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Overview

Basic sampling problem 
• Texture mapping defines a signal in image space

• That signal needs to be filtered: convolved with a filter

• Approximating this drives all the basic algorithms


Antialiasing nonlinear shading 
• Basic sampling suffices only if pixel and texture are linearly related

• Normal mapping is the most important nonlinearity



Texture mapping from 0 to infinity

When you go close…



Texture mapping from 0 to infinity

When you go far…



Solution: pixel filtering

Problem: Perspective produces very high image frequencies 

Solution 
• Would like to render textures with one (few) samples/pixel

• Need to filter first!



Solution: pixel filtering

point
sampling

area
averaging



Pixel filtering in texture space

Sampling is happening in image space 
• therefore the sampling filter is defined in image space

• sample is a weighted average over a pixel-sized area

• uniform, predictable, friendly problem!


Signal is defined in texture space 
• mapping between image and texture is nonuniform

• each sample is a weighted average over a different sized and shaped area

• irregular, unpredictable, unfriendly!


This is a change of variable 
• integrate over texture coordinates rather than image coordinates



Pixel footprints

image space texture space



How does area map over distance?

At optimal viewing distance: 
• One-to-one mapping between pixel area and texel area


When closer 
• Each pixel is a small part of the texel

• magnification

• interpolation is needed


When farther 
• Each pixel could include many texels

• “minification”

• averaging is needed

upsampling
magnification

downsampling
minification



How to get a handle on pixel footprint

We have a nonlinear mapping to deal with 
• image position as a function of texture coordinates:

• but that is too hard


Instead use a local linear approximation 
• hinges on the derivative of u = (u,v) wrt. x = (x,y)
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Sizing up the situation with the Jacobian
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How to tell minification from magnification

Difference is the size of the derivative 
• but what is “size”?

• area: determinant of Jacobian:


• max-stretch: 2-norm of Jacobian (requires a singular-value computation)


• Frobenius norm of matrix (RMS of 4 entries, easy to compute)


• max dimension of bounding box of quadrilateral footprint: max-abs of 4 entries (conservative)


Take your pick; magnification is when size is more than about 1
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Solutions for Minification

For magnification, use a good image interpolation method 
• bilinear (usual) or bicubic filter (fancier, smoother) are good picks

• nearest neighbor (box filter) will give you Minecraft-style blockies


For minification, use a good sampling filter to average 
• box (simple, though not usually easier)

• gaussian (good choice)


Challenge is to approximate the integral efficiently! 
• mipmaps

• multi-sample anisotropic filtering (based on mipmap)
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Mipmap image pyramid

MIP Maps  
• Multum in Parvo: Much in little, many in small places

• Proposed by Lance Williams


Stores pre-filtered versions  
of texture 

Supports very fast lookup 
• but only of circular filters 

at certain scales



Need to reduce the matrix to a single number 
• aka. choosing a matrix norm; several choices available with different tradeoffs

• elementwise max partial derivative:


• root-mean-square of partial derivatives:


• either way, you get a non-integer level at which to look up

Given derivatives: what is level?
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Using the MIP Map

In level, find texel and 
• Return the texture value: point sampling (but still better)!

• Bilinear interpolation

• Trilinear interpolation

Level k Level (k + 1) 



Memory Usage

What happens to size of texture? 
• level 1 takes 1/4 the 

memory of level 0

• level 2 takes 1/16, etc.

• in total, adds 1/3 to the 

storage requirements



mipmap 
minification

point sampled 
minification

Point sampling



mipmap 
minification

point sampled 
minification

Point sampling



mipmap 
minification

point sampled 
minification

Reference: gaussian

sampling by

512x supersampling



mipmap 
minification

point sampled 
minification

Reference: gaussian

sampling by

512x supersampling



Texture minification  
with a mipmap



Texture minification  
with a mipmap



Texture minification: 

supersampling vs.

mipmap



Texture minification: 

supersampling vs.

mipmap



EWA filtering (attributed to Greene & Heckbert, but they didn’t work out the MIP map part)

Treat pixel as circular 
• e.g. Gaussian filter


Use linear apx. for distortion 
• circular pixel maps to elliptical footprint

• ellipse dimensions calc’d from quadratic


Loop over texels inside ellipse 
• actually over bounding rect

• weight by filter value and accumulate


Select appropriate MIP map level 
• so that minor radius is 1–2 texels

ellipse testing can be done with one function evaluation
(this is faster than point-in-quadrilateral testing, which
requires substitution into four line equations). The func-
tion for this test is a quadratic in the texture coordinates
u and v:

Q(u,v) = Au2 + Buv+ Cv2
where u = 0, v = 0 is the center of the ellipse. This
function is an elliptical paraboloid. Points inside the
ellipse satisfy Q (u,v) < Ffor some threshold F. In texture
space the contours of Q are concentric ellipses (Figure 8),
but when mapped to screen space, they are nearly circu-
lar. Since Q is parabolic it is proportional to r2, where r is
the distance from the center of a pixel in screen space.
This radius r is just the parameter needed when indexing
a kernel, so Q can serve two purposes: inclusion testing
and kernel indexing.
The kernel f(r) is stored in a weight lookup table,

WTAB. Rather than index WTAB by r, which would
necessitate the calculation of r =V at each pixel, we
define

WTAB[Q]=f( \fQ)
so that the array can be indexed directly by Q.
Warping a lookup table for computational efficiency is

a useful trick that has been applied by others3"7 A good
kernel to use is the Gaussian f(r) = e-ar, shown in Figure
9, for which WTAB[Q] = e-aQ. The Gaussian is preferred
to the theoretically optimal sinc kernel because it decays
much more quickly. By properly scaling A, B, C, and F, the
length of the WTAB array can be controlled to minimize
quantization artifacts (several thousand entries have
proven sufficient). The parameters F and a can be tuned
to adjust the filter cutoff radius and the degree of pixel
overlap.
To evaluate Q efficiently, we employ the method of

finite differences. Since Q is quadratic, two additions
suffice to update Q from one pixel to the next? The
following pseudocode implements the EWA filter for
monochrome pictures (it is easily modified for color).
Integer variables are lowercase; floating-point variables
are uppercase.

1* Let texture[v,uJ be a 2-dimensional array holding texture *1
< Compute texture space ellipse center (UO,VO)

from screen coordinates (x,y) >

. Compute (Ux,Vx) au av and (Uy,Vy) =
ai atax, ax J ay..]

/* Now find ellipse corresponding to a circular pixel: */
A - Vx*Vx+Vy*Vy
B - -2.*(Ux*Vx+Uy*Vy)
C - UX*UX+Uy*Uy
F - Ux*Vy-Uy*Vx
F - F*F
< scale A, B, C, and F equally so that F - WTAB length >

/* Ellipse is AU2+BUV+CV2=F, where U=u-UO, V=v-VO *1

EWA(UO,VO,A,B,C,F)

begin
< Find bounding box around ellipse: ul.u.u2, vl.v.v2 >
NUM = 0.
DEN - 0.
DDQ = 2.*A
U = ul-UO
1* scan the box */
for v-vl to v2 do begin
V = v-VO
DQ = A*(2.*U+l.)+B*V /* =Q(U+I,V)-Q(U,V) *1
Q = (C*V+B*U)*V+A*U*U
for u=ul to u2 do begin

1* ignore pixel if Q out of range *1
if Q<F then begin
WEIGHT = WTAB[floor(Q)]
1* read and weight texture pixel */
NUM - NUM+WEIGHT*texture[v,u]
/* DEN is denominator (for normalization) */
DEN = DEN+WEIGHT

end
Q = Q+DQ
DQ = DQ+DDQ

end
end
return(NUM/DEN)

end

This implementation can be optimized further by re-
moving redundant calculations from the v loop and, with
proper checking, by using integer variables throughout.
The EWA filter computes the weighted average of

elliptical areas incrementally, requiring one floating-point
multiply, four floating-point adds, one integerization, and
one table lookup per texture pixel. Blinn et al.'s method,
which is the most similar to EWA, appears to have

Figure 8. Contours of elliptical paraboloid Q and box
around Q = F. Dots are centers of texture space pixels.
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Texture minification:  
supersampled vs.

EWA



Texture minification:  
supersampled vs.

EWA



Simpler anisotropic MIP mapping

EWA requires a lot of lookups for diagonally oriented footprints 

Instead, approximate your footprint as a single line of blobs 
• each blob is produced by taking a single bilinear sample using the standard MIP map


Number of samples proportional to 
major:minor axis ratio 
• with some limit to bound slowness in  

extreme cases


This is the kind of method used when 
GPU says it uses “16x anisotropic  
texture sampling”

if (levelOfDetail > texture.maxLevelOfDetail) {
levelOfDetail = texture.maxLevelOfDetail;
iProbes = 1;

}

We compute the stepping vector (∆u, ∆v), which is the dis-
tance between each probe point along the line, as follows:

lineLength = 2*(majorRadius – minorRadius);
∆u = cos(theta) * lineLength / (iProbes – 1);
∆v = sin(theta) * lineLength / (iProbes – 1);

(The stepping vector is irrelevant if iProbes is 1.)  The sam-
ple points are distributed symmetrically about the midpoint
(um, vm) of the sampling line L in the pattern:

(un, vn) = (um, vm) + n/2 * (∆u, ∆v)

where n = ±1, ±3, ±5, … if iProbes is even, as shown in Figure 8,
and n = 0, ±2, ±4, … if iProbes is odd, as shown in Figure 9.

We apply a Gaussian weight to each probe n by computing
the distance squared of the probe from the center of the pixel filter
in screen space, then exponentiating:

d = n/2 * sqrt(∆u2 + ∆v2) / majorRadius;
d2 = n2/4 * (∆u2 + ∆v2 ) / majorRadius2;
relativeWeight = e-α * d2

;

Finally, we divide the accumulated probe results by the sum
of all the weights applied.

3.2 Implementing Simple Feline
Simple Feline implements the above computations, except it

uses Texram’s ellipse axes approximations rather than computing
the exact values.  We use the longer of the two vectors (∂u/∂x,
∂v/∂x) and (∂u/∂y, ∂v/∂y) as the major radius, and the shortest of
those and the two diagonals (∂u/∂x + ∂u/∂y, ∂v/∂x + ∂v/∂y) and
(∂u/∂x – ∂u/∂y, ∂v/∂x – ∂v/∂y) as the minor radius length.

We were surprised that these approximations work essen-
tially as well as the exact values under typical perspective projec-
tions.  We discovered that the two vectors (∂u/∂x, ∂v/∂x) and
(∂u/∂y, ∂v/∂y) are more or less orthogonal under typical perspec-
tive distortions.  In the images shown below, the angle between
the two are in the range 90° ± 30°, and the most extreme angles
occur with very unequal vector lengths.  The simple approxima-
tions are tolerably close to the true values under these conditions.

We use a two-part linear approximation for the vector length
square root.  Without loss of generality, for a vector (a, b) assume
that a, b > 0 and a > b.  The following function is within ±1.2% of
the true length sqrt(a2 + b2):

if (b < 3a/8) return a + 5b/32
else return 109a/128 + 35b/64

We do not compute the stepping vector with trigonometric
functions, but instead scale the longer vector directly.  Call the
longer vector components (majorU, majorV).  Either this vector
describes majorRadius, or else iProbes is one and the stepping
vector is irrelevant.  By substituting majorU/majorRadius for
cosine, and majorV/majorRadius for sine, we get:

r = minorRadius / majorRadius;
i = oneOverNMinusOneTable[iProbes];
∆u = 2*(majorU – majorU*r) * i;
∆v = 2*(majorV – majorV*r) * i;
Finally, we use a triangularish two-dimensional weight table

to avoid computing and exponentiating d2.  We use the smaller of
fProbes truncated to a couple fractional bits, or iProbes, as the
weight table’s row index, so that each row of weights applies to a
small range of ellipses.  The column index is floor((abs(n)+1)/2).
By dividing each of the relative weights in a row by the sum of
the weights for that row, the weights in each row sum to 1.  Con-
sequently, we need not normalize the final accumulated result.
Note that if iProbes is odd, the W0 entry in a row should count
half as much as the other entries when computing the sum: it is
used once, while the other weights are used twice.

Most of the computations specific to Feline can use group
scaled numbers with a precision of 8 bits.  (The center point
(um, vm) must still be computed with high precision, of course.)
Small errors cause sampling along a line at a slightly different
angle, and at intervals that are slightly smaller or larger than de-
sired.  These arithmetic errors are negligible compared to the in-
accuracies caused by the gross approximations to the ellipse axes.

3.3 Increasing Efficiency
We investigated how far we could “push the envelope” to re-

duce the number of probes by shortening and widening the ellipse,
and by spreading probe points farther apart than their radius.

We can shorten the ellipse using a lengthFactor <= 1:

majorRadius = max(majorRadius * lengthFactor,
 minorRadius);

majorU *= lengthFactor;
majorV *= lengthFactor;
The code in Section 3.1 proportionately widens an ellipse

more when rounding down a small value of fProbes than a large
one.  We can instead compute iProbes so that for all values of
fProbes, we widen the ellipse to at most a blurFactor times the
minor radius.  We also allow stretching the distance between
probe positions by up to aliasFactor times the probe filter radius:

f = 1 / (blurFactor * aliasFactor);
iProbes = ceiling(f  * 2 * (majorRadius/minorRadius)) –  1;
If iProbes is not clamped to maxProbes, we blur (widen the

ellipse) by increasing minorRadius by up to blurFactor:

n  =  -3 n = -1
n  =  +1

n  =  +3

mid-
point

Figure 8: Positioning an even number of probes.

n = -4
n = -2

n  =  +2
n  =  +4

n =  0

Figure 9: Positioning an odd number of probes.
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Filtering normal maps

Normal (or bump) maps can produce aliasing too 
• shiny surface => color very sensitive to normal

• normal swings around faster as camera moves away => high contrast, high detail image


Filtering the normal map does the wrong thing 
• shiny, bumpy surface at a distance becomes a shiny smooth surface

• microfacet theory tells us the non-resolved bumps produce a rough surface appearance


Normal map filtering is about producing appropriate BRDF at large scales 
• bumps filtered away, replaced by roughness

• surfaces can become anisotropic depending on normal map content



Linear Efficient Anisotropic Normal Mapping 

A practical and efficient normal map antialiasing approch 

Key ideas: 
• Approximate normal mapping as defining a shifted normal distribution function (NDF) 

(rather than changing the shading frame)


• Use Gaussians for the NDFs

• Approximate the sum of multiple Gaussians by adding the first and second moments

LEAN Mapping

Figure 4: Comparison of Blinn-Phong and Beckmann highlight
shape as a function of angle between ~n and ~h (in radians). Fit
improves dramatically with increasing s.

the distribution predicts will be perfectly oriented to reflect ~v to ~l.

To use it with existing Blinn-Phong-based game assets, we first
show the equivalence of the Blinn-Phong model and a symmetric
Ward model based on the Beckmann distribution. Lyon [1993] ob-
served that Blinn-Phong approximates a Gaussian as the specular
exponent s increases. From this, we observe that it also well ap-
proximates an isotropic Beckmann distribution with variance 1/s
(See Figure 4). In terms of the angle ✓ between n̂ and ĥ, we have

cos(✓)s ⇡ e�
s
2 tan2 ✓.

The Beckmann distribution should be normalized by multiplying
by s/(2⇡). The entire normalization factor for the largest MIP level
could be incorporated into the specular coefficient. Instead, we in-
clude the multiplication by s in all instances of the Blinn-Phong
model (but still fold the constant term into the specular coefficient).
In fact, for our current game title, we were already using the s nor-
malization of Blinn-Phong to avoid loss of apparent total brightness
as the highlight tightens. Figure 5(a) and (b) show that these two
models produce visually equivalent results.

3.2 Surface Beckmann

The Beckmann distribution is a 2D Gaussian distribution on the
projection of the microfacet normals onto a plane one unit above the
surface (Figure 6). Since we will be dealing with many such projec-
tions, we introduce the notation h̃ for the 2D projection of ~h onto
the z = 1 plane. Beckmann-based shading models use a Gaussian
centered at the origin on this plane. When applied to bump maps,
each bump normal defines its own tangent plane for projection. One
problem for previous attempts to MIP a combined bump and spec-
ular model is the difficulty in combining these distinct planes (Fig-
ure 7). Previous approaches have resolved the projection problem
with distributions on a sphere [Olano and North 1997; Han et al.
2007] or by folding bump contribution into roughness at each level
of the MIP pyramid [Schilling 1997]. We solve it by incorporat-
ing the bump normal direction into the Beckmann shading model.
We use the normal of the underlying surface as the common projec-
tion plane, and represent the specular highlight on each bump as a
Gaussian centered on the bump normal’s projection onto this plane
(Figure 8). Rather than the standard Beckmann distribution
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Figure 5(c) shows that this model is visually equivalent to the stan-
dard Blinn-Phong and Beckmann models.
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Figure 5: Visual equivalence of shading models at a scale that
avoids filtering, showing a sphere with both a frontal and glancing
highlight: (a) Blinn-Phong applied to bump normal; (b) Beckmann
in the bump tangent frame; (c) Beckmann in the surface tangent
frame with bumps as off-center distributions; (d) LEAN mapping,
mathematically equivalent to (c) at this scale.

Figure 6: 2D illustration of a Beckmann distribution-based light-
ing model. Unit vectors v̂ and l̂ are used to compute ~h half way
between them. ~h is projected onto a plane perpendicular to n̂, and
a Gaussian centered at 0 on this plane gives the specular reflection.

3.3 Normal, Mean, Covariance, and Moments

Once we represent the microfacet distribution of each bump in a
common plane, combining bumps from two texels into a new col-
lective distribution is straightforward. Assume two texture samples
in the MIP map have mean bump directions b̄ and b̄0. If each is an
average of n base-map normals, we have

b̄ =
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Combining these two to get a new mean bump direction over the
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LEAN Mapping
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ing model. Unit vectors v̂ and l̂ are used to compute ~h half way
between them. ~h is projected onto a plane perpendicular to n̂, and
a Gaussian centered at 0 on this plane gives the specular reflection.

3.3 Normal, Mean, Covariance, and Moments

Once we represent the microfacet distribution of each bump in a
common plane, combining bumps from two texels into a new col-
lective distribution is straightforward. Assume two texture samples
in the MIP map have mean bump directions b̄ and b̄0. If each is an
average of n base-map normals, we have

b̄ =
1
n

nX

1

b̃i; b̄0 =
1
n

2nX

n+1

b̃i.

Combining these two to get a new mean bump direction over the
joint 2n base-map normals, we have

1
2n

2nX

1

b̃i =
1
2
b̄+

1
2
b̄0.

an NDF in tangent-vector space



Figure 7: Problem combining surface shading from distinct bumps.
Each bump defines its own tangent plane, so combining shading
contributions into a new plane is not well defined.

Figure 8: New shading model incorporating bump direction as off-
center Beckmann distributions in the surface tangent plane.

The projected b̃ bump directions combine linearly, so any standard
linear filtering kernel can be used to find the average bump nor-
mal at the center of a new microfacet distribution. This is true
if we use box filtering, summed area tables [Crow 1984], ellip-
tically weighted averaging [Heckbert 1989], Feline [McCormack
et al. 1999], or any other linear filtering method. In particular, stan-
dard MIP level generation and hardware trilinear MIP or anisotropic
texture lookups will all work.

This gives the highlight center, but does not affect its size or shape,
which is controlled by the covariance matrix ⌃ in Equation (1),

⌃ =


( 1
n

P
b̃.x2)� b̄.x2 ( 1

n

P
b̃.x b̃.y)� b̄.x b̄.y
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�
(2)

Schilling [1997] also used a covariance matrix based model, but
stored an upper-triangular decomposition of the matrix. Neither
the covariance matrix, nor upper-triangular decomposition combine
linearly, but the second moments do, and can be used to reconstruct
the elements of Equation (2) [Olano and North 1997; Donnelly and
Lauritzen 2006]:
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b̃.x b̃.y.

Since these take the same sum-over-microfacets form as b̃, they can
also be stored in a texture and combined with any linear filter ker-

nel. This combination of bump covariances in a common space are
the key to transitioning large scale bump behavior into microfacet
shading behavior.

To summarize, given a bump normal,

N = (~bn.x, ~bn.y, ~bn.z),

the top level of a LEAN map texture is seeded with

B = (b̃n.x, b̃n.y) (3)

M = (b̃n.x
2, b̃n.y

2, b̃n.x b̃n.y). (4)

Recall that in our notation b̃ is a division by ~b.z. Standard filtered
texture sampling of these five values will give an antialiased and
filtered blend of bumps and specular shading for any view. We can
reconstruct the bump normal for diffuse shading from (b̃.xy, 1).
To save computation and improve the quality of the diffuse filter-
ing, we can instead store the bump normal, N , directly in the three
empty texture slots (assuming two four-element textures). This also
allows diffuse filtering using the un-normalized normal after texture
filtering [Kilgard 2000].

Any method can generate MIP levels (e.g. the driver’s MIP filter
chain), either as a preprocess or per-frame texture generation. Dur-
ing shading, trilinear or anisotropic sampling computes the correct
filtering. Given filtered texture values, B and M (from maps seeded
according to Equations ((3) and (4)), we reconstruct ⌃

⌃ =


M.x�B.x ⇤B.x M.z �B.x ⇤B.y
M.z �B.x ⇤B.y M.y �B.y ⇤B.y

�
, (5)

and use it in Equation (1). Though Equation (1) calls for ⌃�1, this
is relatively trivial to compute since ⌃ is only a 2x2 matrix.

3.4 Base Surface Roughness

As with microfacet shading models, the previous section assumes
the top level of the bump map consists of perfect mirror reflectors.
This may be acceptable for environment mapping perfectly shiny
surfaces, but generally we have surfaces with some base roughness.
Han et al. [2007] show that an existing BRDF can be combined
with a normal distribution by convolution. Intuitively, each facet of
the normal distribution contributes its underlying BRDF kernel to
the whole combined distribution. Han et al. use frequency space for
this convolution. Fortunately, the Fourier transform of a Gaussian
is another Gaussian with the inverse variance. Thus (ignoring nor-
malization factors here for compactness) the convolution of a nor-
mal distribution with covariance ⌃ and shading with Blinn-Phong
exponent s is

e�
1
2 (h̃n�b̃n)T⌃�1(h̃n�b̃n) ⌦ e�

s
2 (h̃n�b̃n)T (h̃n�b̃n).

In frequency space this becomes

e�
1
2 (h̃n�b̃n)T⌃(h̃n�b̃n)e�

1
2s (h̃n�b̃n)T (h̃n�b̃n)

= e�
1
2 (h̃n�b̃n)T (⌃+ 1

s I)(h̃n�b̃n).

We don’t actually need to do any computations in frequency space.
We can compute the results of the convolution by just adding 1/s
to the x2 and y2 terms of ⌃ when computing M in Equation (4):

M = (b̃n.x
2 + 1/s, b̃n.y

2 + 1/s, b̃n.x b̃n.y). (6)

This has the effect of baking the Blinn-Phong specularity into the
texture. Figure 5(d) shows that this is visually equivalent to the
Blinn-Phong model. Alternately, we can add 1/s during final shad-
ing, when reconstructing ⌃ by Equation (5).

combining two off-center NDFs 
in a common tangent space
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Figure 7: Problem combining surface shading from distinct bumps.
Each bump defines its own tangent plane, so combining shading
contributions into a new plane is not well defined.

Figure 8: New shading model incorporating bump direction as off-
center Beckmann distributions in the surface tangent plane.

The projected b̃ bump directions combine linearly, so any standard
linear filtering kernel can be used to find the average bump nor-
mal at the center of a new microfacet distribution. This is true
if we use box filtering, summed area tables [Crow 1984], ellip-
tically weighted averaging [Heckbert 1989], Feline [McCormack
et al. 1999], or any other linear filtering method. In particular, stan-
dard MIP level generation and hardware trilinear MIP or anisotropic
texture lookups will all work.

This gives the highlight center, but does not affect its size or shape,
which is controlled by the covariance matrix ⌃ in Equation (1),

⌃ =


( 1
n

P
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Schilling [1997] also used a covariance matrix based model, but
stored an upper-triangular decomposition of the matrix. Neither
the covariance matrix, nor upper-triangular decomposition combine
linearly, but the second moments do, and can be used to reconstruct
the elements of Equation (2) [Olano and North 1997; Donnelly and
Lauritzen 2006]:
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Since these take the same sum-over-microfacets form as b̃, they can
also be stored in a texture and combined with any linear filter ker-

nel. This combination of bump covariances in a common space are
the key to transitioning large scale bump behavior into microfacet
shading behavior.

To summarize, given a bump normal,

N = (~bn.x, ~bn.y, ~bn.z),

the top level of a LEAN map texture is seeded with

B = (b̃n.x, b̃n.y) (3)

M = (b̃n.x
2, b̃n.y

2, b̃n.x b̃n.y). (4)

Recall that in our notation b̃ is a division by ~b.z. Standard filtered
texture sampling of these five values will give an antialiased and
filtered blend of bumps and specular shading for any view. We can
reconstruct the bump normal for diffuse shading from (b̃.xy, 1).
To save computation and improve the quality of the diffuse filter-
ing, we can instead store the bump normal, N , directly in the three
empty texture slots (assuming two four-element textures). This also
allows diffuse filtering using the un-normalized normal after texture
filtering [Kilgard 2000].

Any method can generate MIP levels (e.g. the driver’s MIP filter
chain), either as a preprocess or per-frame texture generation. Dur-
ing shading, trilinear or anisotropic sampling computes the correct
filtering. Given filtered texture values, B and M (from maps seeded
according to Equations ((3) and (4)), we reconstruct ⌃

⌃ =


M.x�B.x ⇤B.x M.z �B.x ⇤B.y
M.z �B.x ⇤B.y M.y �B.y ⇤B.y

�
, (5)

and use it in Equation (1). Though Equation (1) calls for ⌃�1, this
is relatively trivial to compute since ⌃ is only a 2x2 matrix.

3.4 Base Surface Roughness

As with microfacet shading models, the previous section assumes
the top level of the bump map consists of perfect mirror reflectors.
This may be acceptable for environment mapping perfectly shiny
surfaces, but generally we have surfaces with some base roughness.
Han et al. [2007] show that an existing BRDF can be combined
with a normal distribution by convolution. Intuitively, each facet of
the normal distribution contributes its underlying BRDF kernel to
the whole combined distribution. Han et al. use frequency space for
this convolution. Fortunately, the Fourier transform of a Gaussian
is another Gaussian with the inverse variance. Thus (ignoring nor-
malization factors here for compactness) the convolution of a nor-
mal distribution with covariance ⌃ and shading with Blinn-Phong
exponent s is

e�
1
2 (h̃n�b̃n)T⌃�1(h̃n�b̃n) ⌦ e�

s
2 (h̃n�b̃n)T (h̃n�b̃n).

In frequency space this becomes

e�
1
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1
2s (h̃n�b̃n)T (h̃n�b̃n)
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s I)(h̃n�b̃n).

We don’t actually need to do any computations in frequency space.
We can compute the results of the convolution by just adding 1/s
to the x2 and y2 terms of ⌃ when computing M in Equation (4):

M = (b̃n.x
2 + 1/s, b̃n.y

2 + 1/s, b̃n.x b̃n.y). (6)

This has the effect of baking the Blinn-Phong specularity into the
texture. Figure 5(d) shows that this is visually equivalent to the
Blinn-Phong model. Alternately, we can add 1/s during final shad-
ing, when reconstructing ⌃ by Equation (5).

combining two centered NDFs 
in different tangent spaces



Figure 7: Problem combining surface shading from distinct bumps.
Each bump defines its own tangent plane, so combining shading
contributions into a new plane is not well defined.

Figure 8: New shading model incorporating bump direction as off-
center Beckmann distributions in the surface tangent plane.

The projected b̃ bump directions combine linearly, so any standard
linear filtering kernel can be used to find the average bump nor-
mal at the center of a new microfacet distribution. This is true
if we use box filtering, summed area tables [Crow 1984], ellip-
tically weighted averaging [Heckbert 1989], Feline [McCormack
et al. 1999], or any other linear filtering method. In particular, stan-
dard MIP level generation and hardware trilinear MIP or anisotropic
texture lookups will all work.

This gives the highlight center, but does not affect its size or shape,
which is controlled by the covariance matrix ⌃ in Equation (1),

⌃ =


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Schilling [1997] also used a covariance matrix based model, but
stored an upper-triangular decomposition of the matrix. Neither
the covariance matrix, nor upper-triangular decomposition combine
linearly, but the second moments do, and can be used to reconstruct
the elements of Equation (2) [Olano and North 1997; Donnelly and
Lauritzen 2006]:
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Since these take the same sum-over-microfacets form as b̃, they can
also be stored in a texture and combined with any linear filter ker-

nel. This combination of bump covariances in a common space are
the key to transitioning large scale bump behavior into microfacet
shading behavior.

To summarize, given a bump normal,

N = (~bn.x, ~bn.y, ~bn.z),

the top level of a LEAN map texture is seeded with

B = (b̃n.x, b̃n.y) (3)

M = (b̃n.x
2, b̃n.y

2, b̃n.x b̃n.y). (4)

Recall that in our notation b̃ is a division by ~b.z. Standard filtered
texture sampling of these five values will give an antialiased and
filtered blend of bumps and specular shading for any view. We can
reconstruct the bump normal for diffuse shading from (b̃.xy, 1).
To save computation and improve the quality of the diffuse filter-
ing, we can instead store the bump normal, N , directly in the three
empty texture slots (assuming two four-element textures). This also
allows diffuse filtering using the un-normalized normal after texture
filtering [Kilgard 2000].

Any method can generate MIP levels (e.g. the driver’s MIP filter
chain), either as a preprocess or per-frame texture generation. Dur-
ing shading, trilinear or anisotropic sampling computes the correct
filtering. Given filtered texture values, B and M (from maps seeded
according to Equations ((3) and (4)), we reconstruct ⌃

⌃ =


M.x�B.x ⇤B.x M.z �B.x ⇤B.y
M.z �B.x ⇤B.y M.y �B.y ⇤B.y

�
, (5)

and use it in Equation (1). Though Equation (1) calls for ⌃�1, this
is relatively trivial to compute since ⌃ is only a 2x2 matrix.

3.4 Base Surface Roughness

As with microfacet shading models, the previous section assumes
the top level of the bump map consists of perfect mirror reflectors.
This may be acceptable for environment mapping perfectly shiny
surfaces, but generally we have surfaces with some base roughness.
Han et al. [2007] show that an existing BRDF can be combined
with a normal distribution by convolution. Intuitively, each facet of
the normal distribution contributes its underlying BRDF kernel to
the whole combined distribution. Han et al. use frequency space for
this convolution. Fortunately, the Fourier transform of a Gaussian
is another Gaussian with the inverse variance. Thus (ignoring nor-
malization factors here for compactness) the convolution of a nor-
mal distribution with covariance ⌃ and shading with Blinn-Phong
exponent s is

e�
1
2 (h̃n�b̃n)T⌃�1(h̃n�b̃n) ⌦ e�
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In frequency space this becomes
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We don’t actually need to do any computations in frequency space.
We can compute the results of the convolution by just adding 1/s
to the x2 and y2 terms of ⌃ when computing M in Equation (4):

M = (b̃n.x
2 + 1/s, b̃n.y

2 + 1/s, b̃n.x b̃n.y). (6)

This has the effect of baking the Blinn-Phong specularity into the
texture. Figure 5(d) shows that this is visually equivalent to the
Blinn-Phong model. Alternately, we can add 1/s during final shad-
ing, when reconstructing ⌃ by Equation (5).

Figure 7: Problem combining surface shading from distinct bumps.
Each bump defines its own tangent plane, so combining shading
contributions into a new plane is not well defined.

Figure 8: New shading model incorporating bump direction as off-
center Beckmann distributions in the surface tangent plane.

The projected b̃ bump directions combine linearly, so any standard
linear filtering kernel can be used to find the average bump nor-
mal at the center of a new microfacet distribution. This is true
if we use box filtering, summed area tables [Crow 1984], ellip-
tically weighted averaging [Heckbert 1989], Feline [McCormack
et al. 1999], or any other linear filtering method. In particular, stan-
dard MIP level generation and hardware trilinear MIP or anisotropic
texture lookups will all work.

This gives the highlight center, but does not affect its size or shape,
which is controlled by the covariance matrix ⌃ in Equation (1),
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Schilling [1997] also used a covariance matrix based model, but
stored an upper-triangular decomposition of the matrix. Neither
the covariance matrix, nor upper-triangular decomposition combine
linearly, but the second moments do, and can be used to reconstruct
the elements of Equation (2) [Olano and North 1997; Donnelly and
Lauritzen 2006]:
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Since these take the same sum-over-microfacets form as b̃, they can
also be stored in a texture and combined with any linear filter ker-

nel. This combination of bump covariances in a common space are
the key to transitioning large scale bump behavior into microfacet
shading behavior.

To summarize, given a bump normal,

N = (~bn.x, ~bn.y, ~bn.z),

the top level of a LEAN map texture is seeded with

B = (b̃n.x, b̃n.y) (3)

M = (b̃n.x
2, b̃n.y

2, b̃n.x b̃n.y). (4)

Recall that in our notation b̃ is a division by ~b.z. Standard filtered
texture sampling of these five values will give an antialiased and
filtered blend of bumps and specular shading for any view. We can
reconstruct the bump normal for diffuse shading from (b̃.xy, 1).
To save computation and improve the quality of the diffuse filter-
ing, we can instead store the bump normal, N , directly in the three
empty texture slots (assuming two four-element textures). This also
allows diffuse filtering using the un-normalized normal after texture
filtering [Kilgard 2000].

Any method can generate MIP levels (e.g. the driver’s MIP filter
chain), either as a preprocess or per-frame texture generation. Dur-
ing shading, trilinear or anisotropic sampling computes the correct
filtering. Given filtered texture values, B and M (from maps seeded
according to Equations ((3) and (4)), we reconstruct ⌃

⌃ =


M.x�B.x ⇤B.x M.z �B.x ⇤B.y
M.z �B.x ⇤B.y M.y �B.y ⇤B.y

�
, (5)

and use it in Equation (1). Though Equation (1) calls for ⌃�1, this
is relatively trivial to compute since ⌃ is only a 2x2 matrix.

3.4 Base Surface Roughness

As with microfacet shading models, the previous section assumes
the top level of the bump map consists of perfect mirror reflectors.
This may be acceptable for environment mapping perfectly shiny
surfaces, but generally we have surfaces with some base roughness.
Han et al. [2007] show that an existing BRDF can be combined
with a normal distribution by convolution. Intuitively, each facet of
the normal distribution contributes its underlying BRDF kernel to
the whole combined distribution. Han et al. use frequency space for
this convolution. Fortunately, the Fourier transform of a Gaussian
is another Gaussian with the inverse variance. Thus (ignoring nor-
malization factors here for compactness) the convolution of a nor-
mal distribution with covariance ⌃ and shading with Blinn-Phong
exponent s is

e�
1
2 (h̃n�b̃n)T⌃�1(h̃n�b̃n) ⌦ e�
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In frequency space this becomes
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We don’t actually need to do any computations in frequency space.
We can compute the results of the convolution by just adding 1/s
to the x2 and y2 terms of ⌃ when computing M in Equation (4):

M = (b̃n.x
2 + 1/s, b̃n.y

2 + 1/s, b̃n.x b̃n.y). (6)

This has the effect of baking the Blinn-Phong specularity into the
texture. Figure 5(d) shows that this is visually equivalent to the
Blinn-Phong model. Alternately, we can add 1/s during final shad-
ing, when reconstructing ⌃ by Equation (5).

Figure 7: Problem combining surface shading from distinct bumps.
Each bump defines its own tangent plane, so combining shading
contributions into a new plane is not well defined.

Figure 8: New shading model incorporating bump direction as off-
center Beckmann distributions in the surface tangent plane.

The projected b̃ bump directions combine linearly, so any standard
linear filtering kernel can be used to find the average bump nor-
mal at the center of a new microfacet distribution. This is true
if we use box filtering, summed area tables [Crow 1984], ellip-
tically weighted averaging [Heckbert 1989], Feline [McCormack
et al. 1999], or any other linear filtering method. In particular, stan-
dard MIP level generation and hardware trilinear MIP or anisotropic
texture lookups will all work.

This gives the highlight center, but does not affect its size or shape,
which is controlled by the covariance matrix ⌃ in Equation (1),
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Schilling [1997] also used a covariance matrix based model, but
stored an upper-triangular decomposition of the matrix. Neither
the covariance matrix, nor upper-triangular decomposition combine
linearly, but the second moments do, and can be used to reconstruct
the elements of Equation (2) [Olano and North 1997; Donnelly and
Lauritzen 2006]:
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Since these take the same sum-over-microfacets form as b̃, they can
also be stored in a texture and combined with any linear filter ker-

nel. This combination of bump covariances in a common space are
the key to transitioning large scale bump behavior into microfacet
shading behavior.

To summarize, given a bump normal,

N = (~bn.x, ~bn.y, ~bn.z),

the top level of a LEAN map texture is seeded with

B = (b̃n.x, b̃n.y) (3)

M = (b̃n.x
2, b̃n.y

2, b̃n.x b̃n.y). (4)

Recall that in our notation b̃ is a division by ~b.z. Standard filtered
texture sampling of these five values will give an antialiased and
filtered blend of bumps and specular shading for any view. We can
reconstruct the bump normal for diffuse shading from (b̃.xy, 1).
To save computation and improve the quality of the diffuse filter-
ing, we can instead store the bump normal, N , directly in the three
empty texture slots (assuming two four-element textures). This also
allows diffuse filtering using the un-normalized normal after texture
filtering [Kilgard 2000].

Any method can generate MIP levels (e.g. the driver’s MIP filter
chain), either as a preprocess or per-frame texture generation. Dur-
ing shading, trilinear or anisotropic sampling computes the correct
filtering. Given filtered texture values, B and M (from maps seeded
according to Equations ((3) and (4)), we reconstruct ⌃

⌃ =


M.x�B.x ⇤B.x M.z �B.x ⇤B.y
M.z �B.x ⇤B.y M.y �B.y ⇤B.y

�
, (5)

and use it in Equation (1). Though Equation (1) calls for ⌃�1, this
is relatively trivial to compute since ⌃ is only a 2x2 matrix.

3.4 Base Surface Roughness

As with microfacet shading models, the previous section assumes
the top level of the bump map consists of perfect mirror reflectors.
This may be acceptable for environment mapping perfectly shiny
surfaces, but generally we have surfaces with some base roughness.
Han et al. [2007] show that an existing BRDF can be combined
with a normal distribution by convolution. Intuitively, each facet of
the normal distribution contributes its underlying BRDF kernel to
the whole combined distribution. Han et al. use frequency space for
this convolution. Fortunately, the Fourier transform of a Gaussian
is another Gaussian with the inverse variance. Thus (ignoring nor-
malization factors here for compactness) the convolution of a nor-
mal distribution with covariance ⌃ and shading with Blinn-Phong
exponent s is
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In frequency space this becomes
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We don’t actually need to do any computations in frequency space.
We can compute the results of the convolution by just adding 1/s
to the x2 and y2 terms of ⌃ when computing M in Equation (4):

M = (b̃n.x
2 + 1/s, b̃n.y

2 + 1/s, b̃n.x b̃n.y). (6)

This has the effect of baking the Blinn-Phong specularity into the
texture. Figure 5(d) shows that this is visually equivalent to the
Blinn-Phong model. Alternately, we can add 1/s during final shad-
ing, when reconstructing ⌃ by Equation (5).

Given normals from a normal map:

Store the following in the base level texture:

(b̃n.x, b̃n.y) = (~bn.x/~bn.z,~bn.y/~bn.z)
<latexit sha1_base64="DLmWypKFpft07Wx0O4qlIlyNjk4="></latexit>

Allow the textures B and M to be filtered by the MIP map machinery,

then at shading time use an NDF defined by the mean B and the covariance:

LEAN mapping bottom line [Olano & Baker 2010]
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Figure 1: In-game views of a two-layer LEAN map ocean with sun just off screen to the right, and artist-selected shininess equivalent to a
Blinn-Phong specular exponent of 13,777: (a) near, (b) mid, and (c) far. Note the lack of aliasing, even with an extremely high power.

Abstract

We introduce Linear Efficient Antialiased Normal (LEAN) Map-
ping, a method for real-time filtering of specular highlights in bump
and normal maps. The method evaluates bumps as part of a shading
computation in the tangent space of the polygonal surface rather
than in the tangent space of the individual bumps. By operat-
ing in a common tangent space, we are able to store information
on the distribution of bump normals in a linearly-filterable form
compatible with standard MIP and anisotropic filtering hardware.
The necessary textures can be computed in a preprocess or gener-
ated in real-time on the GPU for time-varying normal maps. The
method effectively captures the bloom in highlight shape as bumps
become too small to see, and will even transform bump ridges into
anisotropic shading. Unlike even more expensive methods, several
layers can be combined cheaply during surface rendering, with per-
pixel blending. Though the method is based on a modified Ward
shading model, we show how to map between its parameters and
those of a standard Blinn-Phong model for compatibility with ex-
isting art assets and pipelines, and demonstrate that both models
produce equivalent results at the largest MIP levels.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Surface Shading; I.3.3 [Picture/Image Generation]; G.3 [Probabil-
ity and Statistics]

Keywords: bump maps, texture filtering, MIP mapping, shading
models

⇤email: olano@umbc.edu (work done while on sabbatical from UMBC)
†email: dbaker@firaxis.com

1 Introduction

For over thirty years, bump mapping has been an effective method
for adding apparent detail to a surface [Blinn 1978]. We use the
term bump mapping to refer to both the original height texture that
defines surface normal perturbation for shading, and the more com-
mon and general normal mapping, where the texture holds the ac-
tual surface normal. These methods are extremely common in video
games, where the additional surface detail allows a rich visual ex-
perience without complex high-polygon models.

Unfortunately, bump mapping has serious drawbacks with filtering
and antialiasing. When viewed at a distance, standard MIP map-
ping of a bump map can work for diffuse shading [Kilgard 2000],
but fails to capture changes in specularity. A shiny but bumpy sur-
face, seen far enough away that the bumps are no longer visible,
should appear as if it were a duller surface, with formerly visible
bumps becoming part of the surface microstructure. Bump map-
ping will instead produce a surface with the correct average normal
but the original shininess (Figure 2(a-c)), which can lead to signifi-
cant aliasing.

The problem is even worse for bumps with any repeated directional
pattern. Bump directionality should result in anisotropic shading
when the bumps are no longer individually discernible, much as
with geometrically derived anisotropic shading models [Poulin and
Fournier 1990]. Traditional bump maps instead revert to a symmet-
ric highlight (Figure 2(d-f)).

Existing approaches either require precomputation too expensive
to compute on the fly [Cabral et al. 1987; Fournier 1992; Westin
et al. 1992; Schilling 1997; Han et al. 2007], large per-texel run-
time data [Fournier 1992; Han et al. 2007], or significant approx-
imations to the shading model [Olano and North 1997; Toksvig
2005]. Many use representations that do not combine linearly, vio-
lating a core assumption of standard texture filtering [Cabral et al.
1987; Westin et al. 1992; Schilling 1997]. We instead desire an ap-
proach that is fast, compatible with existing texture filtering hard-
ware, and requires minimal precomputation to allow live changes to
bump shapes. It should allow even extremely shiny surfaces with-
out aliasing artifacts. As a further constraint, the method should
work well with existing Blinn-Phong based lighting [Blinn 1977],

LEAN mapping [Olano & Baker I3D 2010]
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Figure 1: A high-quality animated production model (Ptex T-rex model c� Walt Disney Animation Studios.) rendered in real time under
directional and environment lighting using LEADR mapping on an NVidia GTX 480 GPU. The surface appearance is preserved at all scales,
using a single shading sample per pixel. Combined with adaptive GPU tessellation, our method provides the fastest, seamless, and antialiased
progressive representation for displaced surfaces.

Abstract

We present Linear Efficient Antialiased Displacement and Re-
flectance (LEADR) mapping, a reflectance filtering technique for
displacement mapped surfaces. Similarly to LEAN mapping, it
employs two mipmapped texture maps, which store the first two
moments of the displacement gradients. During rendering, the pro-
jection of this data over a pixel is used to compute a noncentered
anisotropic Beckmann distribution using only simple, linear filter-
ing operations. The distribution is then injected in a new, physically
based, rough surface microfacet BRDF model, that includes mask-
ing and shadowing effects for both diffuse and specular reflection
under directional, point, and environment lighting. Furthermore,
our method is compatible with animation and deformation, making
it extremely general and flexible. Combined with an adaptive mesh-
ing scheme, LEADR mapping provides the very first seamless and
hardware-accelerated multi-resolution representation for surfaces.
In order to demonstrate its effectiveness, we render highly detailed
production models in real time on a commodity GPU, with quality
matching supersampled ground-truth images.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture
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1 Introduction

Rendering applications such as video games commonly employ
bump or normal textures (henceforth interchangeably referred to
as normal textures) to enhance surface appearance (e.g., [Kilgard
2000]). These textures perturb or modify the normal of a simple
underlying surface to emulate geometric variations through shad-
ing perturbations. Similarly to albedo textures, normal textures
must be filtered for antialiasing purposes. But since shading with
linearly filtered normals does not result in proper reflectance filter-
ing, these textures cannot exclusively rely on simple methods such
as mipmapping. Recently introduced by Olano and Baker [2010],
LEAN mapping is an elegant solution to this problem, that has
found widespread adoption because of its effectiveness, efficiency,
and simplicity [Baker 2011].

Normal mapping is an inherited paradigm from the 1980’s. At that
time, geometric models were coarse because of computing capa-
bilities and memory constraints. Textures cheaply enhanced visual
details without increasing geometric complexity. The discrepancy
between the resolutions of geometry and texture was the key as-
sumption for texture filtering: within the same large and flat trian-
gle, visibility, curvature, and orientation were considered constant.
Consequently, filtering in texture space or in geometry space could
reasonably be considered equivalent. This assumption does not
hold anymore because mesh and texture resolutions can be matched
with negligible overhead on modern GPUs.

Filtering appearance of small-scale geometry is thus a critical
emerging problem. Indeed, small-scale geometry produces view-
and light-dependent effects that include masking, shadowing, and
projection weighting (i.e., the cosine term). Filtering this small-
scale geometry while neglecting these visual effects violates energy
conservation and can result in objectionable aliasing, popping arti-
facts, and inconsistent appearances throughout scales. Methods for
filtering normal maps do not account for these effects, which is why
filtering reflectance from normal mapping is not the same problem
as filtering reflectance of small-scale geometry [Han et al. 2007;
Bruneton and Neyret 2012] (see Figure 2).

We propose a solution to this problem in the important case where
the small-scale geometry is generated by displacement mapping.
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