13 Texture filtering

Steve Marschner
CS5625 Spring 2022

Basic sampling problem

- Texture mapping defines a signal in image space
- That signal needs to be filtered: convolved with a filter
- Approximating this drives all the basic algorithms

Antialiasing nonlinear shading

- Basic sampling suffices only if pixel and texture are linearly related
- Normal mapping is the most important nonlinearity

Texture mapping from 0 to infinity

When you go close...

Texture mapping from 0 to infinity

When you go far...

Solution: pixel filtering

Problem: Perspective produces very high image frequencies

Solution

- Would like to render textures with one (few) samples/pixel
- Need to filter first!

Solution: pixel filtering

Pixel filtering in texture space

Sampling is happening in image space

- therefore the sampling filter is defined in image space
- sample is a weighted average over a pixel-sized area
- uniform, predictable, friendly problem!

Signal is defined in texture space

- mapping between image and texture is nonuniform
- each sample is a weighted average over a different sized and shaped area
- irregular, unpredictable, unfriendly!

This is a change of variable

- integrate over texture coordinates rather than image coordinates

Pixel footprints

How does area map over distance?

At optimal viewing distance:

- One-to-one mapping between pixel area and texel area

When closer

- Each pixel is a small part of the texel
- magnification
- interpolation is needed

When farther

- Each pixel could include many texels
- "minification"
- averaging is needed

How to get a handle on pixel footprint

We have a nonlinear mapping to deal with

- image position as a function of texture coordinates: $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}: \mathbf{u} \mapsto \mathbf{x}(\mathbf{u})$
- but that is too hard

Instead use a local linear approximation

- hinges on the derivative of $u=(u, v)$ wrt. $x=(x, y)$

$$
\begin{aligned}
\mathbf{u}(\mathbf{x}+\Delta \mathbf{x}) & \approx \mathbf{u}(\mathbf{x})+\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \Delta \mathbf{x} \\
\frac{\partial \mathbf{u}}{\partial \mathbf{x}} & =\left[\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right] \quad \text { Matrix derivative }
\end{aligned}
$$

Sizing up the situation with the Jacobian

How to tell minification from magnification

Difference is the size of the derivative

- but what is "size"?
- area: determinant of Jacobian: $\left|\frac{\partial \mathbf{u}}{\partial \mathrm{x}}\right|$
- max-stretch: 2-norm of Jacobian (requires a singular-value computation)
- Frobenius norm of matrix (RMS of 4 entries, easy to compute)
- max dimension of bounding box of quadrilateral footprint: max-abs of 4 entries (conservative)

Take your pick; magnification is when size is more than about 1

Mipmap image pyramid

MIP Maps

- Multum in Parvo: Much in little, many in small places
- Proposed by Lance Williams

Stores pre-filtered versions of texture

Supports very fast lookup

- but only of circular filters at certain scales

Given derivatives: what is level?

Need to reduce the matrix to a single number

- aka. choosing a matrix norm; several choices available with different tradeoffs
- elementwise max partial derivative:

$$
l=\log \left[\max \left(\left|\frac{\partial u}{\partial x}\right|,\left|\frac{\partial v}{\partial x}\right|,\left|\frac{\partial u}{\partial y}\right|,\left|\frac{\partial v}{\partial y}\right|\right)\right]
$$

- root-mean-square of partial derivatives:

$$
l=\log \sqrt{\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}}
$$

- either way, you get a non-integer level at which to look up

Using the MIP Map

In level, find texel and

- Return the texture value: point sampling (but still better)!
- Bilinear interpolation
- Trilinear interpolation

Level k

Level $(k+1)$

Memory Usage

What happens to size of texture?

- level 1 takes $1 / 4$ the memory of level 0
- level 2 takes 1/16, etc.
- in total, adds $1 / 3$ to the storage requirements

Point sampling

Point sampling

Reference: gaussian sampling by
$512 x$ supersampling

Reference: gaussian sampling by
$512 x$ supersampling

Texture minification

 with a mipmap

Texture minification

 with a mipmap

Texture minification: supersampling vs. mipmap

Texture minification: supersampling vs. mipmap

Treat pixel as circular

- e.g. Gaussian filter

Use linear apx. for distortion

- circular pixel maps to elliptical footprint
- ellipse dimensions calc'd from quadratic

Loop over texels inside ellipse

- actually over bounding rect
- weight by filter value and accumulate

Select appropriate MIP map level

Greene \& Heckbert '86

- so that minor radius is $1-2$ texels

Texture minification: supersampled vs. EWA

Texture minification: supersampled vs. EWA

Simpler anisotropic MIP mapping

EWA requires a lot of lookups for diagonally oriented footprints
Instead, approximate your footprint as a single line of blobs

- each blob is produced by taking a single bilinear sample using the standard MIP map

Number of samples proportional to major:minor axis ratio

- with some limit to bound slowness in extreme cases

This is the kind of method used when GPU says it uses " 16 x anisotropic texture sampling"

FELINE: McCormack et al. 1999

Filtering normal maps

Normal (or bump) maps can produce aliasing too

- shiny surface $=>$ color very sensitive to normal
- normal swings around faster as camera moves away => high contrast, high detail image

Filtering the normal map does the wrong thing

- shiny, bumpy surface at a distance becomes a shiny smooth surface
- microfacet theory tells us the non-resolved bumps produce a rough surface appearance

Normal map filtering is about producing appropriate BRDF at large scales

- bumps filtered away, replaced by roughness
- surfaces can become anisotropic depending on normal map content

LEAN Mapping

Linear Efficient Anisotropic Normal Mapping

A practical and efficient normal map antialiasing approch

Key ideas:

- Approximate normal mapping as defining a shifted normal distribution function (NDF) (rather than changing the shading frame)

$$
e^{-\frac{1}{2} \tilde{h}_{b}^{T} \Sigma^{-1} \tilde{h}_{b}} \quad
$$

- Use Gaussians for the NDFs
- Approximate the sum of multiple Gaussians by adding the first and second moments

LEAN Mapping

an NDF in tangent-vector space

LEAN Mapping

combining two centered NDFs in different tangent spaces

combining two off-center NDFs in a common tangent space

LEAN mapping bottom line [Olano \& Baker 2010]

Given normals from a normal map:

$$
N=\left(\vec{b}_{n} . x, \vec{b}_{n} . y, \vec{b}_{n} . z\right)
$$

Store the following in the base level texture:

$$
\begin{aligned}
B & =\left(\tilde{b}_{n} \cdot x, \tilde{b}_{n} \cdot y\right) \\
M & =\left(\tilde{b}_{n} \cdot x^{2}, \tilde{b}_{n} \cdot y^{2}, \tilde{b}_{n} \cdot x \tilde{b}_{n} \cdot y\right)
\end{aligned}
$$

$$
\left(\tilde{b}_{n} \cdot x, \tilde{b}_{n} \cdot y\right)=\left(\vec{b}_{n} \cdot x / \vec{b}_{n} \cdot z, \vec{b}_{n} \cdot y / \vec{b}_{n} \cdot z\right)
$$

Allow the textures B and M to be filtered by the MIP map machinery, then at shading time use an NDF defined by the mean B and the covariance:

$$
\Sigma=\left[\begin{array}{ll}
M \cdot x-B \cdot x * B \cdot x & M \cdot z-B . x * B \cdot y \\
M \cdot z-B \cdot x * B \cdot y & \text { M.y-B.y*B.y }
\end{array}\right]
$$

O

Figure 13: Anisotropic bump pattern as a model moves away.

LEADR mapping [Dupuy et al. SIGGRAPH 2013]

