11 3D rotations and quaternions

Steve Marschner CS5625 Spring 2022

Parameterizing rotations

Euler angles

- rotate around x, then y, then z
- nice and simple

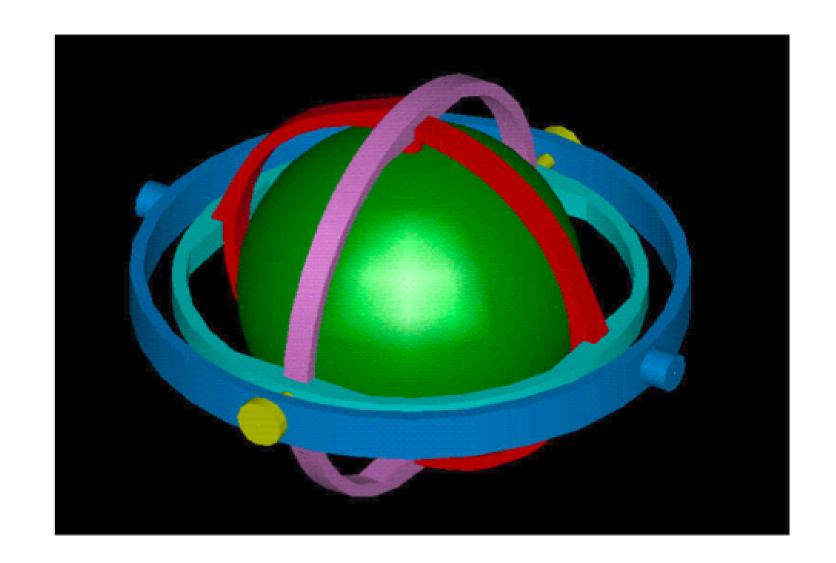
$$R(\theta_x, \theta_y, \theta_z) = R_z(\theta_z) R_y(\theta_y) R_x(\theta_x)$$

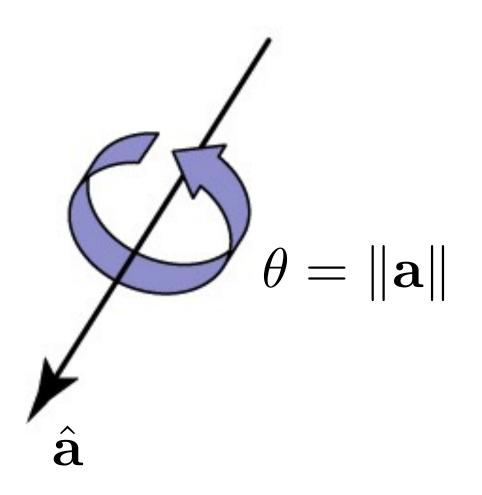
specify axis to rotate around,
 then angle by which to rotate

$$R(\hat{\mathbf{a}}, \theta) = F_{\hat{\mathbf{a}}} R_x(\theta) F_{\hat{\mathbf{a}}}^{-1}$$

 $F_{\hat{\mathbf{a}}}$ is a frame matrix with \mathbf{a} as its first column.

- A 4D representation (like 3D unit vectors for 2D sphere)
- Good choice for interpolating rotations





Problems

- Euler angles
 - gimbal lock (saw this before)
 - some rotations have many representations
- Axis/angle
 - multiple representations for identity rotation
 - even with combined rotation angle, making small changes near 180 degree rotations requires larger changes to parameters
- These resemble the problems with polar coordinates on the sphere
 - as with choosing poles, choosing the reference orientation for an object changes how the representation works

Rodrigues' rotation formula

$$R(\mathbf{a}, \theta)\mathbf{x} = (\cos \theta)\mathbf{x} + (\sin \theta)(\mathbf{a} \times \mathbf{x}) + (1 - \cos \theta)(\mathbf{a} \cdot \mathbf{x})\mathbf{a}$$
$$R(\mathbf{a}, \theta) = (\cos \theta)I + (\sin \theta)\tilde{\mathbf{a}} + (1 - \cos \theta)\mathbf{a}\mathbf{a}^{T}$$



What is a rotation?

- Think of the set of possible orientations of a 3D object
 - you get from one orientation to another by rotating
 - if we agree on some starting orientation, rotations and orientations are pretty much the same thing
- It is a smoothly connected three-dimensional space
 - how can you tell? For any orientation, I can make a small rotation around any axis (pick axis = 2D, pick angle = ID)
- This set is a subset of linear transformations called SO(3)
 - O for orthogonal, S for "special" (determinant + I), 3 for 3D

Calculating with rotations

Representing rotations with numbers requires a function

$$f: \mathbb{R}^n \to SO(3)$$

- The situation is analogous to representing directions in 3-space
 - there we are dealing with the set S^2 , the two-dimensional sphere (I mean the sphere is a 2D surface)
 - like SO(3) it is very symmetric; no directions are specially distinguished

Analogy: spherical coordinates

- We can use latitude and longitude to parameterize the 2-sphere (aka. directions in 3D), but with some annoyances
 - the poles are special, and are represented many times
 - if you are at the pole, going East does nothing
 - near the pole you have to change longitude a lot to get anywhere
 - traveling along straight lines in (latitude, longitude) leads to some pretty weird paths on the globe
 - you are standing one mile from the pole, facing towards it; to get to the point 2 miles ahead of you the map tells you to turn right and walk 3.14 miles along a latitude line...
 - Conclusion: use unit vectors instead

Analogy: unit vectors

- When we want to represent directions we use unit vectors: points that are literally on the unit sphere in R³
 - now no points are special
 - every point has a unique representation
 - equal sized changes in coordinates are equal sized changes in direction
- Down side: one too many coordinates
 - have to maintain normalization
 - but normalize() is a simple and easy operation

Complex numbers to quaternions

• Rather than one imaginary unit *i*, there are three such symbols *i*, *j*, and *k*, with the properties

$$i^2 = j^2 = k^2 = ijk = -1$$

Multiplication of these units acts like the cross product

$$ij = k$$
 $ji = -k$
 $jk = i$ $kj = -i$
 $ki = j$ $ik = -j$

• Combining multiples of *i*, *j*, *k* with a scalar gives the general form of a quaternion:

$$\mathbf{H} = \{a + bi + cj + dk \mid (a, b, c, d) \in \mathbb{R}^4\}$$

Complex numbers to quaternions

Like complex numbers, quaternions have conjugates and magnitudes

$$q = a + bi + cj + dk$$

$$\bar{q} = a - bi - cj - dk$$

$$|q| = (q\bar{q})^{\frac{1}{2}} = \sqrt{a^2 + b^2 + c^2 + d^2} = ||(a, b, c, d)||$$

 Also like complex numbers, quaternions have reciprocals of the form

$$q^{-1} = \frac{1}{q} = \frac{\overline{q}}{|q|}$$

Quaternion Properties

Associative

$$q_1(q_2q_3) = q_1q_2q_3 = (q_1q_2)q_3$$

Not commutative

$$q_1q_2 \not\equiv q_2q_1$$

Magnitudes multiply

$$|q_1q_2| = |q_1| |q_2|$$

Unit quaternions

• The set of unit-magnitude quaternions is called the "unit quaternions"

$$S^3 = \{ q \in \mathbf{H} \mid |q| = 1 \}$$

- as a subset of 4D space, it is the unit 3-sphere
- multiplying unit quaternions produces more unit quaternions

$$|q_1| = |q_2| = 1 \implies |q_1q_2| = 1$$

 $q_1, q_2 \in S^3 \implies q_1q_2 \in S^3$

• For unit quaternions:

$$|q| = 1$$

$$q^{-1} = \bar{q}$$

Quaternion as scalar plus vector

• Write q as a pair of a scalar $s \in \mathbb{R}$ and vector $\mathbf{v} \in \mathbb{R}^3$

$$q = a + bi + cj + dk$$

 $q = s + \mathbf{v}$ where $s = a$ and $\mathbf{v} = bi + cj + dk$
 $q = (s, \mathbf{v})$ where $s = a$ and $\mathbf{v} = (b, c, d)$

- Multiplication: $\mathbf{v}_1 \mathbf{v}_2 = -\mathbf{v}_1 \cdot \mathbf{v}_2 + \mathbf{v}_1 \times \mathbf{v}_2$ $(s_1 + \mathbf{v}_1)(s_2 + \mathbf{v}_2) = s_1 s_2 - \mathbf{v}_1 \cdot \mathbf{v}_2 + s_1 \mathbf{v}_2 + s_2 \mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2$ $(s_1, \mathbf{v}_1)(s_2, \mathbf{v}_2) = (s_1 s_2 - \mathbf{v}_1 \cdot \mathbf{v}_2, s_1 \mathbf{v}_2 + s_2 \mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2)$
- For a unit quaternion, $|s|^2 + ||\mathbf{v}||^2 = 1$
 - so think of these as the sine and cosine of an angle ψ :

$$q = (\cos \psi, \hat{\mathbf{v}} \sin \psi) \text{ or } \cos \psi + \hat{\mathbf{v}} \sin \psi$$

– this is a lot like writing a 2D rotation as $\cos\theta + i\sin\theta$

Quaternions and rotations

There is a natural association between the unit quaternion

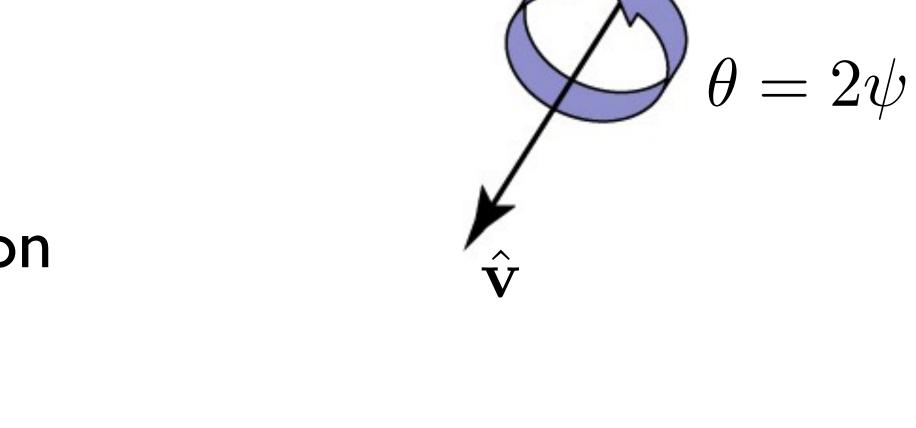
$$\cos \psi + \hat{\mathbf{v}} \sin \psi \in S^3 \subset \mathbf{H}$$

and the 3D axis-angle rotation

$$R_{\hat{\mathbf{v}}}(\theta) \in SO(3)$$

where $\theta = 2\psi$.

Note $s + \mathbf{v}$ and $-s - \mathbf{v}$ represent the same rotation



 $\cos \psi + \hat{\mathbf{v}} \sin \psi$

Rotation and quaternion multiplication

Represent a point in space by a pure-imaginary quaternion

$$\mathbf{x} = (x, y, z) \in \mathbb{R}^3 \leftrightarrow X = xi + yj + zk \in \mathbf{H}$$

Can compute rotations using quaternion multiplication

$$X_{\text{rotated}} = qX\bar{q}$$

- note that q and -q correspond to the same rotation
- you can verify this is a rotation by multiplying out...
- Multiplication of quaternions corresponds to composition of rotations

$$q_1(q_2X\bar{q_2})\bar{q_1} = (q_1q_2)X(\bar{q_2}\bar{q_1}) = q_1q_2X\bar{q_1}q_2$$

- the quaternion q_1q_2 corresponds to "rotate by q_2 , then rotate by q_1 "

Analogy: rays vs. lines

- The set of directions (unit vectors) describes the set of rays leaving a point
- The set of lines through a point is a bit different
 - no notion of "forward" vs. "backward"
- Would probably still represent using unit vectors
 - but every line has exactly two representations, v and -v
- Similarly every rotation has exactly two representations
 - $q = \cos \psi + \mathbf{v} \sin \psi; -q = \cos (\pi \psi) \mathbf{v} \sin (\pi \psi)$
 - a rotation by the opposite angle $(2\pi \theta)$ around the negated axis

Rotation and quaternion multiplication

If we write a unit quaternion in the form

$$q = \cos \psi + \hat{\mathbf{v}} \sin \psi$$

then the operation

$$X_{\text{rotated}} = qX\bar{q} = (\cos\psi + \hat{\mathbf{v}}\sin\psi)X(\cos\psi - \hat{\mathbf{v}}\sin\psi)$$

is a rotation by 2ψ around the axis \mathbf{v} .

So an alternative explanation is, "All this algebraic mumbojumbo aside, a quaternion is just a slightly different way to encode an axis and an angle in four numbers: rather than the number θ and the unit vector \mathbf{v} , we store the number $\cos (\theta/2)$ and the vector $\sin (\theta/2) \mathbf{v}$."

Unit quaternions and axis/angle

 We can write down a parameterization of 3D rotations using unit quaternions (points on the 3-sphere)

$$f: S^{3} \subset \mathbf{H} \to SO(3)$$

$$: \cos \psi + \hat{\mathbf{v}} \sin \psi \mapsto R_{\hat{\mathbf{v}}}(2\psi)$$

$$: (w, x, y, z) \mapsto \begin{bmatrix} w^{2} + x^{2} - y^{2} - z^{2} & 2(xy - wz) & 2(xz + wy) \\ 2(xy + wz) & w^{2} - x^{2} + y^{2} - z^{2} & 2(yz - wx) \\ 2(xz - wy) & 2(yz + wx) & w^{2} - x^{2} - y^{2} + z^{2} \end{bmatrix}$$

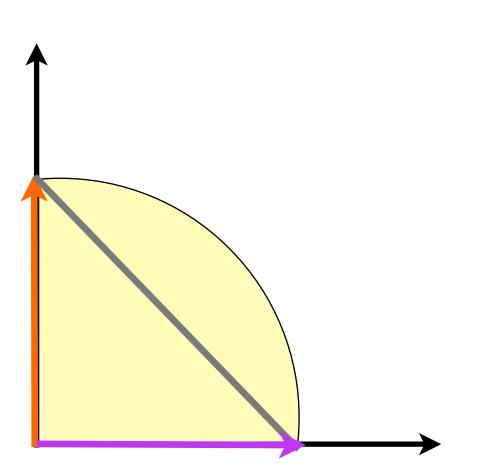
- This mapping is wonderfully uniform:
 - is exactly 2-to-I everywhere
 - has constant speed in all directions
 - has constant Jacobian (does not distort "volume")
 - maps shortest paths to shortest paths
 - and... it comes with a multiplication operation (not mentioned today)

Why Quaternions?

- Fast, few operations, not redundant
- Numerically stable for incremental changes
- Composes rotations nicely
- Convert to matrices at the end
- Biggest reason: spherical interpolation

Interpolating between quaternions

- Why not linear interpolation?
 - Need to be normalized
 - Does not have constant rate of rotation



$$\frac{(1-\alpha)x + \alpha y}{||(1-\alpha)x + \alpha y||}$$

Analogy: interpolating directions

- Interpolating in the space of 3D vectors is well behaved
- Simple computation: interpolate linearly and normalize
 - this is what we do all the time, e.g. with normals for fragment shading

$$\hat{\mathbf{v}}(t) = \text{normalize}((1-t)\mathbf{v}_0 + t\mathbf{v}_1)$$

- but for far-apart endpoints the speed is uneven (faster towards the middle)
- For constant speed: spherical linear interpolation
 - build basis $\{\mathbf{v}_0, \mathbf{w}\}$ from \mathbf{v}_0 and \mathbf{v}_1
 - interpolate angle from 0 to θ
 - (slicker way in a few slides)

$$\mathbf{w} = \hat{\mathbf{v}}_1 - (\hat{\mathbf{v}}_0 \cdot \hat{\mathbf{v}}_1) \hat{\mathbf{v}}_0$$

$$\hat{\mathbf{w}} = \mathbf{w}/||\mathbf{w}||$$

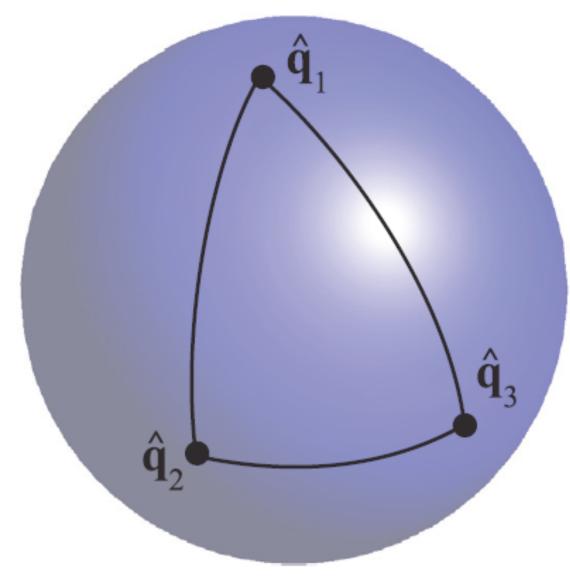
$$\theta = a\cos(\hat{\mathbf{v}}_0 \cdot \hat{\mathbf{v}}_1)$$

$$\hat{\mathbf{v}}(t) = (\cos t\theta) \hat{\mathbf{v}}_0 + (\sin t\theta) \hat{\mathbf{w}}$$

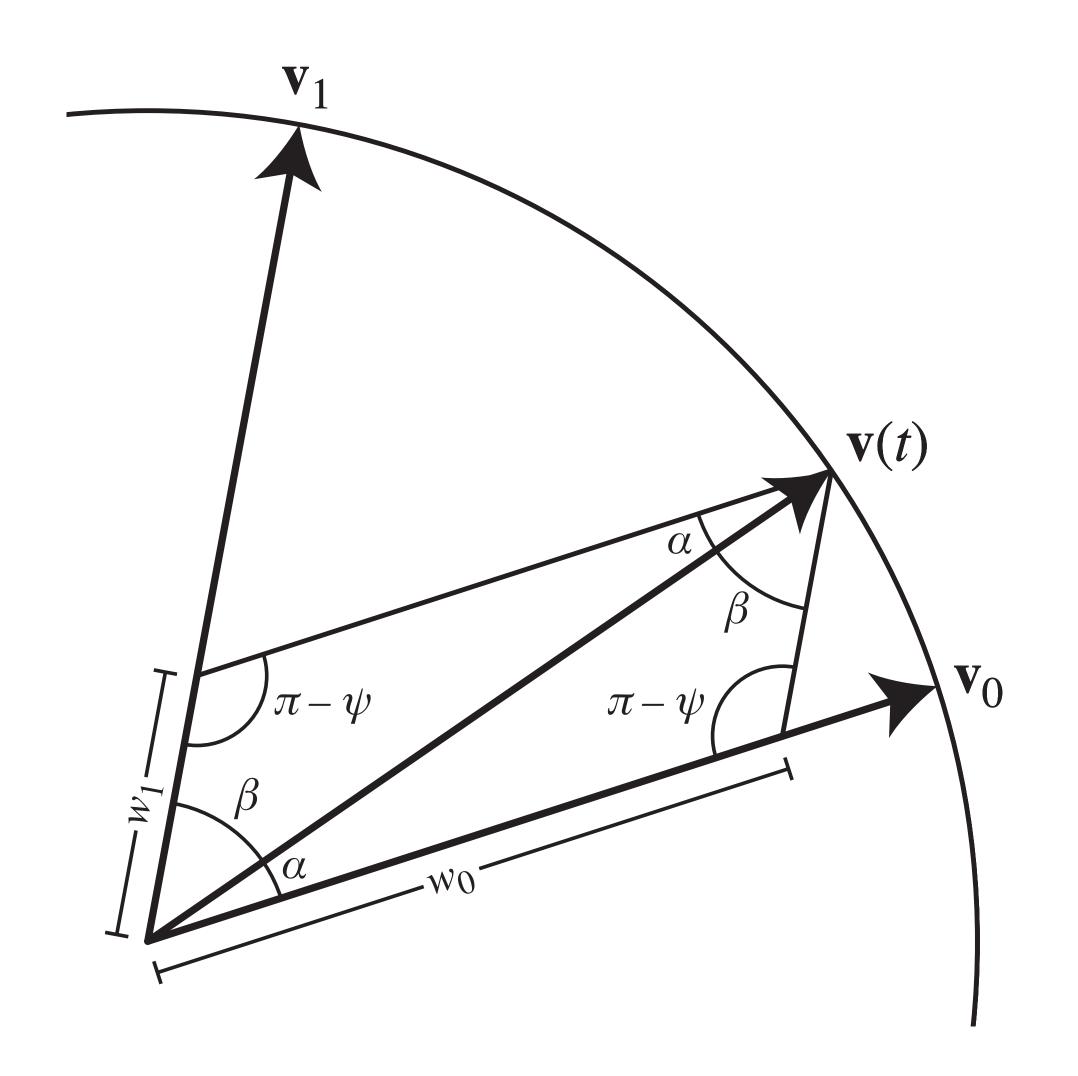
Spherical Linear Interpolation

- Intuitive interpolation between different orientations
 - Nicely represented through quaternions
 - Useful for animation
 - Given two quaternions, interpolate between them

Shortest path between two points on sphere
 Geodesic, on Great Circle



Spherical linear interpolation ("slerp")



- given vectors \mathbf{v}_0 , \mathbf{v}_1 , and parameter t

$$\psi = \cos^{-1}(\mathbf{v}_0 \cdot \mathbf{v}_1)$$

$$\alpha = t\psi; \ \beta = (1 - t)\psi$$

- express answer as a weighted sum

$$\mathbf{v}(t) = w_0 \mathbf{v}_0 + w_1 \mathbf{v}_1$$

then from law of sines

$$\frac{\sin \alpha}{w_1} = \frac{\sin \beta}{w_0} = \frac{\sin(\pi - \psi)}{1} = \sin \psi$$

$$w_0 = \sin \beta / \sin \psi$$

$$w_1 = \sin \alpha / \sin \psi$$

$$\mathbf{v}(t) = \frac{\mathbf{v}_0 \sin \beta + \mathbf{v}_1 \sin \alpha}{\sin \psi}$$

Quaternion Interpolation

- Spherical linear interpolation naturally works in any dimension
- Traverses a great arc on the sphere of unit quaternions
 - Uniform angular rotation velocity about a fixed axis

$$\psi = \cos^{-1}(q_0 \cdot q_1)$$

$$q(t) = \frac{q_0 \sin(1 - t)\psi + q_1 \sin t\psi}{\sin \psi}$$

- When angle gets close to zero, estimation of ψ is inaccurate
 - switch to linear interpolation when $q_0 \approx q_1$.
- q is same rotation as –q
 - if $q_0 \cdot q_1 > 0$, slerp between them
 - else, slerp between q_0 and $-q_1$

Dual quaternions

- One jump farther down the rabbit hole: combine quaternions with *dual numbers*
- Result is an algebraic system in which elements have 8 degrees of freedom (like quaternions have 4)
- Unit-norm dual quaternions have two constraints, so they constitute a 6D subspace
- Just as rotations can be identified with quaternions, both rotations and translations can be identified with dual quaternions
- Both linear quaternion interpolation and Slerp have analogues for dual quaternions, with similar properties

Dual numbers

• Real numbers plus a dual unit " ϵ " with the multiplication rule that $\epsilon^2 = 0$

$$(a + \epsilon b)(c + \epsilon d) = ab + \epsilon(bd + ad)$$

There is a conjugation for dual numbers

$$(a + \epsilon b)^* = a - \epsilon b$$
$$\hat{a}^* \hat{b}^* = (\hat{a}\hat{b})^*$$

• Some quirky algebraic features (ex: verify!)

$$\frac{1}{a+\epsilon b} = \frac{1}{a} - \epsilon \frac{b}{a^2} \qquad \sqrt{a+\epsilon b} = \sqrt{a} + \epsilon \frac{b}{2\sqrt{a}}$$

caution:

my notation for the two conjugations is swapped from Kavan et al.

Dual quaternions

• A d.q. is a quaternion built from dual numbers

$$\hat{q} = \hat{w} + i\hat{x} + j\hat{y} + k\hat{z}$$

• A d.q. is also a dual number built from quaternions $\hat{q} = q + \epsilon q'$

• Either way there are 8 components

$$\hat{q} = w + ix + jy + kz + \epsilon w' + i\epsilon x' + j\epsilon y' + k\epsilon z'$$

and three ways to conjugate

$$\hat{q}^* = w + ix + jy + kz - \epsilon w' - i\epsilon x' - j\epsilon y' - k\epsilon z'$$

$$\overline{\hat{q}} = w - ix - jy - kz + \epsilon w' - i\epsilon x' - j\epsilon y' - k\epsilon z'$$

$$\overline{\hat{q}^*} = w - ix - jy - kz - \epsilon w' + i\epsilon x' + j\epsilon y' + k\epsilon z'$$

Unit dual quaternions

• Norm of a d.q. is defined as

$$\|\hat{q}\|^2 = \hat{q}\overline{\hat{q}} = (q + \epsilon p)(\overline{q} + \epsilon \overline{p}) = q\overline{q} + \epsilon(p\overline{q} + q\overline{p})$$
$$= \|q\|^2 + 2\epsilon(q \cdot p)$$

• This is a dual number, so being a unit dual quaternion requires satisfying two separate constraints:

$$||q|| = 1$$

$$q \cdot p = 0$$

Dual quaternion transformation

• For transformation by dual quaternions, interpret the vector **v** as a pure imaginary quaternion and represent it as a dual quaternion of the form

$$\hat{\mathbf{v}} = 1 + \epsilon \mathbf{v}$$

and apply a transformation as with quaternions but using double conjugation:

$$\hat{\mathbf{v}} \mapsto \hat{q}\hat{\mathbf{v}}\overline{\hat{q}^*}$$

Transformation by an ordinary quaternion goes through:

$$\hat{\mathbf{v}} \mapsto q(1 + \epsilon \mathbf{v})\bar{q} = q\bar{q} + \epsilon q\mathbf{v}\bar{q} = 1 + \epsilon q\mathbf{v}\bar{q}$$

Translation as dual quaternion

• Idea: represent translation as a d.q. with unit ordinary part

$$\hat{t} = 1 + \epsilon \mathbf{x}$$

$$\mathbf{v} \mapsto \hat{t} \mathbf{v} \overline{\hat{t}^*} = (1 + \epsilon \mathbf{x}) \mathbf{v} (1 + \epsilon \mathbf{x}) = \mathbf{v} + 2\epsilon \mathbf{x}$$

• This works but translates by 2x so we represent a translation by w as

$$\hat{t}(\mathbf{w}) = 1 + \frac{\epsilon \mathbf{w}}{2}$$

 is this still a unit d.q.? yes: unit ordinary part; ordinary and dual parts orthogonal.

Rigid motion as dual quaternion

Given a translation

$$T(\mathbf{v}) = R\mathbf{v} + \mathbf{w}$$

represent R and w as dual quaternions

$$q = q(R)$$

$$\hat{t} = \hat{t}(\mathbf{w})$$

and T is represented by the product $\hat{t}q$

$$(\hat{t}q)\mathbf{v}(\hat{t}q)^*$$
 $\hat{t}q\mathbf{v}\overline{q^*}\overline{\hat{t}^*}$
 $\hat{t}(q\mathbf{v}\overline{q^*})\overline{\hat{t}^*}$

transforming by this product is the same as transforming by q, then t

Blending dual quaternions

- A generalization of slerp exists; it corresponds to a constant-speed screw motion from one location to the next
- As with quaternions, linear blending with renormalization provides a ready approximation
 - and it generalizes to more blending multiple dual quaternions
- This is a good way to blend rigid motions for skinning