpler meshes for lower-resolution screens

- simpler meshes for lower-performance hardware or networks

• Take advantage of the  
mesh property

– each triangle is usually 
adjacent to the previous

– let every vertex create a triangle by reusing the second and third vertices of
the previous triangle

– every sequence of three vertices produces a triangle (but not in the same
order)

– e. g., 0, 1, 2, 3, 4, 5, 6, 7, … leads to 
(0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), …

– for long strips, this requires about one index per triangle

© 2018 Steve Marschner • Cornell CS4620 Fall 2018

Triangle strips

4

© 2018 Steve Marschner • Cornell CS4620 Fall 2018

Triangle strips

4, 0

5

© 2018 Steve Marschner • Cornell CS4620 Fall 2018

Triangle strips

4, 0

5

• array of vertex positions

– float[nV][3]: 12 bytes per vertex
• (3 coordinates x 4 bytes) per vertex

• array of index lists

– int[nS][variable]: 2 + n indices per strip

– on average, (1 + ε) indices per triangle (assuming long strips)
• 2 triangles per vertex (on average)
• about 4 bytes per triangle (on average)

• total is 20 bytes per vertex (limiting best case)

– factor of 3.6 over separate triangles; 1.8 over indexed mesh

© 2018 Steve Marschner • Cornell CS4620 Fall 2018

Triangle strips

6

• Same idea as triangle strips, but keep oldest rather than
newest

– every sequence of three vertices produces a triangle
– e. g., 0, 1, 2, 3, 4, 5, … leads to 

(0 1 2), (0 2 3), (0 3 4), (0 4 5), …
– for long fans, this requires  

about one index per triangle
• Memory considerations exactly the 

same as triangle strip

© 2018 Steve Marschner • Cornell CS4620 Fall 2018

Triangle fans

7

Vertex cache and mesh ordering

Triangle strips gain efficiency by caching the most recent two vertices

• we are essentially using a FIFO cache policy with a size of 2

• cache miss rate approaches 1 miss / triangle

Optimizing for larger caches

With indexed meshes, saving indices is less important
• we store lots of data at vertices; ~6 indices is the least of our worries

• just putting meshes in triangle-strip order gives you the same vertex caching behavior 

(“transparent” vertex caching)

GPU pipelines are built with post-transform vertex caches
• cache the results of the vertex processing stage

• cache hits can save substantial computation

• (for parallelism newer systems process primitives in batches, but the effect is similar)

As with other applications of caches, now order of data access matters

[Hoppe 1999]

r is the average  
cache miss rate

[Sander et al. 2007 “Fast Triangle Reordering for Vertex Locality and Reduced Overdraw”]

Mesh simplification

Many ways to simplify meshes
• remove chunks, retriangulate hole

• quantize vertices to centers of voxels

Particularly simple and effective is edge collapses, or edge contractions:

Quadric Error Metric

Edge-collapse simplification produces a sequence of meshes
• each mesh has one fewer face

• each is derived from the previous by a single edge collapse

Key question: where to put the vertex after the collapse?
• at first vertex? at second? at midpoint?

• can choose location as the solution to an optimization

Where to put the new vertex?

It depends on the mesh geometry:

• one way to formalize: the new vertex should be close to the planes of the triangles around it
before the edge collapse

Garland & Heckbert QEM

A particularly convenient error metric: sum of squared distances to planes
• each plane has an equation, can be represented as a 4-vector (a, b, c, d)  

with (a, b, c) components normalized

• distance of a vertex v from the plane p is then the inner product pTv
• squared distance from plane is in the form vTMv for a 4x4 M (a quadric)

• and better yet, the sum-squared distance from several planes is still in the form vTQv

QEM simplification

With the error in the form of a quadric per vertex:
• the matrix is easy to compute from the surrounding triangles

• the error is easy to optimize. Given Q1 and Q2 belonging to a pair of vertices v1 and v2, we

simply sum the errors of the two vertices:

• minimizing this error is a 4x4 linear system—very fast

• algorithm

- 0. compute Qs for all vertices, compute errors for all potential edge collapses.

- 1. use priority queue to find smallest-error edge. Collapse it; update the neighboring Qs.

- 2. repeat until mesh is small enough!

�(v) = �1(v) +�2(v)

= vTQ1v + vTQ2v

= vT (Q1 +Q2)v
<latexit sha1_base64="CuIkw7Zzlgy9z1iFLE8caL2K53E=">AAACmXicbVFbb9MwGHUyLl2B0cHjXiwqUCegubRs5QExLg8T4mET6zap6SLH/bJZc5xgO9GqaD90/4J/AHayTQPxSZbOOd/5fDlOCs6U9v0rx125d//Bw85q99HjJ2tPe+vPDlVeSgpTmvNcHidEAWcCppppDseFBJIlHI6S8y+2f1SBVCwXB3pZwDwjp4KljBJtpLinoq/ANRlEVbWJX33ALY2DVnh9w8OGR1HXWqrq5ABH2X4cWGxNt0po8V3boPVZk21vWjnu9f3hJHjnb49wC8bvr8HWCAdDv6n+x1+oqb143VmLFjktMxCacqLULPAL/Sbl8FPMayI1oxwuu1GpoCD0nJzCzEBBMlDzusnoEr80ygKnuTRLaNyodydqkim1zBLjzIg+U//2rPi/3qzU6WReM1GUGgRtD0pLjnWObeB4wSRQzZcGECqZuSumZ0QSqs23dKNmsPamyjBPycz7zhJJ5NLTcJGlHhOUlwvwzLmSXbytzFbmNU2C4zCcjG2CFoyCGzC5TfAwHAajob8/7u98bqNEHbSBXqABCtA22kG7aA9NEUVX6LfTcVbdDfeTu+t+a62ucz3zHP1V7o8/Xt7GoA==</latexit>

69k faces 1k faces surfaces of constant 
cost for reducing to  

999 faces

[Garland & Heckbert 1997 “Surface Simplification Using Quadric Error Metrics”]

Continuous level-of-detail: Progressive Meshes

Key observation: edge collapse is invertible

• just need to store (offsets to) the locations of the two new vertices

Thus a sequence of edge collapses, reversed, is a representation for a mesh

[Hoppe 1996  
“Progressive Meshes”]

Progressive Meshes

Store full representation, load various levels of detail
• just load or transmit a prefix of the list of edge splits

• can change level of detail smoothly depending on size/distance/salience/etc.

Can interpolate (“geomorphs”)
• sudden edge splits/collapses are jarring

• interpolate new vertices from merged position to new positions

• leads to truly continuous LoD

Extra details (of QEM and PM)
• boundaries, creases—want to preserve them

• merging of small pieces—otherwise can’t simplify enough

• maintenance of additional attributes—throw them in the metric too

[Hoppe 1996 “Progressive Meshes”]

[Hoppe 1996 “Progressive Meshes”]

