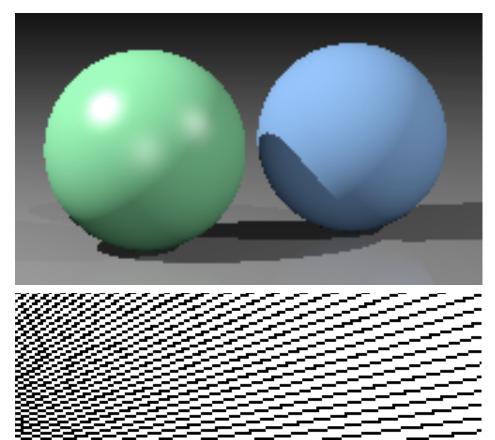
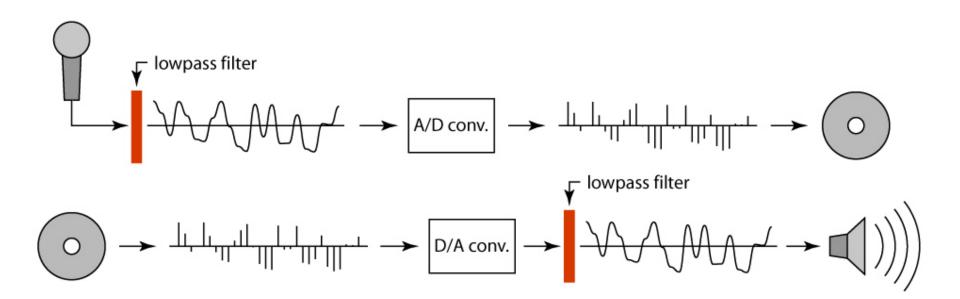
Antialiasing

CS5625 Lecture 12

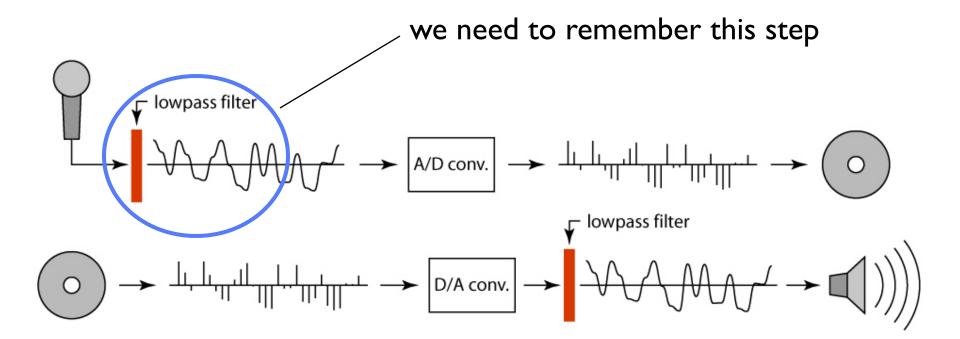
© 2022 Steve Marschner • I (with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)


Cornell CS5625 Spring 2022

Aliasing


point sampling a continuous image:

continuous image defined by ray tracing procedure


continuous image defined by a bunch of black rectangles

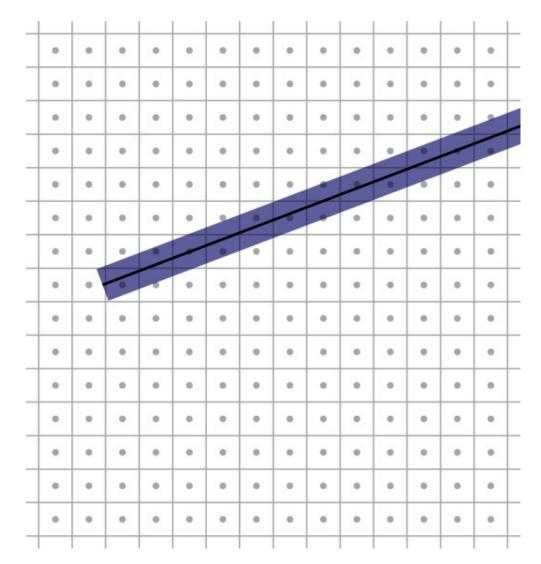
Signal processing view

Signal processing view

Cornell CS5625 Spring 2022

Antialiasing

- A name for techniques to prevent aliasing
- In image generation, we need to filter
 - Convolve continuous image with a sampling filter
 - Simple: average the image over an area (box filtering)
 - Better: weight by a smoother filter
- Methods depend on source of image
 - Rasterization (lines and polygons)
 - Point sampling (e.g. raytracing)
 - Texture mapping


Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside

0	•		•		0				•		•		
•	0						•	0		0		0	
•	•		•	•	•	•	•		•	•			
•		0	•		0	0	•					/	-
•		0	•		•		•	•	-	•			
0	0			•	•	•	-	•	•	•		0	
•			•			0		0					
•		-	•	•		•	•	0	•	•			
•	•	0				0		0					
•				•			•		•		•		
•		0											
•	•		•			•		0					
•			•	0			•			. 0	0	•	4
•	0			0			0	0	0	0	0	0	
					0								

Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside

Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: all-ornothing leads to jaggies
 - this is sampling with no filter (aka. point sampling)

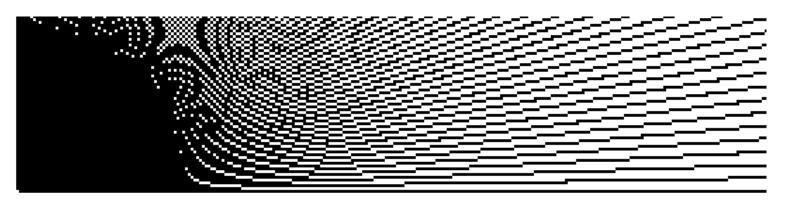
•	•	•	•		•		•	•	•			•	•
	.0		•		0			0	0	0			
•		•	•	0	•		•					•	-
•	•	•	•	0	•	0	•	•	•	•	•	~	
•		0		0	•		•		-	•	0	•	0
٠	0	0	•	•	9	•	-		•	0		•	
•		•	-	-	•	•	•	0			•		.0
•	•	•	-	•		0	•	•	•	0	•	•	
•		•	•	0		0		•			•	•	0
•		•	•		•		•		•		•	•	
•	0	•	•		•		•	•	•	0	•	•	
•				0	•		•	•	•		•	•	0
•			•		•	0	•	0	•			•	0
•		0		0					•		0		0
							0						

© 2022 Steve Marschner • 6 (with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: all-ornothing leads to jaggies
 - this is sampling with no filter (aka. point sampling)

•		•			•		•	•	•			•	
	0	•			0			0		0			
				0			•	0					0
•		0	•	0		0	•	0	•				
•		0	•	0	•	0	•				0		0
•	0	0			•					0		0	
•						0		0					.0
•				0			0	0	•				
•		0		0									0
•					•	0			•				
•	0							0					
		•		0			•	0					0
•			•	0	•	0	•	0	•				
•		0		0		0	0	0	•		0		0
•									•				


© 2022 Steve Marschner • 6 (with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Point sampling in action

© 2022 Steve Marschner • 7 I some slides borrowed from Kurt Akeley)

Aliasing

- Point sampling is fast and simple
- But the lines have stair steps and variations in width
- This is an aliasing phenomenon
 - Sharp edges of line contain high frequencies
- Introduces features to image that are not supposed to be there!

Antialiasing

- Point sampling makes an all-or-nothing choice in each pixel
 - therefore steps are inevitable when the choice changes
 - yet another example where discontinuities are bad
- On bitmap devices this is necessary
 - hence high resolutions required
 - 600+ dpi in laser printers to make aliasing invisible
- On continuous-tone devices we can do better

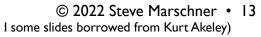
Antialiasing

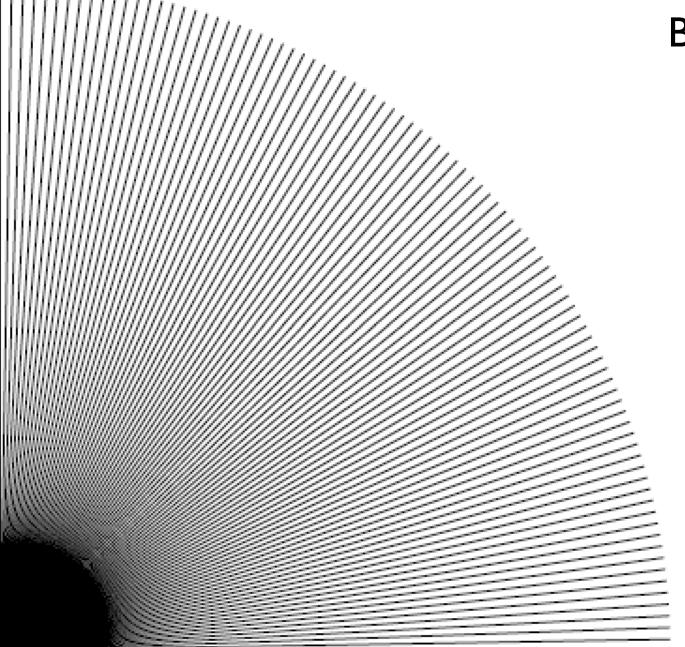
- Basic idea: replace "is the image black at the pixel center?" with "how much is pixel covered by black?"
- Replace yes/no question with quantitative question.

•					•		•		•			•	
	0							0		0			
					•		•					0	-
•	•		•	0	•	0	•		•	•	0	•	2
•				0			•	-	•	•	-	•	
•	0	0	•	•	-	•	•	~	•	0	0	•	
•		•	0	•	~	0	•	0	•				
•	•	·	-	•			•		•				
•				0		0	•	•	•			0	0
•		•	•		•		•	•	•				
	0	•	•		•		•	•			•		
		•					•		•				0
•	•	0		0	•	0	0	0		0			
•		0		0		0	0	0	0		0		0
•						0							

$\hfill \mbox{\ensuremath{\textcircled{}}\ensuremath{\textcircled{}$

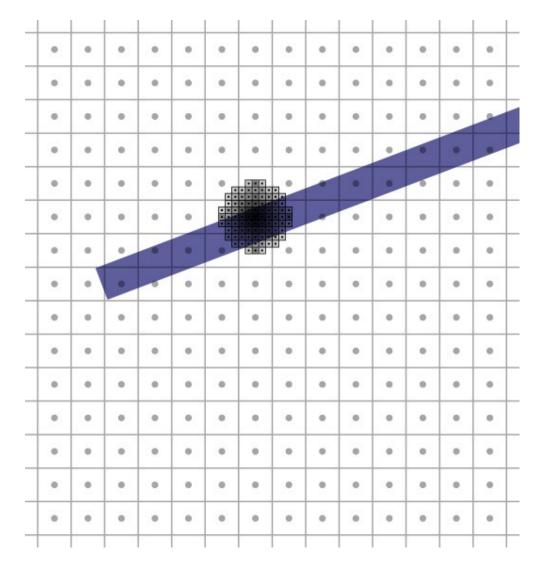
Box filtering


- Pixel intensity is proportional to area of overlap with square pixel area
- Also called "unweighted area averaging"


Box filtering by supersampling

- Compute coverage fraction by counting subpixels
- Simple, accurate
- But slow

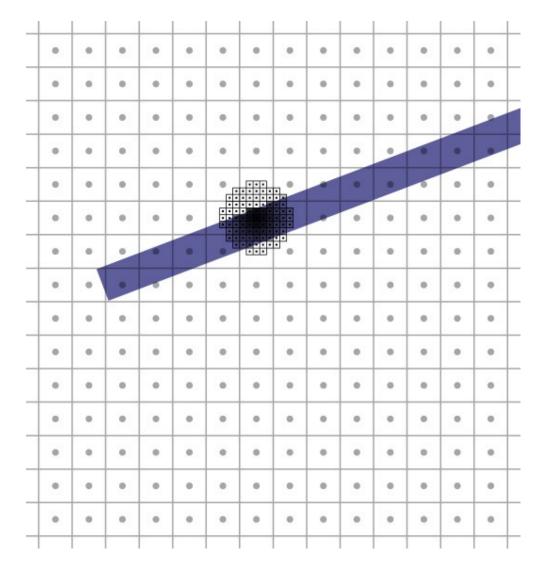
•		•	•		۰		•	٠	•		•	•	•
		•	•		•		•		0		•		0
		•	•		•		4/2	25 0	ove	erec	•	•	
•	•		•		0		16	% g	ray		•	•	
•	_2	0/25		1000				-	•	•	-0-	•	0
•	•	•	809	% gr	ay	 	•		•	0	0	•	
•		•	-	•	•	•	•	0					
•	•	•	~	•	•	0	0	0	0				
•			•	0		0	-	0					6
•	0	•			•		•	•	•				
•	0	•			0				0				
•					•		•		•			0	0
•	0		0	0	0		0	0	•		0		
•		0		0		0	•		•		0	0	6
•		0				0			•				



Weighted filtering

- Box filtering problem: treats area near edge same as area near center
 - results in pixel turning on "too abruptly"
- Alternative: weight area by a smooth function
 - unweighted averaging corresponds to using a box function
 - a gaussian is a popular choice of smooth filter
 - important property: normalization (unit integral)

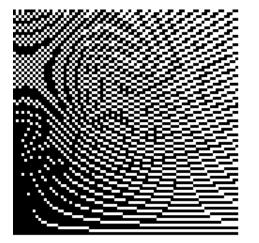
Weighted filtering by supersampling

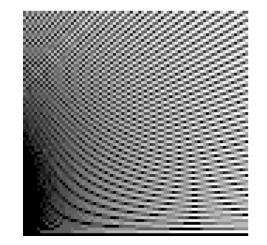

- Compute filtering integral by summing filter values for covered subpixels
- Simple, accurate
- But really slow

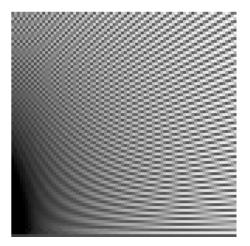
© 2022 Steve Marschner • 15 (with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Weighted filtering by supersampling

- Compute filtering integral by summing filter values for covered subpixels
- Simple, accurate
- But really slow



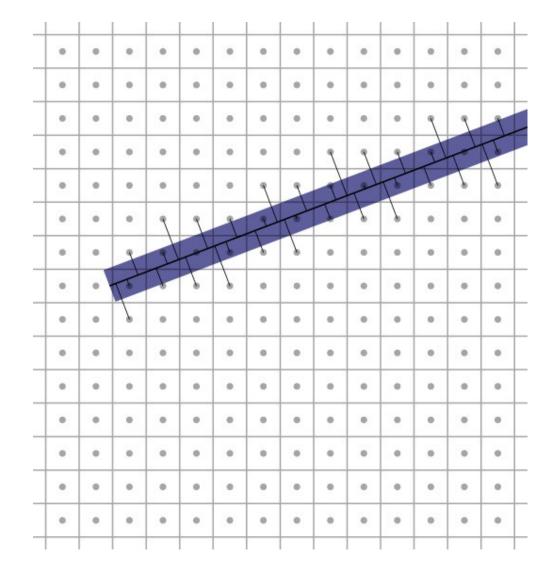

$$\circlength{\textcircled{C}}\ci$


Gaussian filtering in action

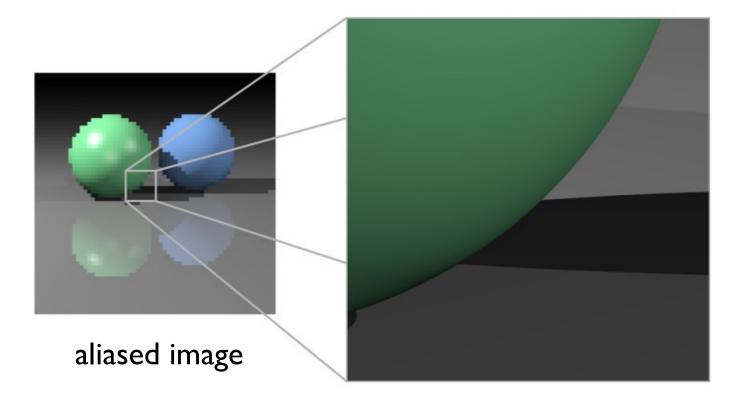
© 2022 Steve Marschner • 16 I some slides borrowed from Kurt Akeley)

Filter comparison

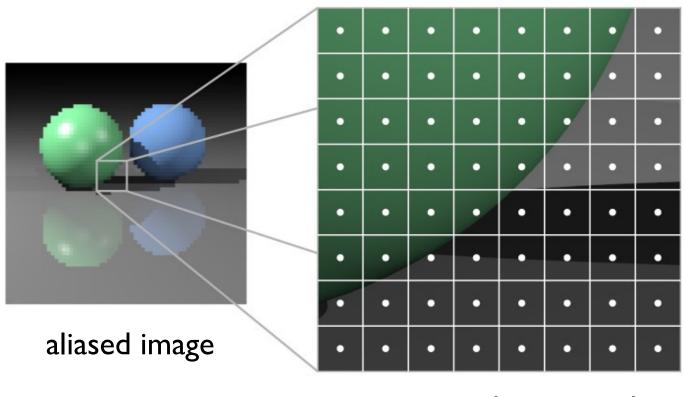
Point sampling

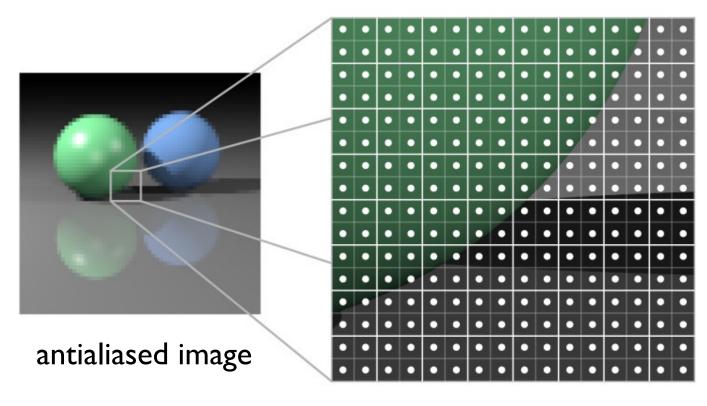

Box filtering

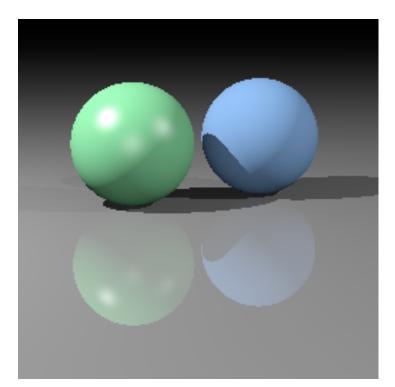
Gaussian filtering

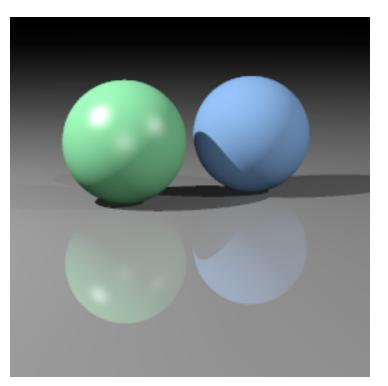

© 2022 Steve Marschner • 17 (with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

More efficient antialiased lines


- Filter integral is the same for pixels the same distance from the center line
- Just look up in precomputed table based on distance
 - Gupta-Sproull
- Some additional details at ends...


© 2022 Steve Marschner • 18 (with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)


Cornell CS5625 Spring 2022



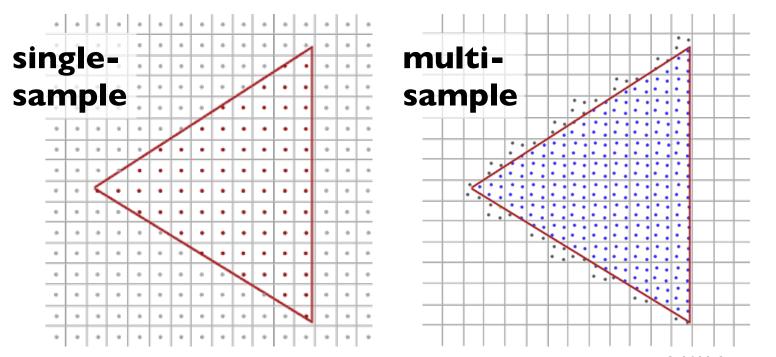
one sample per pixel

four samples per pixel

9 samples/pixel

one sample/pixel

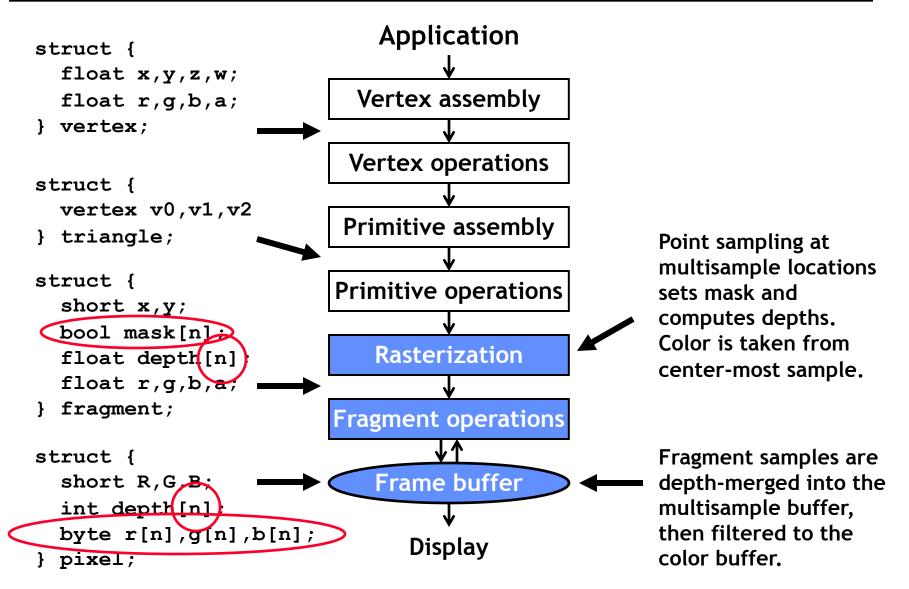
© 2022 Steve Marschner • 22 (with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)


Cornell CS5625 Spring 2022

Supersampling vs. multisampling

- Supersampling is terribly expensive
- GPUs use an approximation called *multisampling*
 - Compute one shading value per pixel
 - Store it at many subpixel samples, each with its own depth

Multisample rasterization


- Each fragment carries several (color,depth) samples
 - shading is computed per-fragment
 - depth test is resolved per-sample
 - final color is average of sample colors

Cornell CS5625 Spring 2022

© 2022 Steve Marschner • 24 (with previous instructors James/Bala, and some slides borrowed from Kurt Akeley)

Multisample implementation (*n* samples)

CS248 Lecture 6

Kurt Akeley, Fall 2007

Multisample rasterization operations

Fragment selection

- Identify pixels for which fragments are to be generated
- New: generate fragment if any sample is within the primitive
 - Requires tiled sampling, rather than point sampling
 - Generates more fragments

Attribute assignment

- Assign attribute values to each fragment
- Sample color at the center of the pixel (as before)
- New: compute the Boolean per-sample coverage mask
 - True if-and-only-if the sample is within the primitive
- New: compute depth values for each sample location

Point-sampled fragment selection

Generate fragment if pixel center is inside triangle Implements point-sampled aliased rasterization

•	•	•	•	•	•		•	•	•	•	•
•	•	•	•				•	•	•	•	•
•	•	•		•	•	•	X	•	•	•	•
•	•		•	•	P	-	•	•	•	•	•
•			•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	٠	•	٠	•	•	•

9 fragments generated

Kurt Akeley, Fall 2007

Generate fragment if unit square intersects triangle Implements multisample rasterizations

■ 4x4 sample pattern with unit-square filter extent

	••
	••
	• •
	••
	-
	••
	••
	• •
	••
	• •
	• •
• • • • • • • • • • • • • • • • • • •	••
• •	
	• •
	••

21 fragments generated