
CS5625 Lecture 12

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Antialiasing

1

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Aliasing

2

continuous image defined 
by ray tracing procedure

continuous image defined 
by a bunch of black rectangles

point sampling a 
continuous image:

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Signal processing view

3

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Signal processing view

3

we need to remember this step

• A name for techniques to prevent aliasing
• In image generation, we need to filter

– Convolve continuous image with a sampling filter
– Simple: average the image over an area (box filtering)
– Better: weight by a smoother filter

• Methods depend on source of image
– Rasterization (lines and polygons)
– Point sampling (e.g. raytracing)
– Texture mapping

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Antialiasing

4

• Define line as a
rectangle

• Specify by two
endpoints

• Ideal image: black
inside, white outside

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Rasterizing lines

5

• Define line as a
rectangle

• Specify by two
endpoints

• Ideal image: black
inside, white outside

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Rasterizing lines

5

• Approximate
rectangle by drawing
all pixels whose
centers fall within
the line

• Problem: all-or-
nothing leads to
jaggies
– this is sampling with

no filter (aka. point
sampling)

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Point sampling

6

• Approximate
rectangle by drawing
all pixels whose
centers fall within
the line

• Problem: all-or-
nothing leads to
jaggies
– this is sampling with

no filter (aka. point
sampling)

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Point sampling

6

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Point sampling
in action

7

• Point sampling is fast and simple
• But the lines have stair steps and variations in width
• This is an aliasing phenomenon

– Sharp edges of line contain high frequencies

• Introduces features to image that are not 
supposed to be there!

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Aliasing

8

• Point sampling makes an all-or-nothing choice in each pixel
– therefore steps are inevitable when the choice changes
– yet another example where discontinuities are bad

• On bitmap devices this is necessary
– hence high resolutions required
– 600+ dpi in laser printers to make aliasing invisible

• On continuous-tone devices we can do better

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Antialiasing

9

• Basic idea: replace “is
the image black at
the pixel center?”
with “how much is
pixel covered by
black?”

• Replace yes/no
question with
quantitative question.

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Antialiasing

10

• Pixel intensity is proportional to area of overlap with
square pixel area

• Also called “unweighted area averaging”

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Box filtering

11

• Compute coverage
fraction by counting
subpixels

• Simple, accurate
• But slow

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Box filtering by supersampling

12

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Box filtering
in action

13

• Box filtering problem: treats area near edge same as area
near center
– results in pixel turning on “too abruptly”

• Alternative: weight area by a smooth function
– unweighted averaging corresponds to using a box function
– a gaussian is a popular choice of smooth filter
– important property: normalization (unit integral)

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Weighted filtering

14

• Compute filtering
integral by summing
filter values for
covered subpixels

• Simple, accurate
• But really slow

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Weighted filtering by supersampling

15

• Compute filtering
integral by summing
filter values for
covered subpixels

• Simple, accurate
• But really slow

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Weighted filtering by supersampling

15

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Gaussian filtering
in action

16

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Filter comparison

17

Point sampling Box filtering Gaussian filtering

• Filter integral is the
same for pixels the
same distance from
the center line

• Just look up in
precomputed table
based on distance
– Gupta-Sproull

• Some additional
details at ends…

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

More efficient antialiased lines

18

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Antialiasing in ray tracing

19

aliased image

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Antialiasing in ray tracing

20

aliased image

one sample per pixel

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Antialiasing in ray tracing

21

antialiased image

four samples per pixel

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Antialiasing in ray tracing

22

one sample/pixel 9 samples/pixel

• Supersampling is terribly expensive
• GPUs use an approximation called multisampling

– Compute one shading value per pixel
– Store it at many subpixel samples, each with its own depth

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Supersampling vs. multisampling

23

• Each fragment carries several (color,depth) samples
– shading is computed per-fragment
– depth test is resolved per-sample
– final color is average of sample colors

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022

Multisample rasterization

24

[h
tt

p:
//w

w
w

.le
ar

no
pe

ng
l.c

om
]

single- 
sample

multi- 
sample

http://www.learnopengl.com

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022 25CS248 Lecture 6 Kurt Akeley, Fall 2007

Multisample implementation (n samples)

Vertex assembly

Primitive assembly

Rasterization

Fragment operations

Display

Vertex operations

Application

Primitive operations

struct {
float x,y,z,w;
float r,g,b,a;

} vertex;

struct {
vertex v0,v1,v2

} triangle;

struct {
short x,y;
bool mask[n];
float depth[n];
float r,g,b,a;

} fragment;

struct {
short R,G,B;
int depth[n];
byte r[n],g[n],b[n];

} pixel;

Frame buffer

Point sampling at
multisample locations
sets mask and
computes depths.
Color is taken from
center-most sample.

Fragment samples are
depth-merged into the
multisample buffer,
then filtered to the
color buffer.

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022 26CS248 Lecture 6 Kurt Akeley, Fall 2007

Multisample rasterization operations

Fragment selection

! Identify pixels for which fragments are to be generated

! New: generate fragment if any sample is within the
primitive

! Requires tiled sampling, rather than point sampling

! Generates more fragments

Attribute assignment

! Assign attribute values to each fragment

! Sample color at the center of the pixel (as before)

! New: compute the Boolean per-sample coverage mask

! True if-and-only-if the sample is within the primitive

! New: compute depth values for each sample location

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022 27CS248 Lecture 6 Kurt Akeley, Fall 2007

Point-sampled fragment selection

Generate fragment if pixel center is inside triangle

Implements point-sampled aliased rasterization

9 fragments generated

© 2022 Steve Marschner •
(with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Cornell CS5625 Spring 2022 28CS248 Lecture 6 Kurt Akeley, Fall 2007

Tiled fragment selection

Generate fragment if unit square intersects triangle

Implements multisample rasterizations

! 4x4 sample pattern with unit-square filter extent

21 fragments generated

