13 Texture filtering

Steve Marschner **CS5625** Spring 2022

Overview

Basic sampling problem

- Texture mapping defines a signal in image space
- That signal needs to be filtered: convolved with a filter
- Approximating this drives all the basic algorithms

Antialiasing nonlinear shading

- Basic sampling suffices only if pixel and texture are linearly related
- Normal mapping is the most important nonlinearity

Texture mapping from 0 to infinity

When you go close...

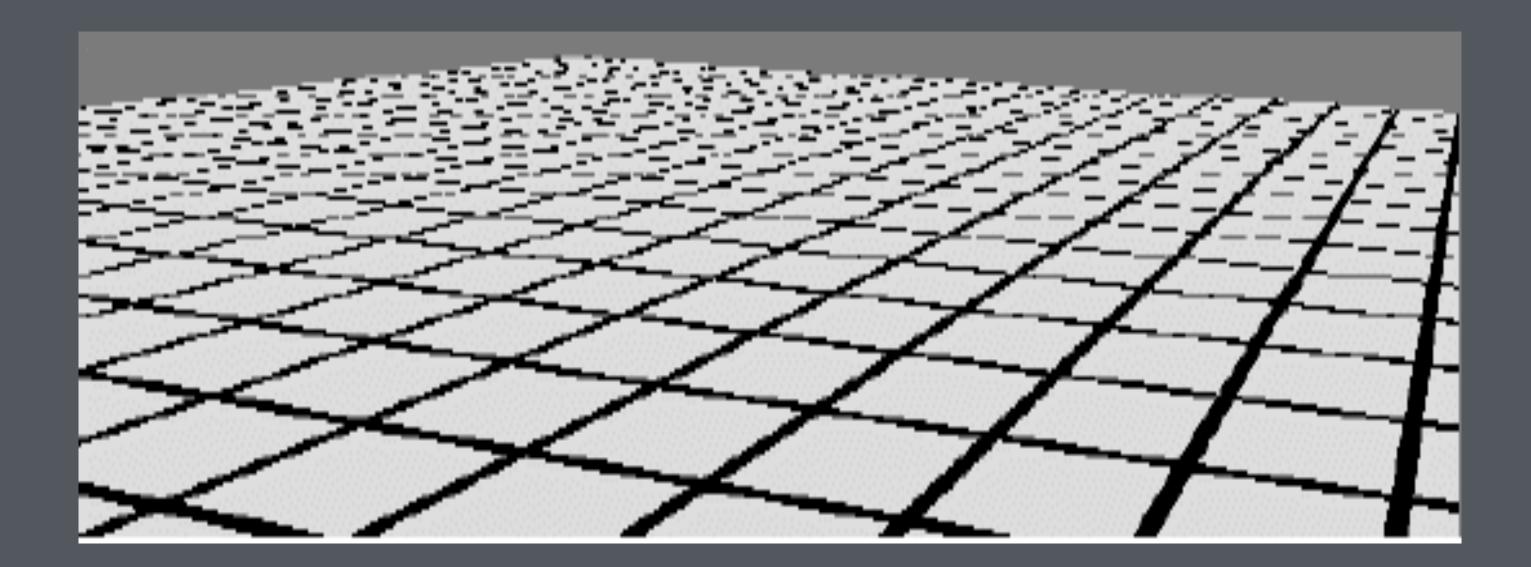
Texture mapping from 0 to infinity

When you go far...

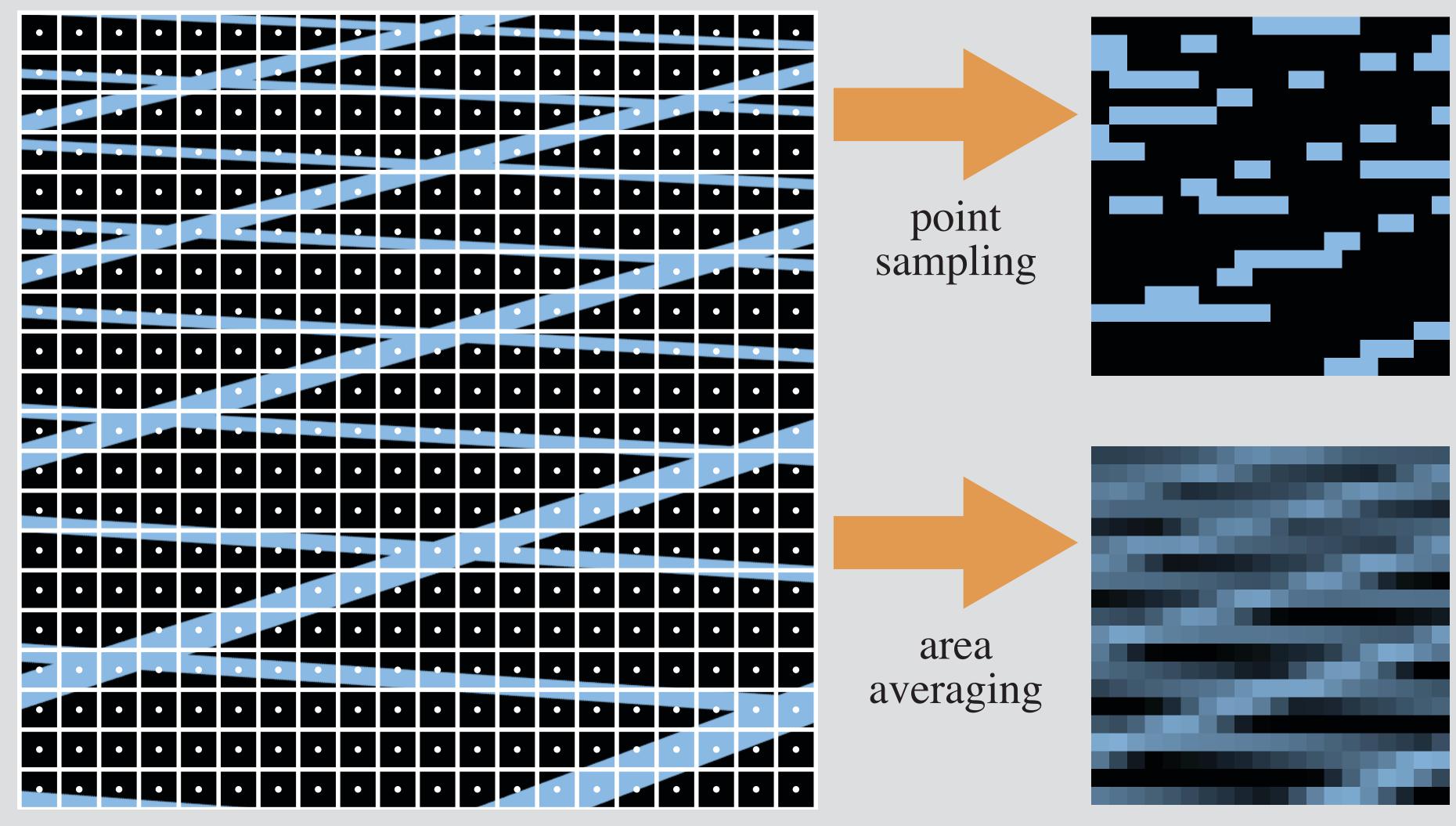
Solution: pixel filtering

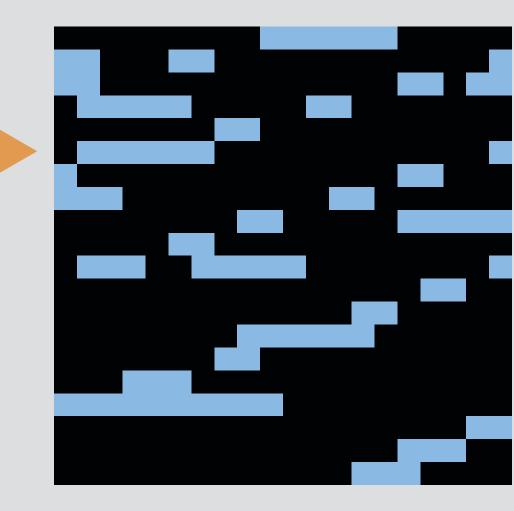
Problem: Perspective produces very high image frequencies Solution

- Would like to render textures with one (few) samples/pixel
- Need to filter first!



Solution: pixel filtering





Pixel filtering in texture space

Sampling is happening in image space

- therefore the sampling filter is defined in image space
- sample is a weighted average over a pixel-sized area
- uniform, predictable, friendly problem!

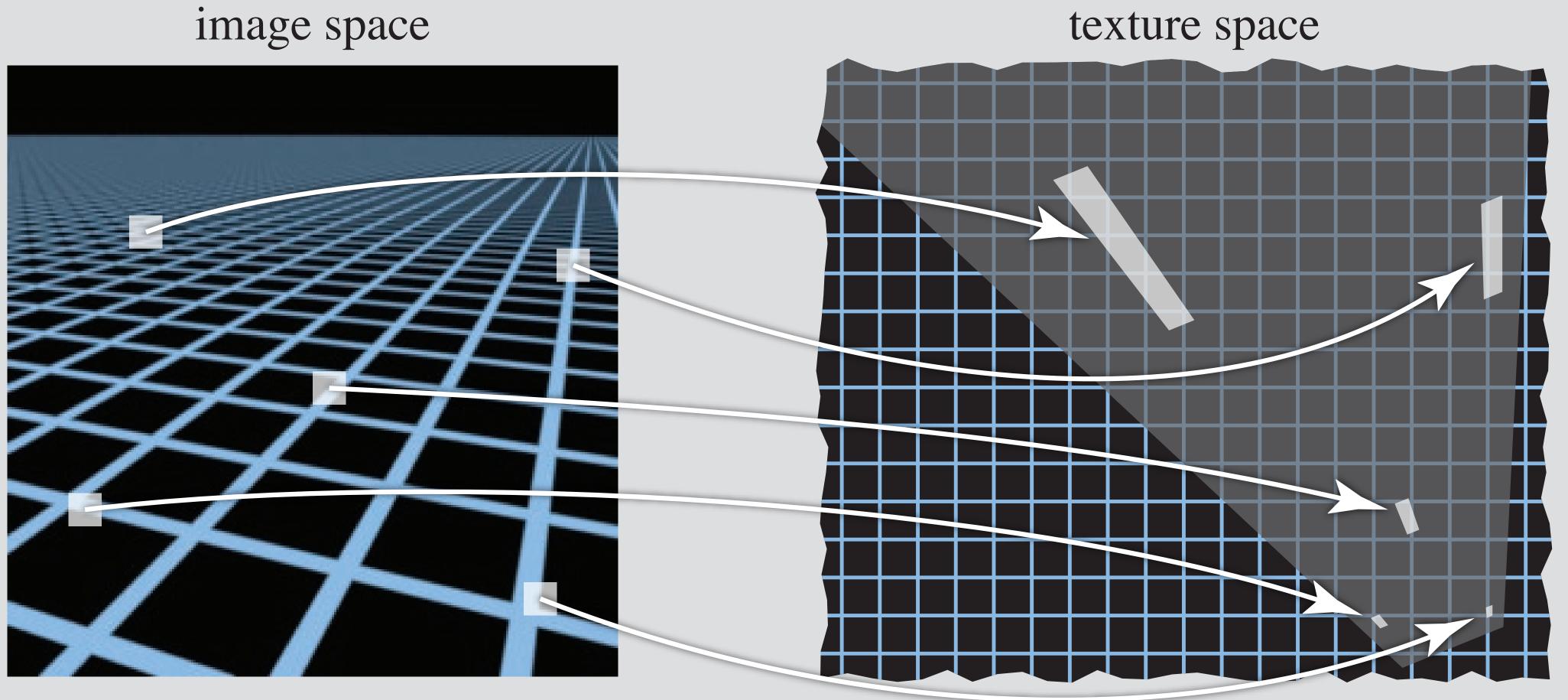
Signal is defined in texture space

- mapping between image and texture is nonuniform
- each sample is a weighted average over a different sized and shaped area -
- irregular, unpredictable, unfriendly!

This is a change of variable

integrate over texture coordinates rather than image coordinates

Pixel footprints



How does area map over distance?

At optimal viewing distance:

One-to-one mapping between pixel area and texel area

When closer

- Each pixel is a small part of the texel
- magnification
- interpolation is needed

When farther

- Each pixel could include many texels
- "minification"
- averaging is needed

•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	•	•	•	•	•	•	• /	-	•	•
•	•	•	•	٠	•	•	•	/	•		•		•	•	7
•		•	17	٠	/•	1	•	/•	•		•		•	•	/•
•		•		•		/•		•	• /	•		•	•	1	•
•	•	•	•	٠	•	•	•	•	•	•	•	-	•	/•	•
•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•
•	•	•	•	٠	•	•	•	•	٠	٠	٠	•	•	•	•

upsampling magnification downsampling minification

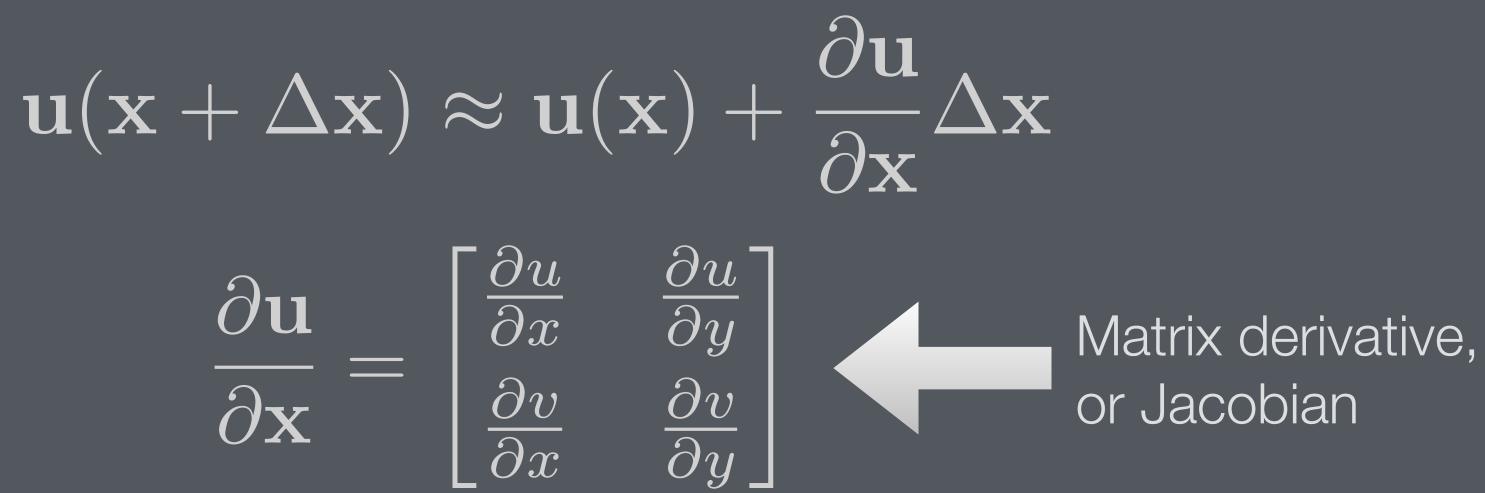
How to get a handle on pixel footprint

We have a nonlinear mapping to deal with

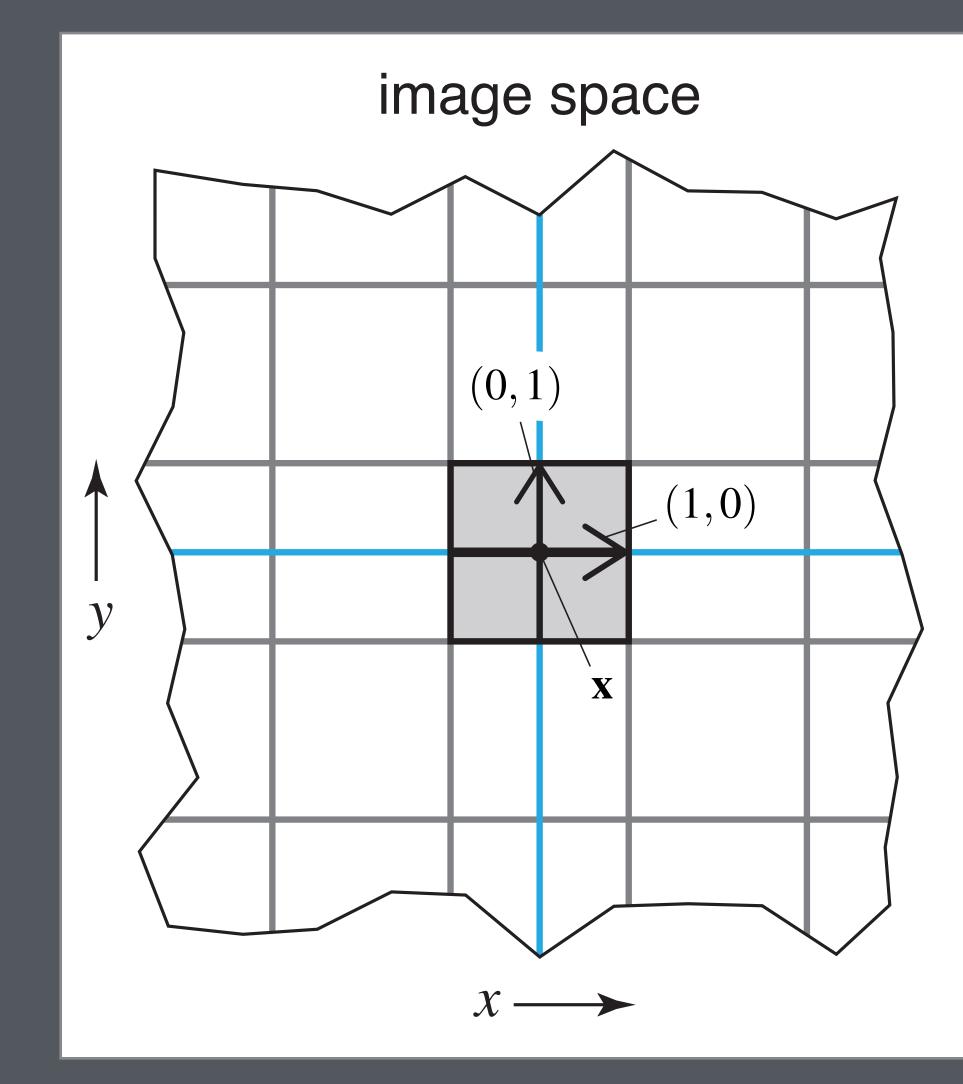
- · image position as a function of texture coordinates: $I\!\!R^2 o I\!\!R^2: \mathbf{u} \mapsto \mathbf{x}(\mathbf{u})$
- but that is too hard •

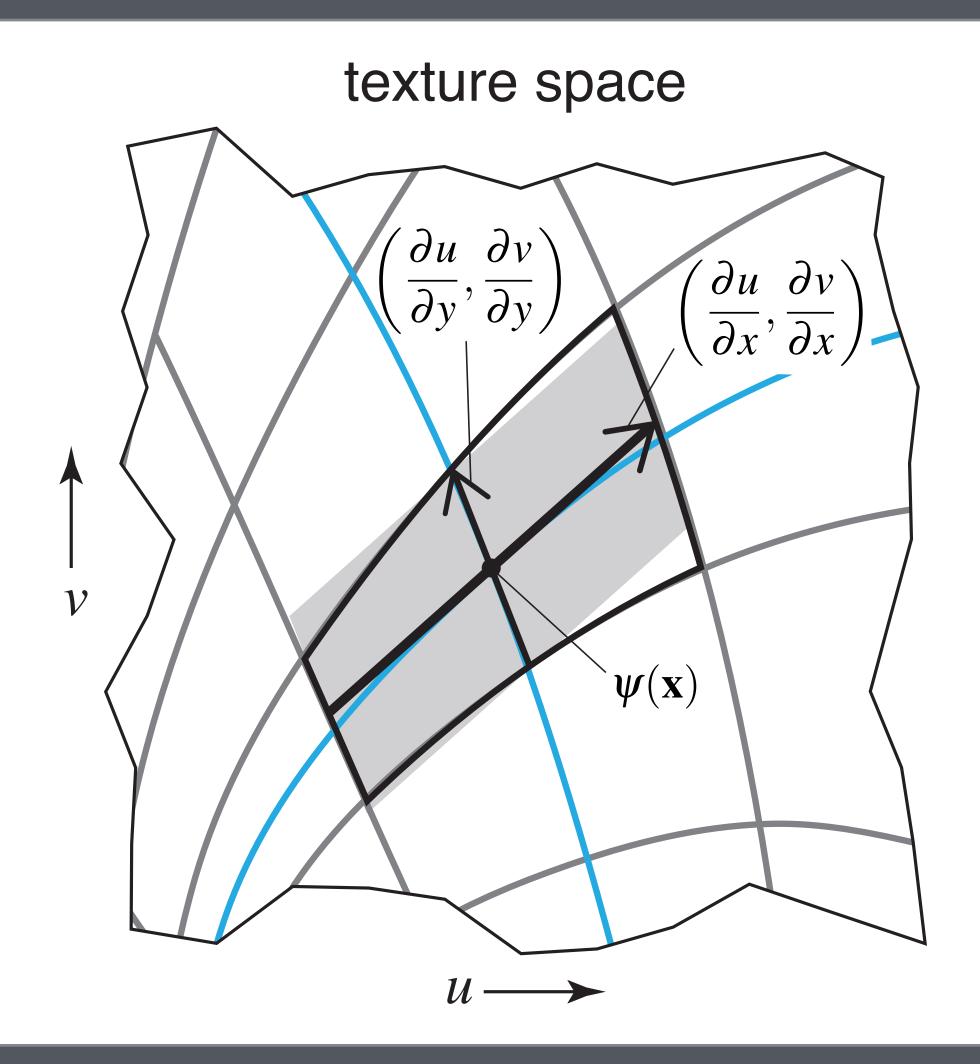
Instead use a local linear approximation

• hinges on the derivative of $\mathbf{u} = (u,v)$ wrt. $\mathbf{x} = (x,y)$



Sizing up the situation with the Jacobian





How to tell minification from magnification

Difference is the size of the derivative

- but what is "size"?
- area: determinant of Jacobian: $\left| \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right|$
- max-stretch: 2-norm of Jacobian (requires a singular-value computation)
- Frobenius norm of matrix (RMS of 4 entries, easy to compute)
- max dimension of bounding box of quadrilateral footprint: max-abs of 4 entries (conservative)

Take your pick; magnification is when size is more than about 1

Solutions for Minification

For magnification, use a good image interpolation method

- bilinear (usual) or bicubic filter (fancier, smoother) are good picks
- nearest neighbor (box filter) will give you Minecraft-style blockies

For minification, use a good sampling filter to average

- box (simple, though not usually easier)
- gaussian (good choice)

Challenge is to approximate the integral efficiently!

- mipmaps
- multi-sample anisotropic filtering (based on mipmap)

Mipmap image pyramid

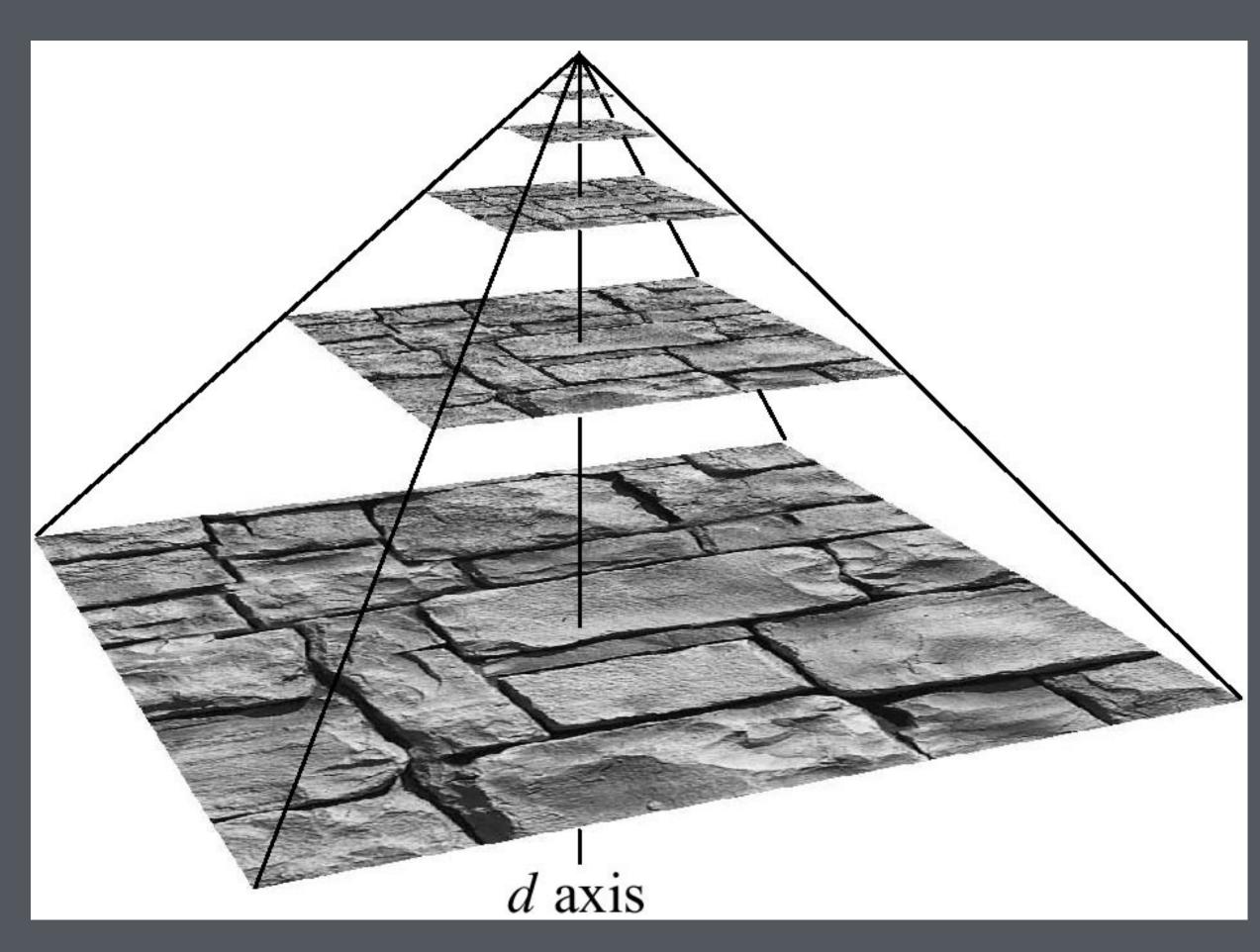
MIP Maps

- Multum in Parvo: Much in little, many in small places
- Proposed by Lance Williams

Stores pre-filtered versions of texture

Supports very fast lookup

• but only of circular filters at certain scales



Given derivatives: what is level?

Need to reduce the matrix to a single number

- aka. choosing a matrix norm; several choices available with different tradeoffs
- elementwise max partial derivative: •

$$l = \log \left[\max \left(\left| \frac{\partial u}{\partial x} \right|, \left| \frac{\partial v}{\partial x} \right|, \left| \frac{\partial u}{\partial y} \right| \right] \right]$$

root-mean-square of partial derivatives:

$$l = \log \sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2}$$

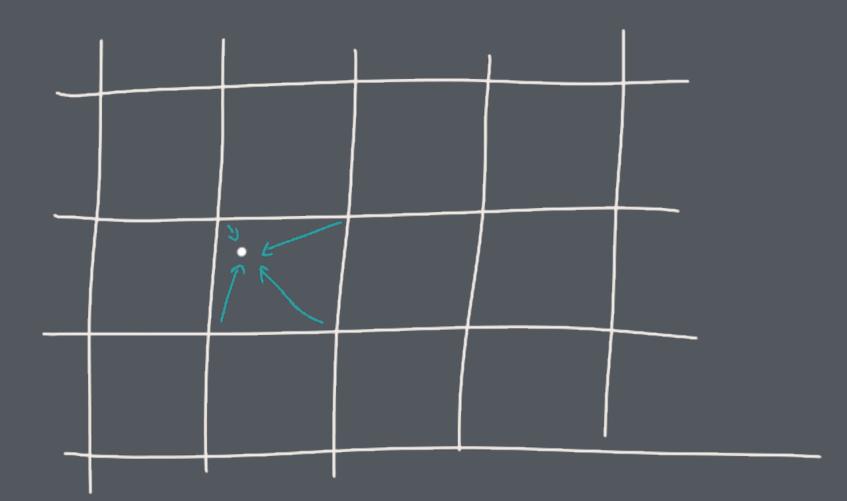
either way, you get a non-integer level at which to look up •

$$, \left| \frac{\partial v}{\partial y} \right| \Big) \Big]$$

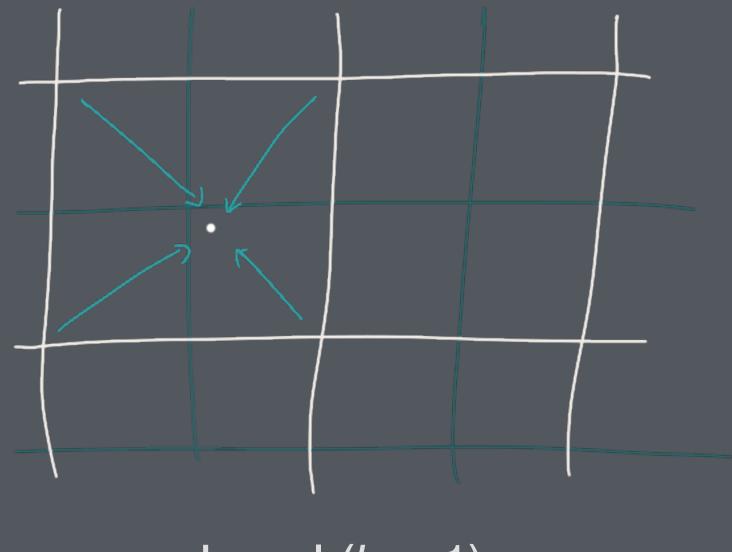
Using the MIP Map

In level, find texel and

- Return the texture value: point sampling (but still better)!
- Bilinear interpolation •
- Trilinear interpolation



Level k

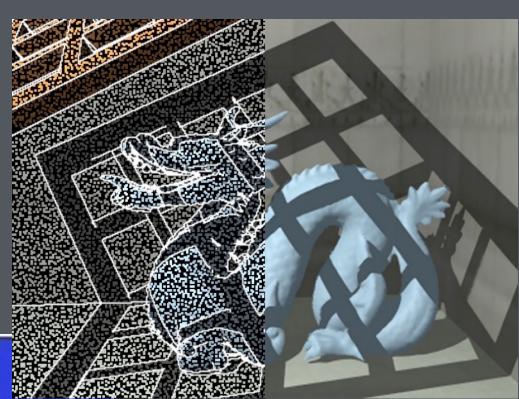


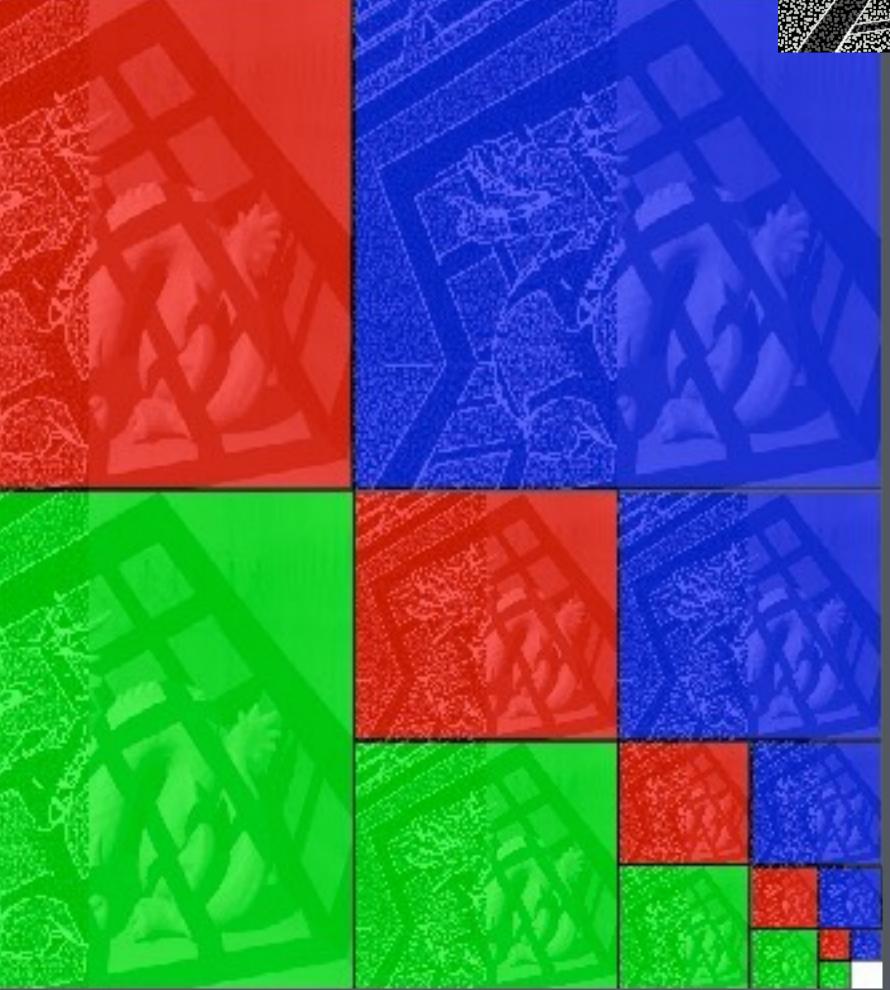
Level (k + 1)

Memory Usage

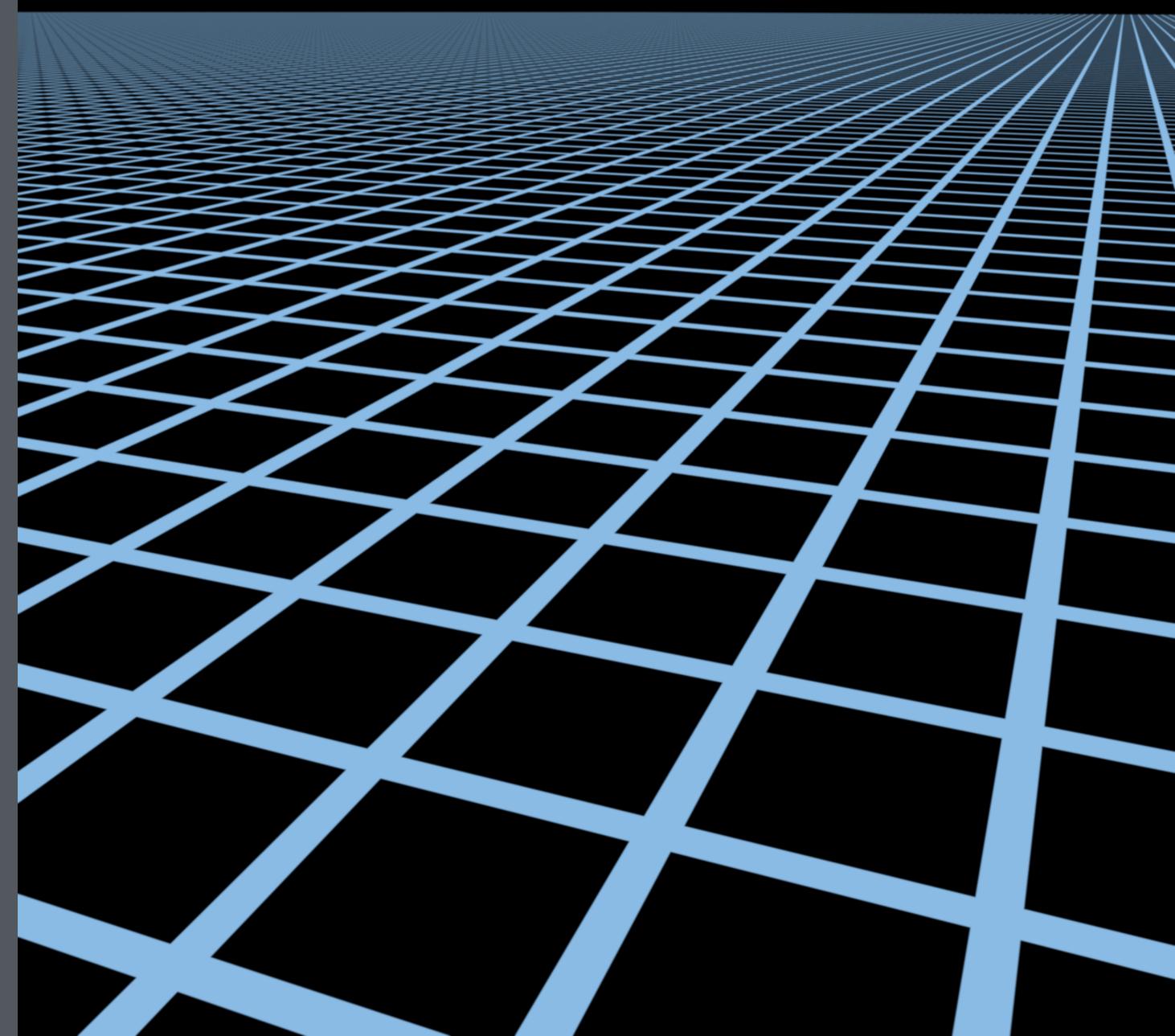
What happens to size of texture?

- level 1 takes 1/4 the memory of level 0
- level 2 takes 1/16, etc.
- in total, adds 1/3 to the storage requirements

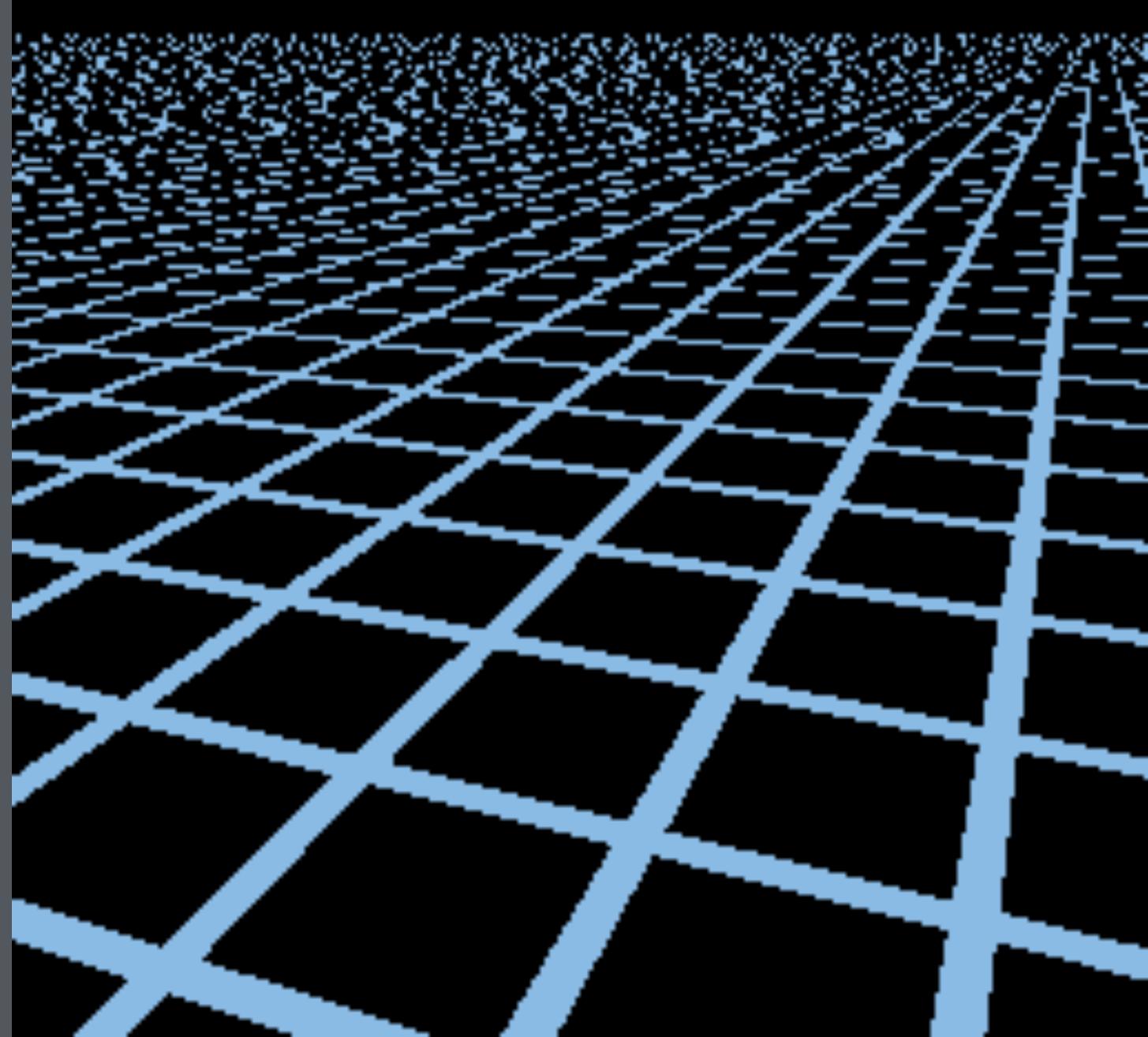




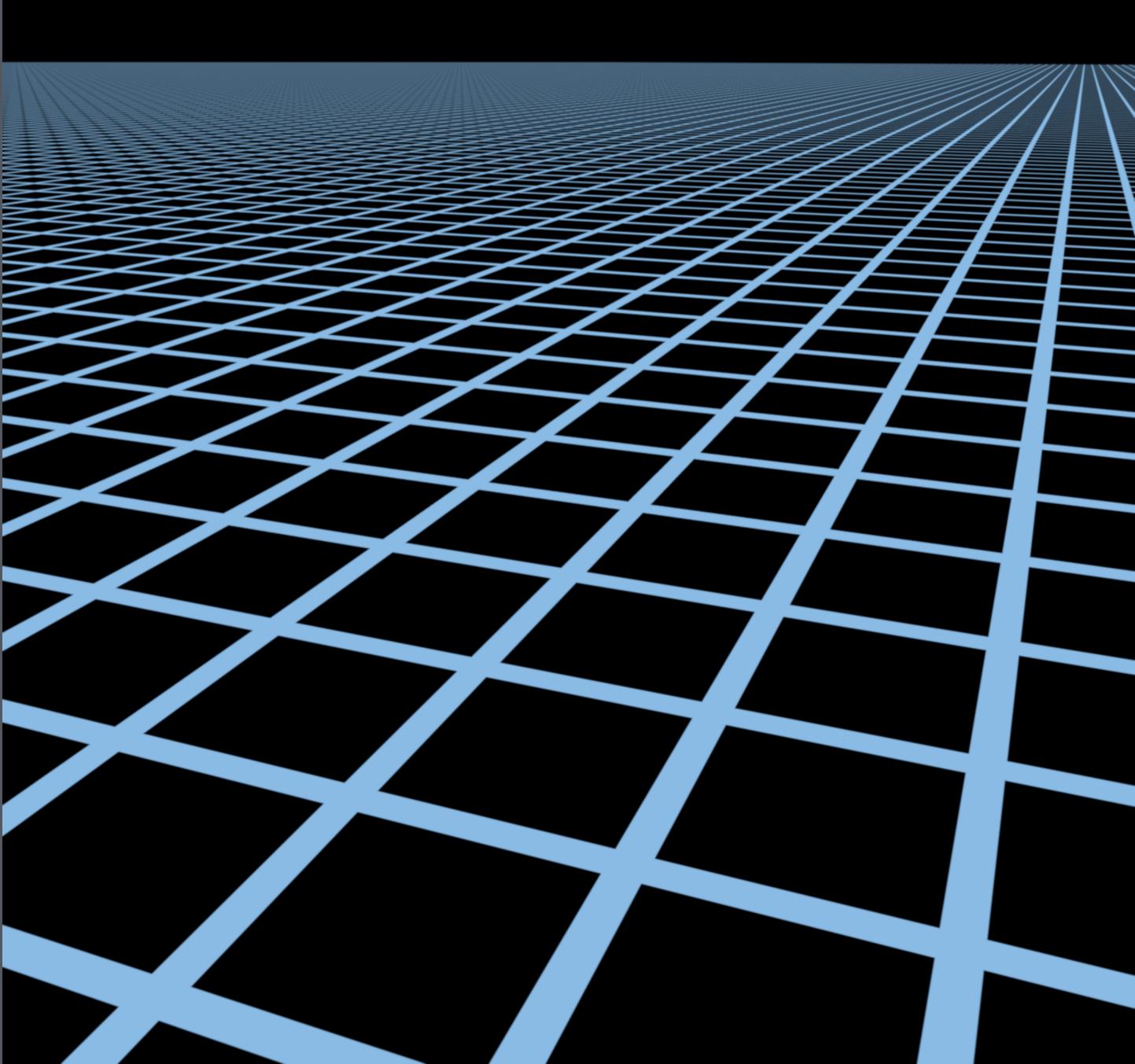
Point sampling



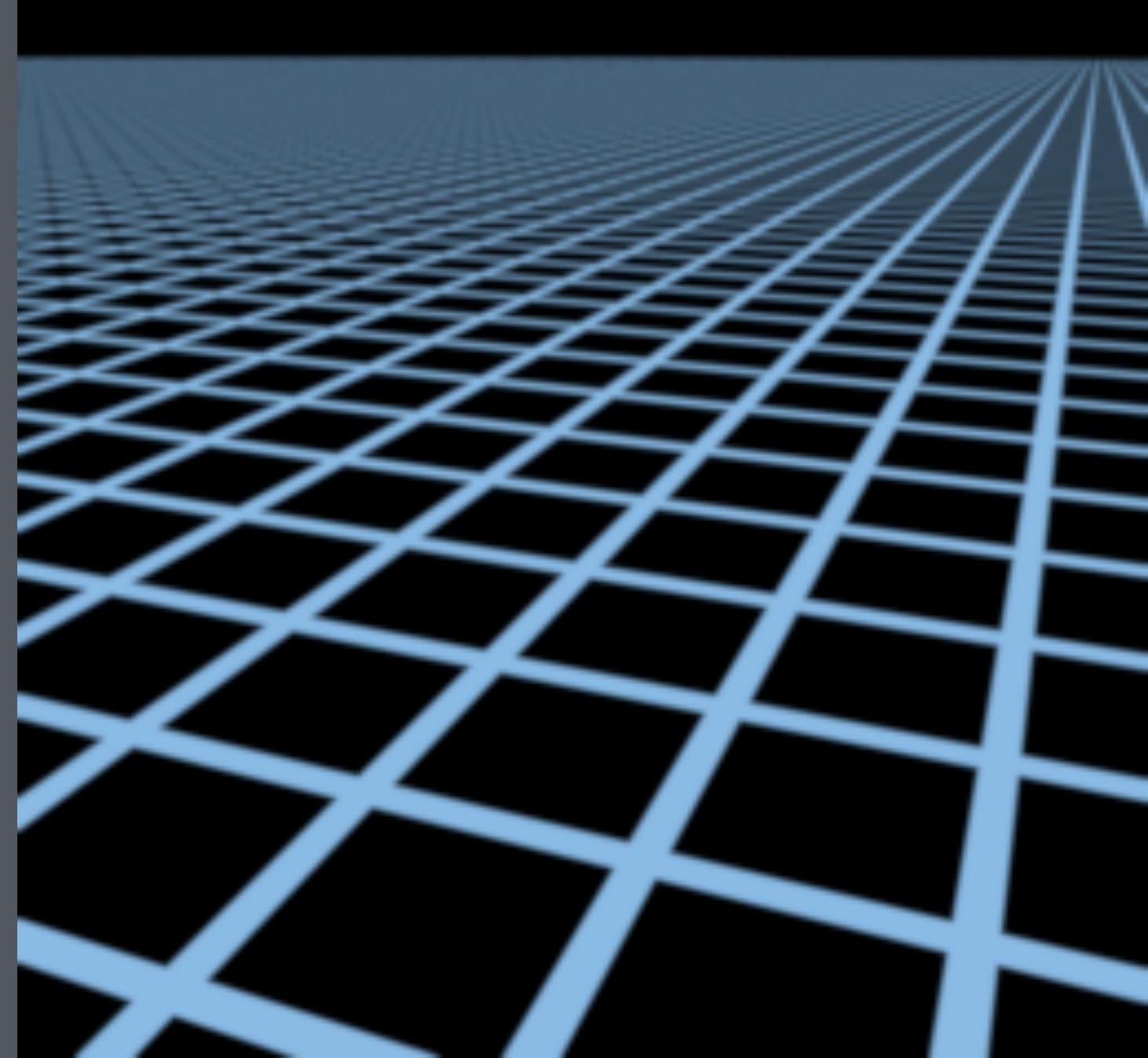
Point sampling



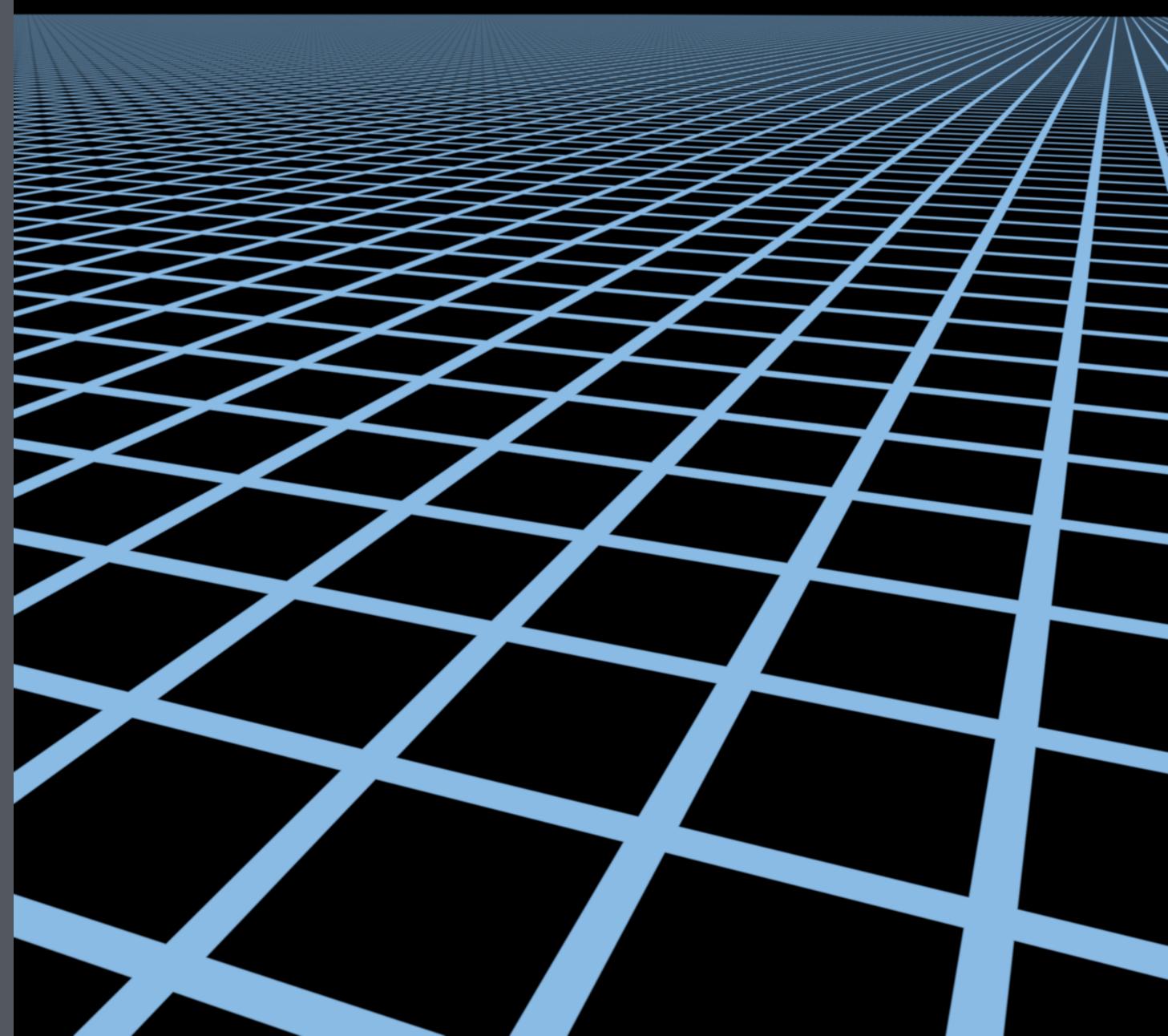
Reference: gaussian sampling by 512x supersampling



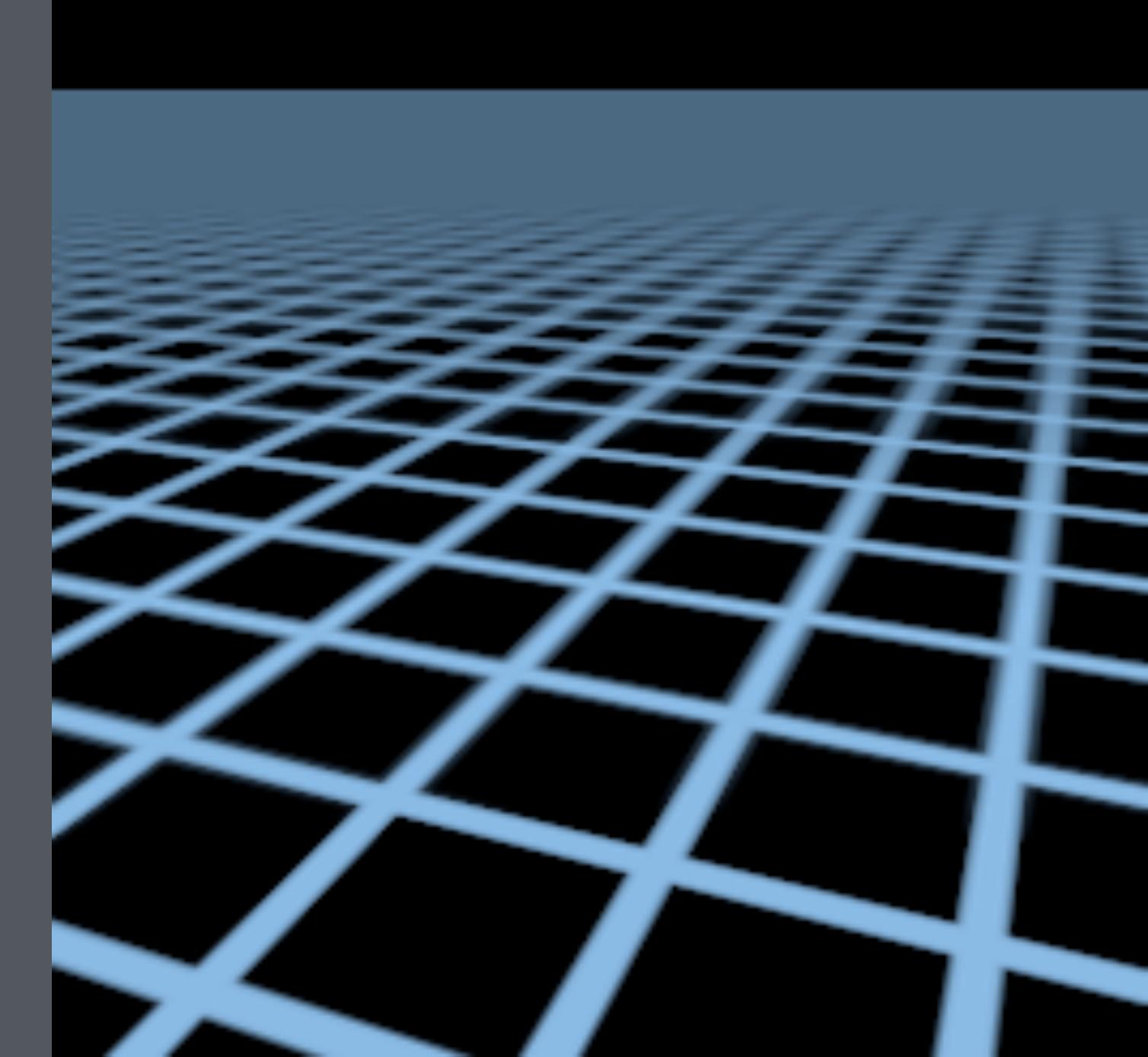
Reference: gaussian sampling by 512x supersampling



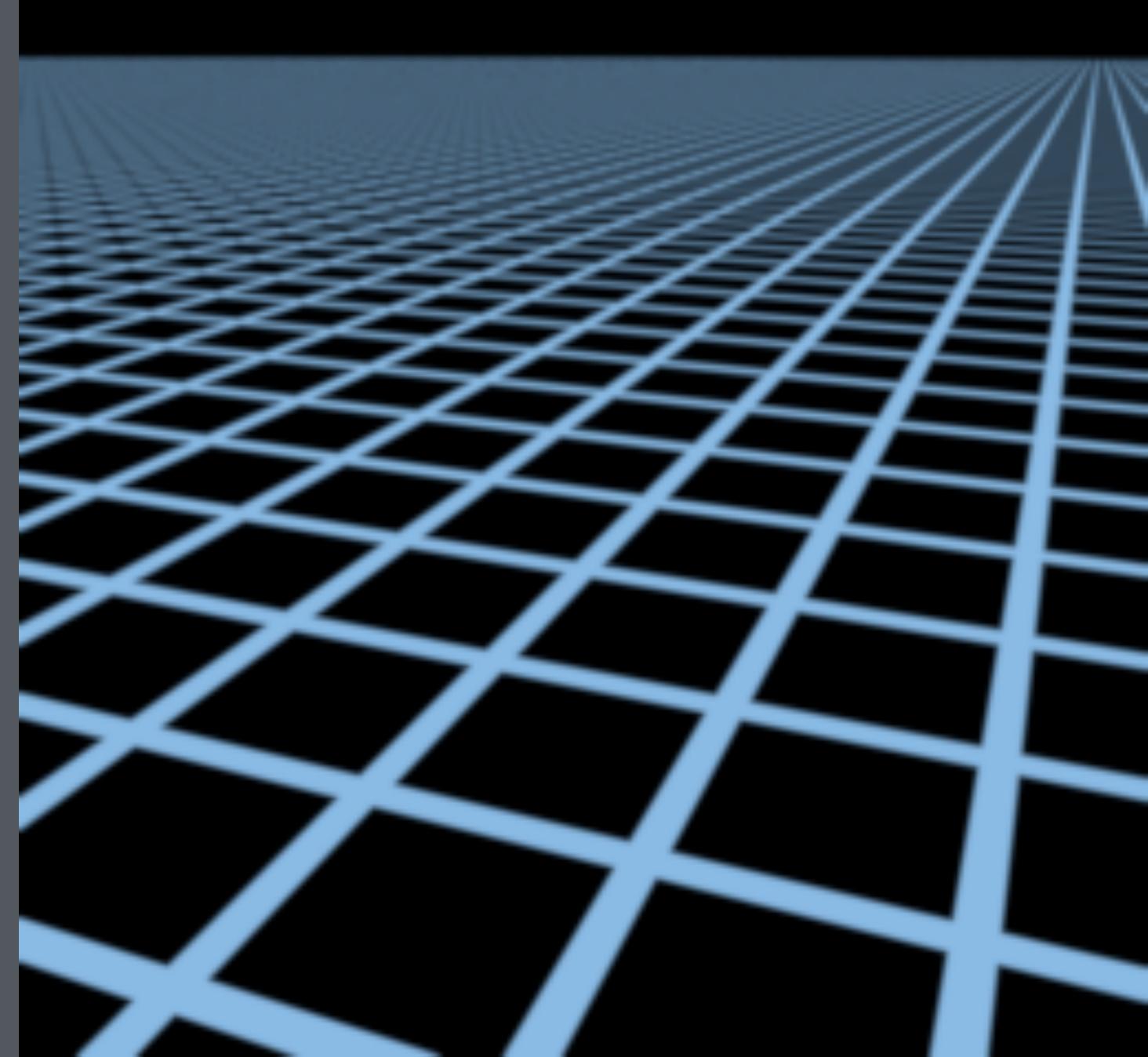
Texture minification with a mipmap



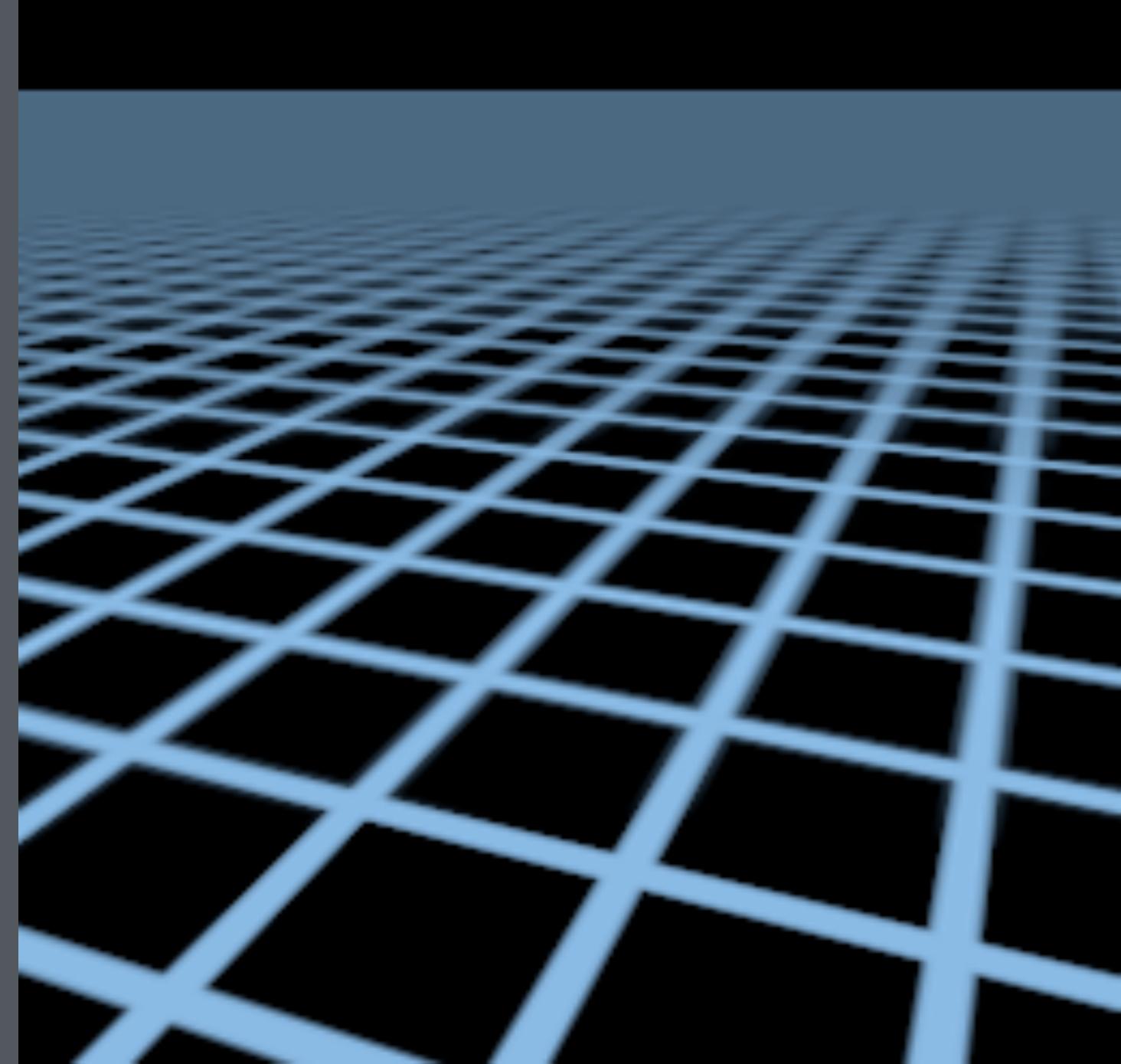
Texture minification with a mipmap



Texture minification: supersampling vs. mipmap



Texture minification: supersampling vs. mipmap



EWA filtering (attributed to Greene & Heckbert, but they didn't work out the MIP map part)

Treat pixel as circular

• e.g. Gaussian filter

Use linear apx. for distortion

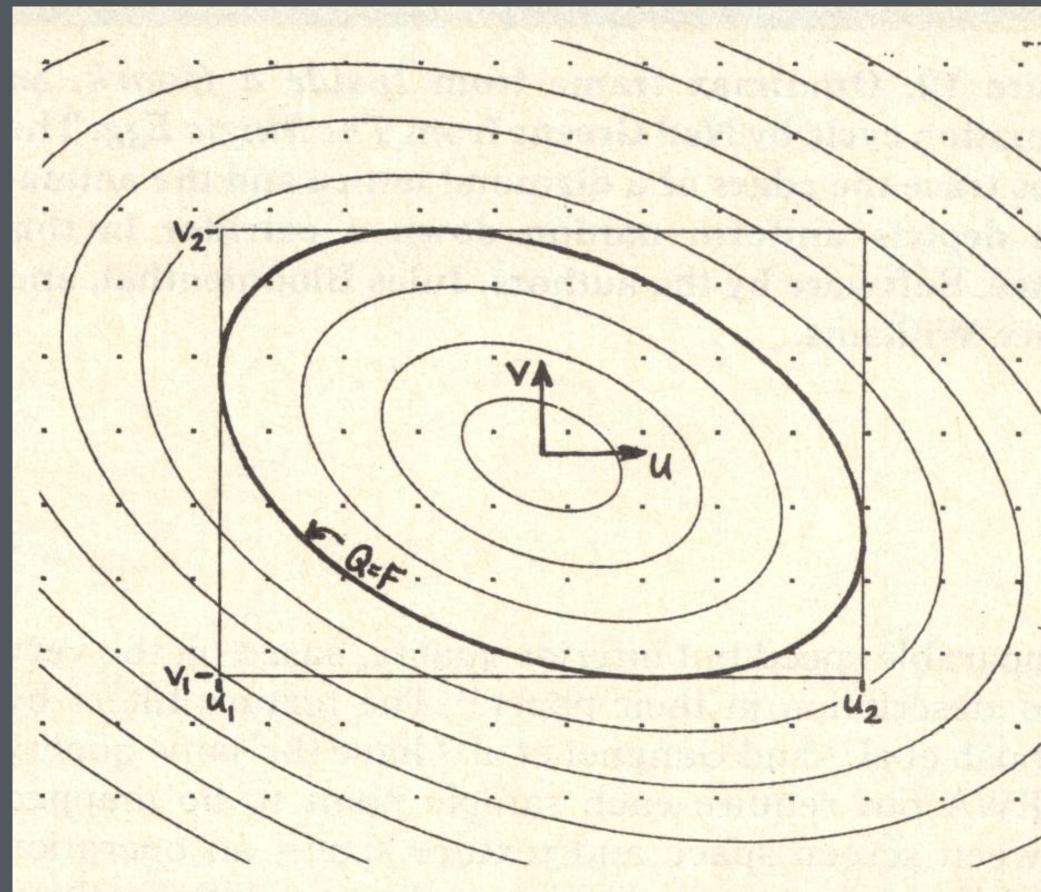
- circular pixel maps to elliptical footprint
- ellipse dimensions calc'd from quadratic

Loop over texels inside ellipse

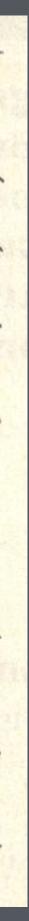
- actually over bounding rect
- weight by filter value and accumulate

Select appropriate MIP map level

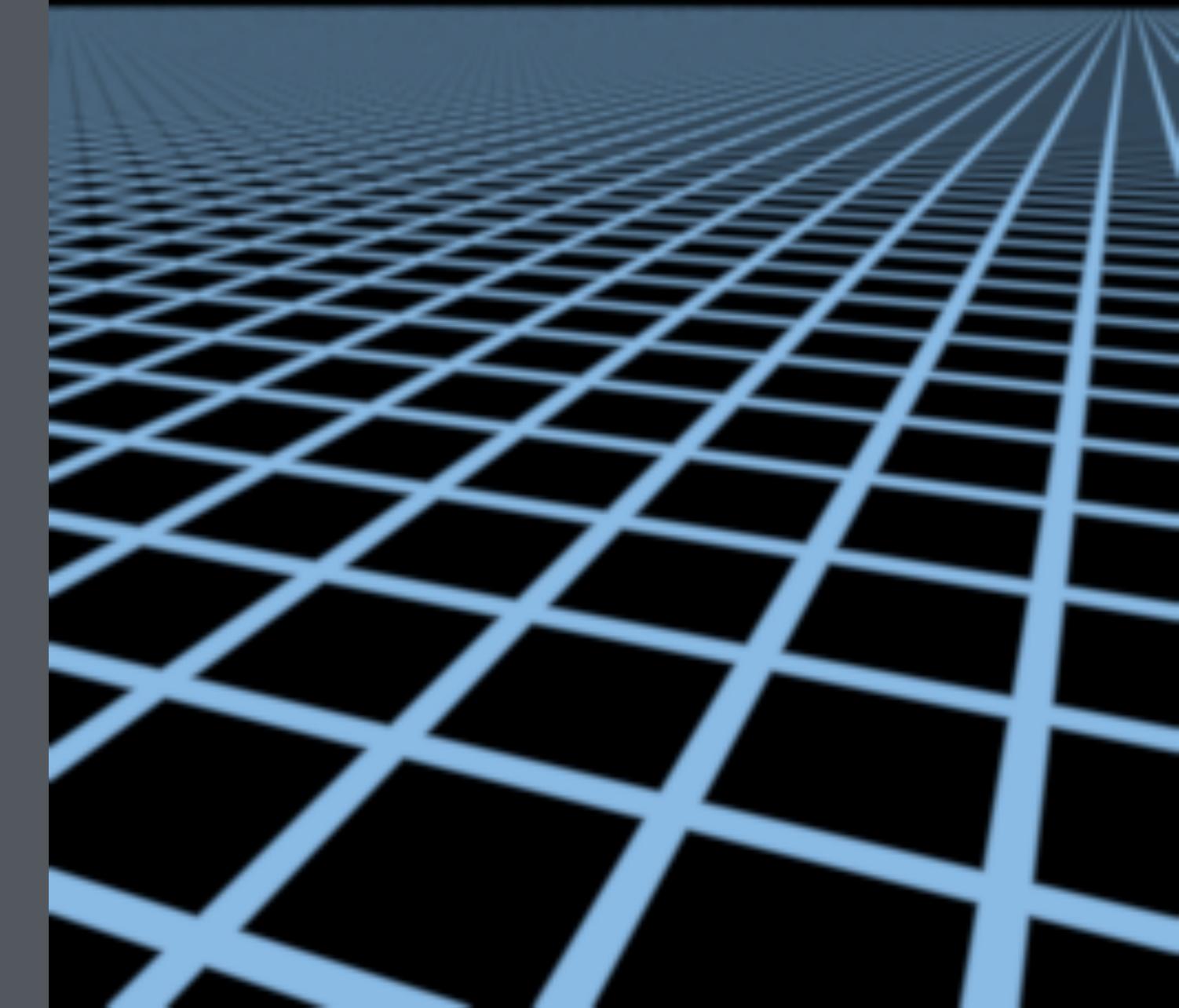
• so that minor radius is 1–2 texels



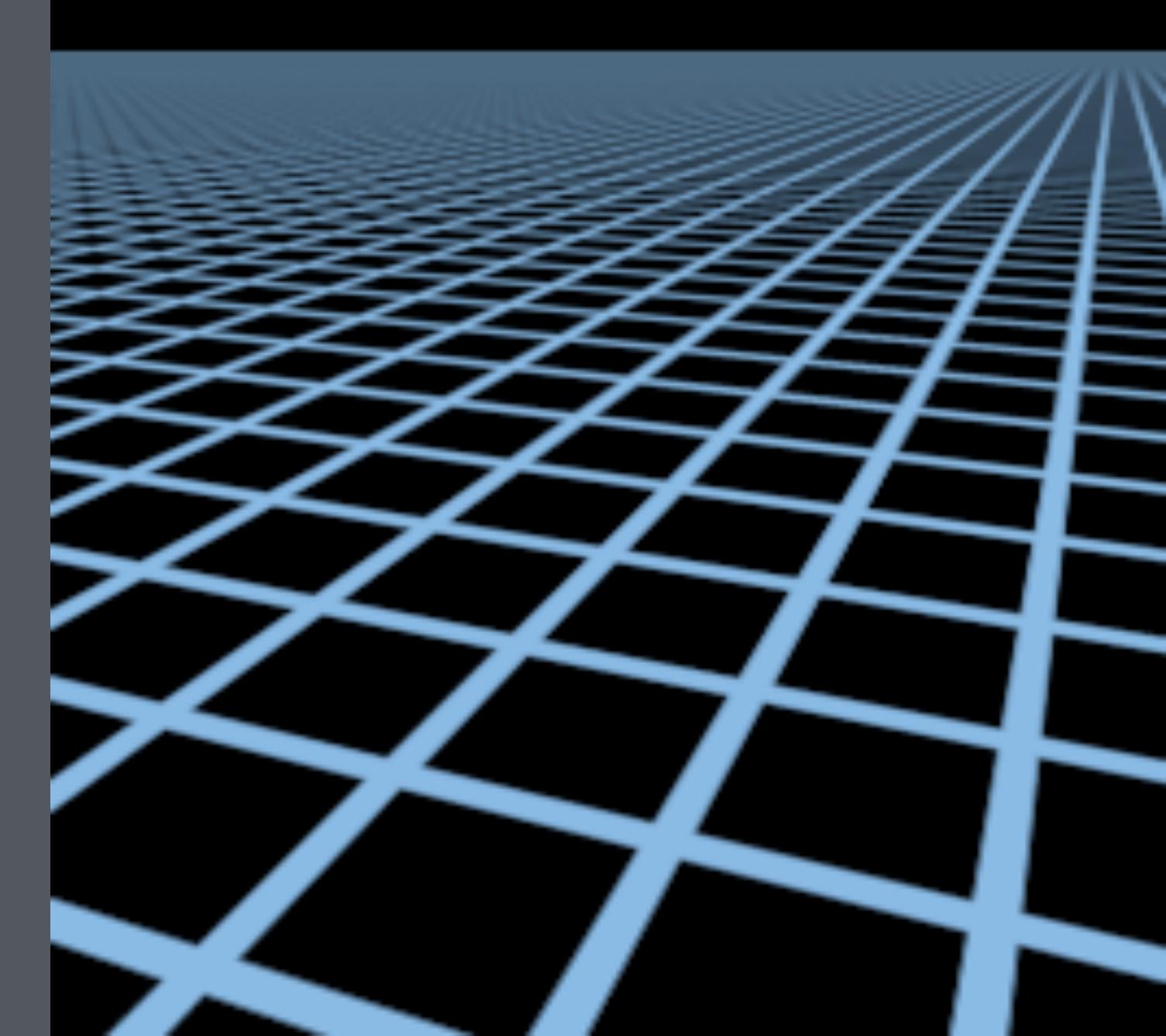
Greene & Heckbert '86



Texture minification: supersampled vs. EWA



Texture minification: supersampled vs. EWA



Simpler anisotropic MIP mapping

EWA requires a lot of lookups for diagonally oriented footprints

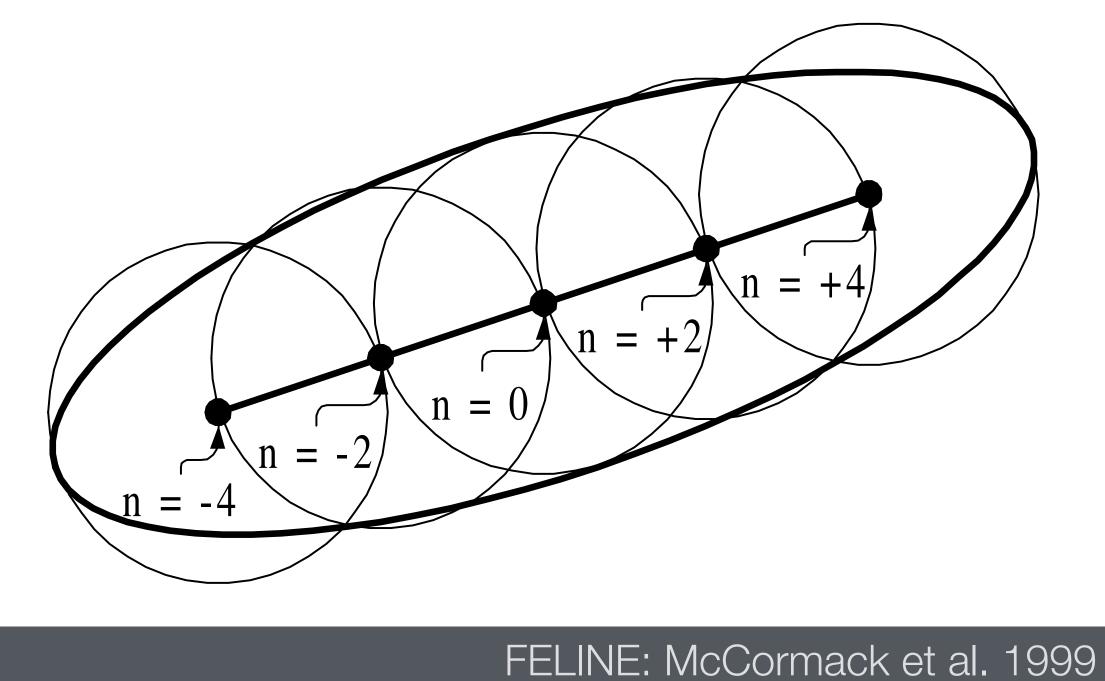
Instead, approximate your footprint as a single line of blobs

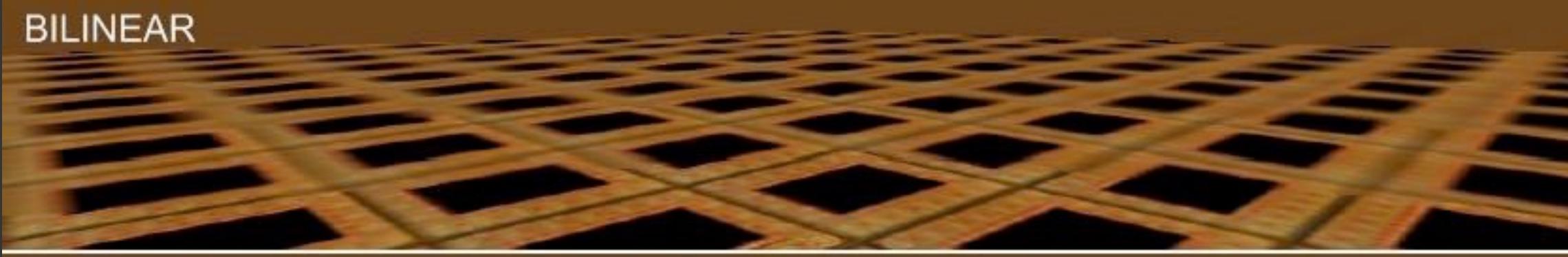
Number of samples proportional to major:minor axis ratio

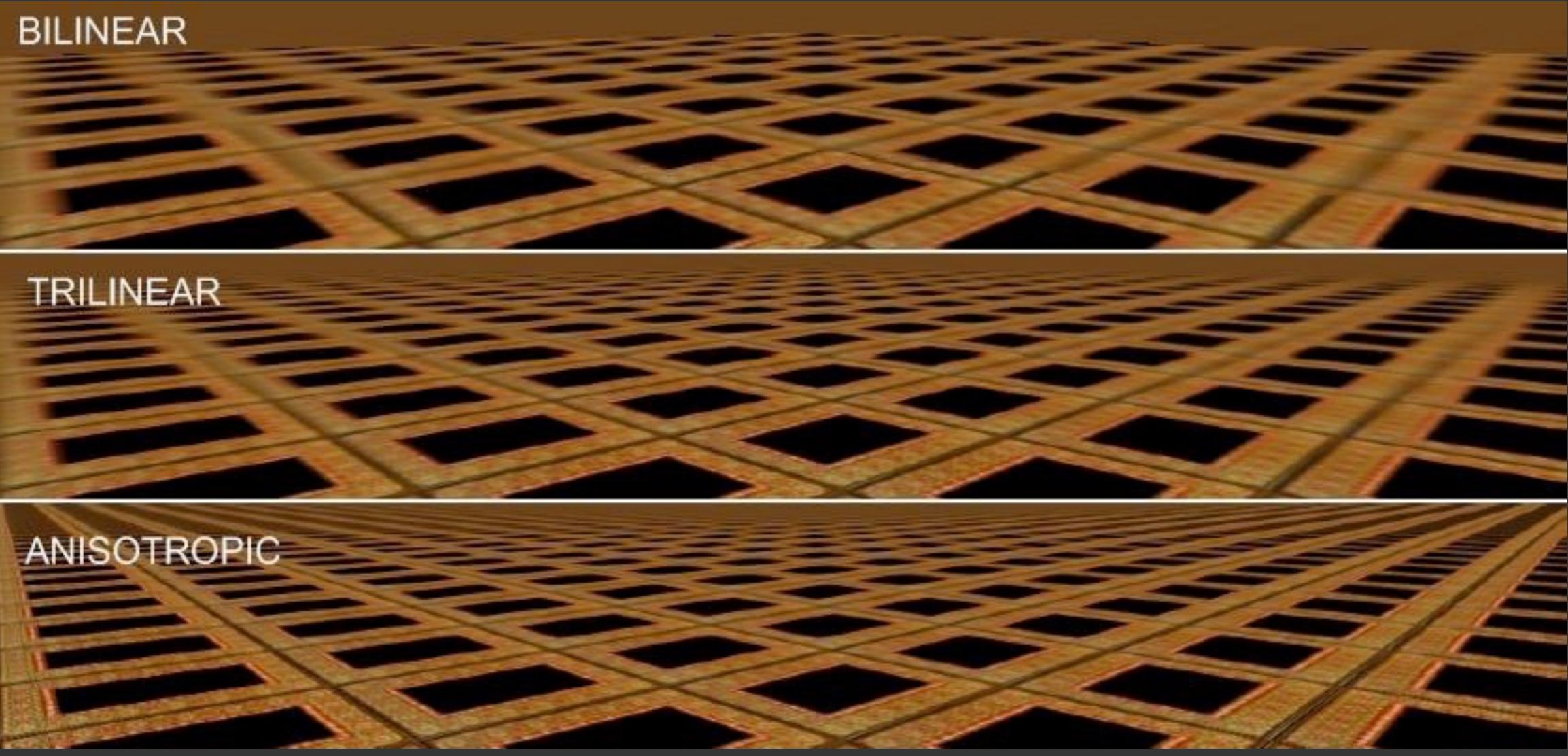
 with some limit to bound slowness in extreme cases

This is the kind of method used when GPU says it uses "16x anisotropic texture sampling"

• each blob is produced by taking a single bilinear sample using the standard MIP map







slide courtesy of Kavita Bala, Cornell University

Filtering normal maps

Normal (or bump) maps can produce aliasing too

- shiny surface => color very sensitive to normal
- normal swings around faster as camera moves away => high contrast, high detail image

Filtering the normal map does the wrong thing

- shiny, bumpy surface at a distance becomes a shiny smooth surface
- microfacet theory tells us the non-resolved bumps produce a rough surface appearance

Normal map filtering is about producing appropriate BRDF at large scales

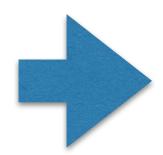
- bumps filtered away, replaced by roughness
- surfaces can become anisotropic depending on normal map content

LEAN Mapping

Linear Efficient Anisotropic Normal Mapping A practical and efficient normal map antialiasing approch Key ideas:

(rather than changing the shading frame)

$$e^{-\frac{1}{2}\tilde{h}_b^T\Sigma^{-1}\tilde{h}_b}$$



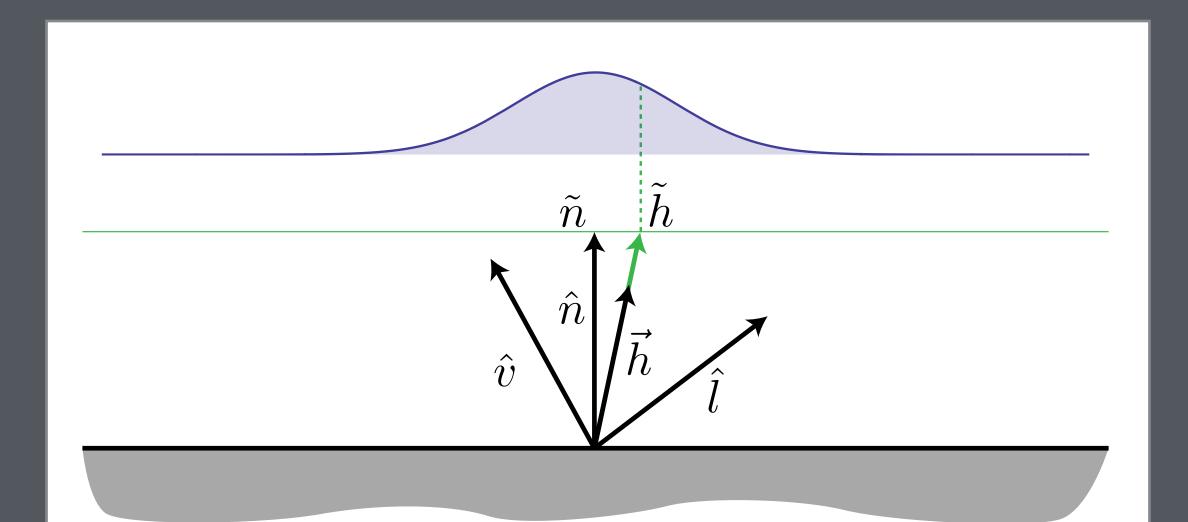
- Use Gaussians for the NDFs

Approximate normal mapping as defining a shifted normal distribution function (NDF)

$$e^{-\frac{1}{2}(\tilde{h}_n - \tilde{b}_n)^T \Sigma^{-1}(\tilde{h}_n - \tilde{b}_n)}$$

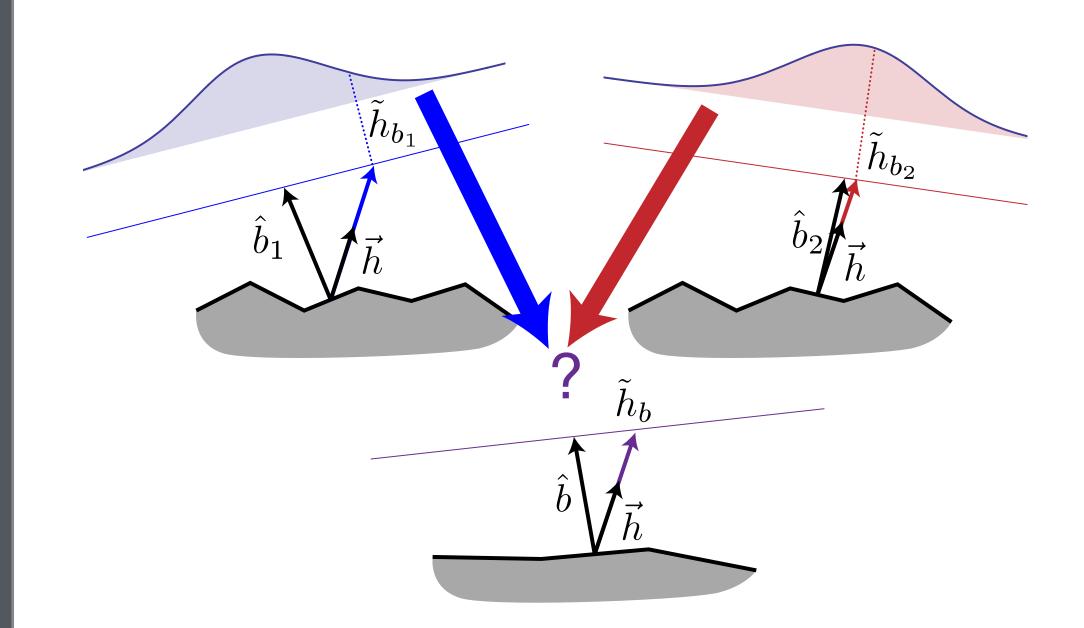
• Approximate the sum of multiple Gaussians by adding the first and second moments

LEAN Mapping

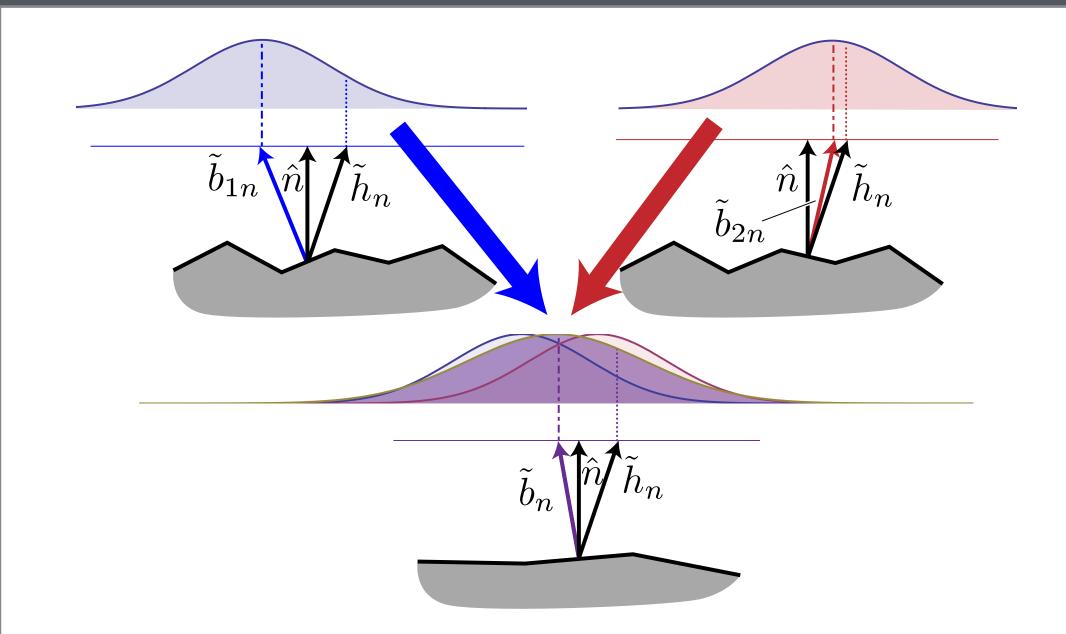


an NDF in tangent-vector space

LEAN Mapping



combining two centered NDFs in different tangent spaces



combining two off-center NDFs in a common tangent space

LEAN mapping bottom line [Olano & Baker 2010] Given normals from a normal map:

$$N = (\vec{b}_n \cdot x, \ \vec{b}_n \cdot y, \ \vec{b}_n \cdot z)$$

Store the following in the base level texture:

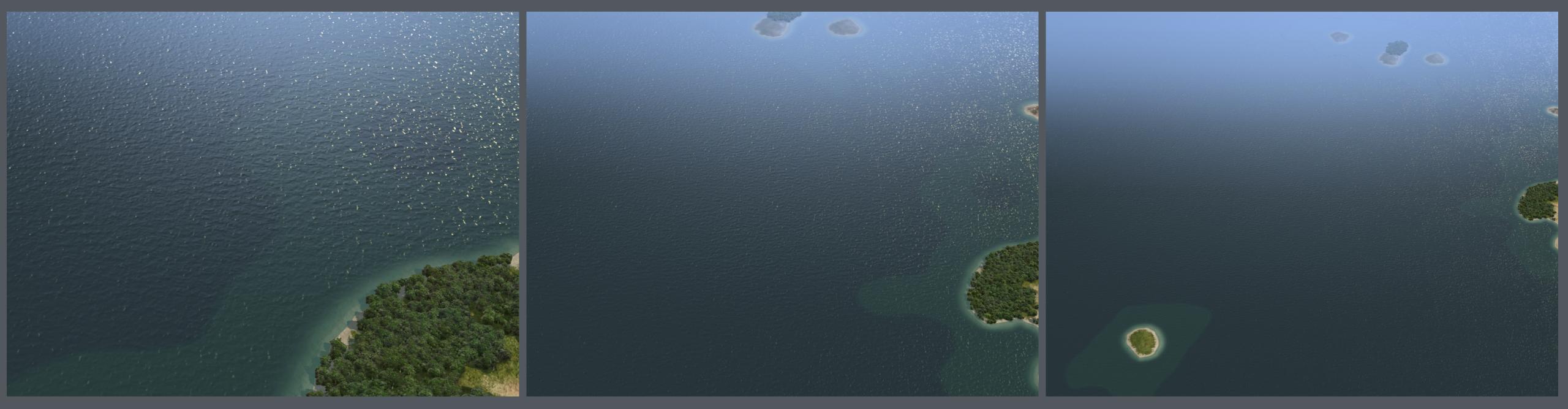
$$B = (\tilde{b}_n . x, \ \tilde{b}_n . y)$$
$$M = (\tilde{b}_n . x^2, \ \tilde{b}_n . y^2, \ \tilde{b}_n . x \ \tilde{b}_n . y)$$

Allow the textures B and M to be filtered by the MIP map machinery, then at shading time use an NDF defined by the mean B and the covariance:

$$\Sigma = \begin{bmatrix} M.x - B.x * B.x & M.z - B.x \\ M.z - B.x * B.y & M.y - B.y \end{bmatrix}$$

$$(\tilde{b}_n.x,\tilde{b}_n.y) = (\vec{b}_n.x/\vec{b}_n.z,\vec{b}_n.y/\vec{b}_n.z)$$

*B.y*B.y|



LEAN mapping [Olano & Baker I3D 2010]

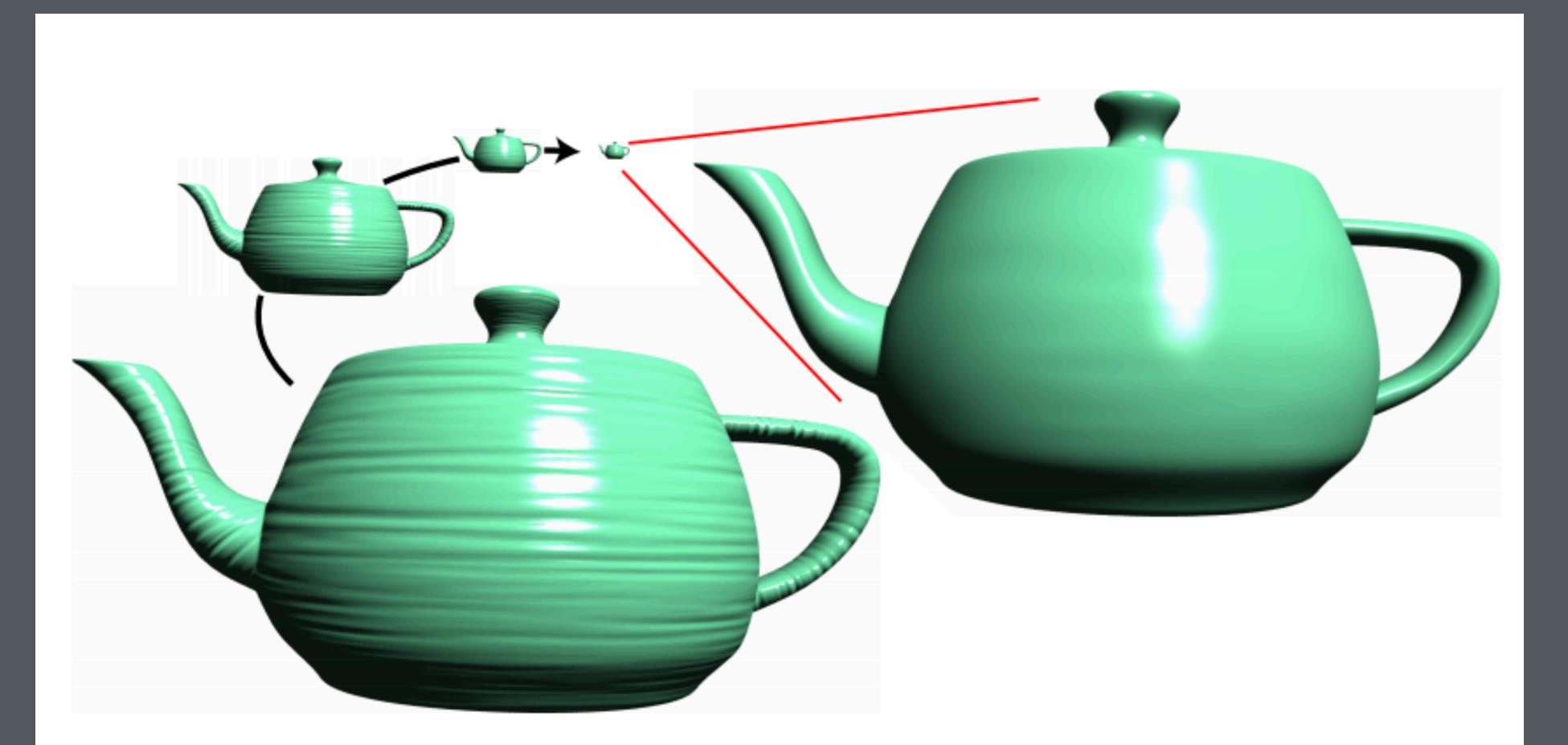
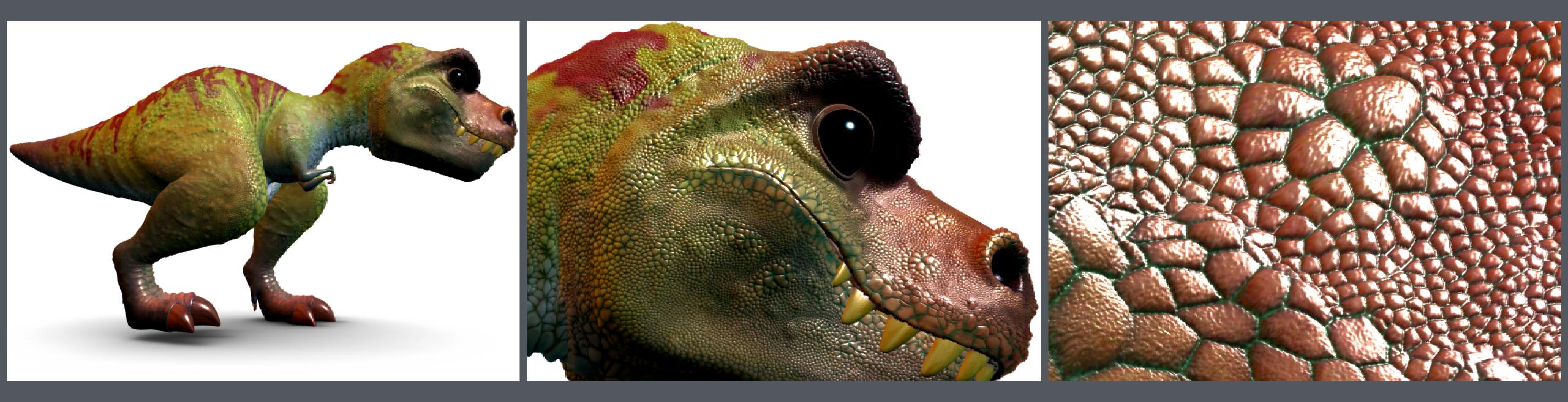


Figure 13: Anisotropic bump pattern as a model moves away.

LEAN mapping [Olano & Baker I3D 2010]



LEADR mapping [Dupuy et al. SIGGRAPH 2013]