11 5D rotations and quaternions

Steve Marschner
CS5625 Spring 2022

Parameterizing rotations

Euler angles

— rotate around X, then y, then z

— nice and simple

R(@x, eya 6’2) — RZ(QZ)Ry(Hy)R:U(Qw)

Axis/angle

— specify axis to rotate around,
then angle by which to rotate

R(a,f) = FéRm(H)Fgl

* Unit quaternions

— A 4D representation (like 3D unit vectors for 2D sphere)

-~

&

Fj5 I1s a frame
matrix with a as
its first column.

J

— Good choice for interpolating rotations

0= |a

Problems

* Euler angles

— gimbal lock (saw this before)

— some rotations have many representations

* Axis/angle

— multiple representations for identity rotation

— even with combined rotation angle, making small changes near 180
degree rotations requires larger changes to parameters

* [hese resemble the problems with polar coordinates on
the sphere

— as with choosing poles, choosing the reference orientation for an
object changes how the representation works

Rodrigues’ rotation formula

R(a,f)x = (cosf)x + (sinf)(a x x) + (1 — cosf)(a-x)a
R(a,0) = (cos0)I + (sinf)a + (1 — cosf)aa”

{

[Leonard McMillan]

What is a rotation?

* Think of the set of possible orientations of a 3D object

— you get from one orientation to another by rotating

— if we agree on some starting orientation, rotations and orientations are
pretty much the same thing

* Itis a smoothly connected three-dimensional space

— how can you tell? For any orientation, | can make a small rotation
around any axis (pick axis = 2D, pick angle = | D)

* This set is a subset of linear transformations called SO(3)

— O for orthogonal, S for “special” (determinant +1), 3 for 3D

Calculating with rotations

* Representing rotations with numbers requires a function
f:IR" — SO(3)

* The situation is analogous to representing directions in 3-space

— there we are dealing with the set $2, the two-dimensional sphere (I mean
the sphere is a 2D surface)

— like SO(3) it is very symmetric; no directions are specially distinguished

Analogy: spherical coordinates

* We can use latitude and longitude to parameterize the 2-
sphere (aka. directions in 3D), but with some annoyances

— the poles are special, and are represented many times
— if you are at the pole, going East does nothing
— near the pole you have to change longitude a lot to get anywhere

— traveling along straight lines in (latitude, longitude) leads to some pretty
weird paths on the globe

you are standing one mile from the pole, facing towards it; to get to the
boint 2 miles ahead of you the map tells you to turn right and walk 3.14
miles along a latitude line...

— Conclusion: use unit vectors instead

Analogy: unit vectors

* When we want to represent directions we use unit vectors:
points that are literally on the unit sphere in R3
— NOw ho points are special

— every point has a unique representation

— equal sized changes in coordinates are equal sized changes in direction

* Down side: one too many coordinates

— have to maintain normalization

— but normalize() is a simple and easy operation

Complex numbers to quaternions

* Rather than one imaginary unit i, there are three such
symbols i, j, and k, with the properties

0 =j° =k =ijk=—1
* Multiplication of these units acts like the cross product
1] = k 71 = —k
7k =1 k) = —1
ki =9 ik = —3
* Combining multiples of j, j, k with a scalar gives the general
form of a quaternion:

H = {a+bi+cj+dk]|(a,b,cd) e R*

Complex numbers to quaternions

* Like complex humbers, quaternions have conjugates and
magnitudes

g=a-+bt+cj)+ dk
g=a—bi—c)—dk

q| = (q0)% = Va2 + b2 + 2 +d? = |(a,b,c,d)|

* Also like complex numbers, quaternions have reciprocals of
the form

—1

L q
q — R —

1
q |q

Quaternion Properties

e Associative
C]1(Q2€I3) — (14243 = (6]1612)6]3

e Not commutative

Q192 Z 421
* Magnitudes multiply

\(]1(]2\ — \(]1\ \(]2|

Unit quaternions

The set of unit-magnitude quaternions is called the
“unit quaternions”

S*={qeH||q =1}

— as a subset of 4D space, it is the unit 3-sphere

— multiplying unit quaternions produces more unit quaternions

1 =] =1 = |q1q2| =1
g1,q2 € S° = quq2 € S°

* For unit quaternions:

q] =1
¢ =q

Quaternion as scalar plus vector

* Write g as a pair of a scalar s € R and vector v € R3

g=a-+bi+cj+ dk
g =S+ Vv wheres=aand v =0+ cj) + dk
q = (s,v) where s = a and v = (b, ¢, d)
e Multiplication: vivy = —vi:-va + V] X Vo
(51 +V1)(s2 +V2) = 5182 — V1 V2 + 81V + S2Vy + Vi X Vo
(s1,V1)(82,Va) = (8182 — V1:Va, S§1Vy + SoV1 + Vi X Va)
* For a unit quaternion, |s|* + ||[v||* = 1
— so think of these as the sine and cosine of an angle v:

q = (cos,vsiny) or cosy + vsin
— this is a lot like writing a 2D rotation as cos 6/ + 2 sin 0

Quaternions and rotations

There is a natural association between
the unit quaternion

cosy + vsiny € S° C H

and the 3D axis-angle rotation

R¢(0) € SO(3)
where 0 = 2.

Note s + v
and —s — v
represent the

same rotation |
in 4D space

cosY + vsiny |

unit 3-sphere

1]

!

Geek3]

[Wikimedia Commons user

Rotation and quaternion multiplication

* Represent a point in space by a pure-imaginary quaternion
x=(r,y,2) ER’ > X =xi+yj+zkcH

* Can compute rotations using quaternion multiplication
Xrotated = X G

— note that g and —g correspond to the same rotation

— you can verify this is a rotation by multiplying out...

Multiplication of quaternions corresponds to composition of
rotations

q1(q2Xq2)q1 = (q1q2) X (¢2q1) = q1q2 X q1q3

— the quaternion gig2 corresponds to “rotate by g, then rotate by g,”

Analogy: rays vs. lines

The set of directions (unit vectors) describes the set of rays
leaving a point
The set of lines through a point is a bit different

— no notion of “forward’ vs.“backward”

Would probably still represent using unit vectors

— but every line has exactly two representations, v and —v
Similarly every rotation has exactly two representations
— g=cosy+vsmy; —q=cos (7—1)—vsin (orT— 1)

— a rotation by the opposite angle (2;t — 0) around the negated axis

Rotation and quaternion multiplication

If we write a unit quaternion in the form
g = COSY + vsin Y
then the operation

Xrotated = ¢Xq = (cosy 4+ vsiny) X (cos) — vsin)
is a rotation by 2 around the axis V.

S0 an alternative explanation is, “All this algebraic mumbo-
jumbo aside, a quaternion is just a slightly different way to
encode an axis and an angle in four numbers: rather than the
number O and the unit vector v, we store the number cos (0/
2) and the vector sin (0/2) v.”

Unit quaternions and axis/angle

* We can write down a parameterization of 3D rotations using
unit quaternions (points on the 3-sphere)

f:8°CcH— SO(3)
. cos Y + vsiny — R (2¢)

w? + x? — Yy — 22 2(xy — wz) 2wz +wy)
(w,x,y,2) — 2(zy + wz) w? — x4+ y? — 2° 2(yz — wx)
- 2(xz — wy) 2(yz + wx) w? —az® —y +2°

* This mapping is wonderfully uniform:
— is exactly 2-to-| everywhere
— has constant speed in all directions
— has constant Jacobian (does not distort “volume™)
— maps shortest paths to shortest paths

— and... it comes with a multiplication operation (not mentioned today)

Why Quaternions?

» Fast, few operations, not redundant

* Numerically stable for incremental changes
» Composes rotations nicely

» Convert to matrices at the end

* Biggest reason: spherical interpolation

Interpolating between quaternions

* Why not linear interpolation?

e Need to be normalized

e Does not have constant rate of rotation

(1 —a)r+ay

(1 — a)x + ayl

Analogy: interpolating directions

* Interpolating in the space of 3D vectors is well behaved

* Simple computation: interpolate linearly and normalize

— this is what we do all the time, e.g. with normals for fragment shading
v(t) = normalize((1 — t)vg + tvy)

— but for far-apart endpoints the speed is uneven (faster towards the
middle)

* For constant speed: spherical linear interpolation

— build basis {vo, W} from vo and v
W — \Afl — (\A/'() . \7’1)\70
w=w/|w|
0 = acos(vg - V1)

v(t) = (costh) vy + (sinth) w

— interpolate angle from 0 to ©

— (slicker way in a few slides)

Spherical Linear Interpolation

* Intuitive interpolation between different orientations

— Nicely represented through quaternions
— Useful for animation

— Given two quaternions, interpolate between them

— Shortest path between two points on sphere
Geodesic, on Great Circle

Spherical linear interpolation (“slerp”)

V1 — given vectors Vo, V|, and parameter t

Y = cos *(vg - vy)

a=tp; f=(1—1)

— express answer as a weighted sum

v(t) = wovy + wivq

— then from law of sines

sinaw sin _ sin(w — 1))

= sin Y

Yo w1 wo 1

wo = sin 8/ sin

w1 = sin a/ sin ¢

Quaternion Interpolation

* Spherical linear interpolation naturally works in any dimension

* Traverses a great arc on the sphere of unit quaternions
— Uniform angular rotation velocity about a fixed axis
—1
= cos " (qo - q1)
qo sin(1 —)y + q1 sint

* When angle gets close to zero, estimation of Y is inaccurate

— switch to linear interpolation when qgo = q..
* @IS same rotation as —@
— if go-q1 > 0, slerp between them

— else, slerp between go and —q

Dual quaternions

* One jump farther down the rabbit hole: combine
quaternions with dual numbers

* Result is an algebraic system in which elements have 8
degrees of freedom (like quaternions have 4)

* Unit-norm dual quaternions have two constraints, so they
constitute a 6D subspace

* Just as rotations can be identified with quaternions, both
rotations and translations can be identified with dual
quaternions

* Both linear quaternion interpolation and Slerp have
analogues for dual quaternions, with similar properties

Dual numbers

* Real numbers plus a dual unit“€” with the multiplication
rule that €2 =10

(a + €b)(c + ed) = ab + e(bd + ad)

* There is a conjugation for dual numbers caution:
my notation for the two
(a4 €b)* =a — €b conjugations is swapped

from Kavan et al.

a*b* = (ab)*
* Some quirky algebraic features (ex: verify!)

1 1 b b
€— \/a—l—eb:\/g—l—ez\/a

a—l—eb:a a?

Dual quaternions

* A d.q.is a quaternion built from dual numbers
q=w—+1x+ Jy + k=

* A d.q.is also a dual number built from quaternions
1=q+e€q

* Either way there are 8 components
g=w+ix+ jy+kz+ew +iex’ + jey' + ke’

— and three ways to conjugate

*=w Aty +kr —ew —iex’ — jey' — ke

—w —ix — Jjy — kz +ew —iex’ — jey' — ke’

XY N SN

—w —1ix — Jy — kz — ew' + iex’ + jey’ + kez’

Unit dual quaternions

* Norm of a d.q.is defined as
|41I* = 4d = (q+ ep)(q + ep) = qq + €(pq + qp)
= llq|l* + 2¢(q - p)

* This is a dual humber, so being a unit dual quaternion
requires satisfying two separate constraints:

gl =1
q-p=70

Dual quaternion transformation

For transformation by dual quaternions, interpret the

vector V as a pure imaginary quaternion and represent it as
a dual quaternion of the form

v=1+ev

and apply a transformation as with quaternions but using
double conjugation:

AN A

vV — gvq*
Transformation by an ordinary quaternion goes through:

Ve g(l+ev)g=qq+eqvqg =1+ eqvq

Translation as dual quaternion

* |dea: represent translation as a d.q. with unit ordinary part
t =14 ex
vio vt = (1 + ex)v(l + ex) = v + 2ex

* This works but translates by 2x so we represent a

translation by w as
) EW
t =1
(W) 5

— is this still a unit d.q.? yes: unit ordinary part; ordinary
and dual parts orthogonal.

Rigid motion as dual quaternion

e Given a translation
T(v)=Rv+w

represent R and W as dual quaternions
¢ =q(R)
t = t(w)

and T is represented by the product g

(tq)v(tq)*

tqvq*t*
o transtorming by this product is the
A —\1 transtorming by g, then t
t(qvq*)t* sSame as

Blending dual quaternions

* A generalization of slerp exists; it corresponds to a
constant-speed screw motion from one location to the
next

* As with quaternions, linear blending with renormalization
provides a ready approximation

— and it generalizes to more blending multiple dual quaternions

* This is a good way to blend rigid motions for skinning

