
10 Mesh Animation

Steve Marschner
CS5625 Spring 2022

Basic surface deformation methods

Blend shapes: make a mesh by combining several meshes

Mesh skinning: deform a mesh based on an underlying skeleton

Both use simple linear algebra
• Easy to implement—first thing to try

• Fast to run—used in games

The simplest tools in the offline animation toolbox

Blend shapes

Simply interpolate linearly among several key poses
• Aka. blend shapes or morph targets

[3
D

St
ud

io
 M

ax
 e

xa
m

pl
e]

Blend shapes

José Alves da Silva—Corlyorn Family (Vodafone campaign)

Blend shapes math

Simple setup
• User provides key shapes: a position for every control point in every shape

- pij for point i, shape j

• Per frame: user provides a weight wj for each key shape

- Must sum to 1.0

Computation of deformed shape

Works well for relatively small motions
• Often used for for facial animation

• Runs in real time; popular for games

p0
i =

X

j

wjpij

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Part II: Automatic Skinning via Constrained Energy Optimization Alec Jacobson

Figure 2: Traditional animators first sketch an internal skeleton to find a pose, sometimes sketching only in limbs as they imply the
remaining shape [Blair 1994].

In practice, the pipeline is not so serial. Often new poses expose issues with the skinning weights, requiring iterations of adjustments.
These adjustments may even reach back to the construction of the control structure. A desired pose requires more degrees of freedom
than previously imagined, or the center of rotation at a joint may need to be altered to improve a pose.

Automating each of these stages offers a lower barrier of entry for perspective animators and rapid prototyping opportunities for
professional artists. Automation also enables fully automatic procedural animations, where no human labor is required: useful, for
example, in crowd simulation (e.g. [Prazak et al. 2010]) or physically-based simulations ([Faure et al. 2011]).

In this chapter, we will see how modern research benefits each major step in the skinning pipeline. We will focus on automatic
methods, but also touch on methods offering interactive, semi-automatic systems which trade full autonomy for increased control.
The second stage, defining skinning weights, has received the most attention in recent years and therefore will dominate this chapter.
A common vein flowing through each stage will be the design of energies and constraints which translate aesthetic qualities or
physical notions into mathematic quantities. The powerful paradigm of constrained energy optimization proves useful for modeling
the goals achieved by human riggers and animators in a manner amenable to automatic computation.

2 Automatic skeletons and cages

The locomotion of humans and many other animals depends on their internal skeletons. The arrangement of a creature’s bones
provides a first-order approximation of its outward appearance. Effects due to muscles beneath the skin (e.g. flexing bicep) [Neumann
et al. 2013] and internal pressures (e.g. chest inhaling [Tsoli et al. 2014]) should not be ignored, but for the sake of our discussion we
will treat them as secondary. It is no surprise then that the skeleton, as a control structure, is nearly as old as computer animation
itself (e.g. [Magnenat-Thalmann et al. 1988]). Indeed, even traditional animation books instruct students to first sketch a character’s
skeleton to find its general pose (see Figure 2) [Blair 1994].

Traditional riggers construct a 3D skeleton as a hierarchy of directed line-segments. This forms a graphical tree, where nodes are
dubbed joints connecting two or more bones. The parent-child relationship is maintained as the skeleton is constructed. Later it will
be used to define a forward kinematics tree when determining pose transformations from relative bone rotations.

The problem now is to automatically compute a skeletal tree given only a description of the shape’s surface. The shape’s geometry
and topology imply the geometry and topology of its inner skeleton.

We can separate automatic skeleton construction into two (not quite independent) tasks: determining the skeletal topology and the
skeletal embedding. The topological problem asks how many bones make up the skeleton and how they are connected to each other.
The embedding problem asks where bones are situation in space, or, equivalently, where bone joints are located within the shape.

Skinning generalizes to other handle types besides skeletons. We will also touch on how cages can be computed automatically, and
briefly mention ideas for automatic selection of control points, curves and regions.

2.1 Skeleton extraction

Given a shape—represented for example by its surface in 3D—we would like to find an inner skeleton that captures the geometric
and topological features of the shape. More accurately, the skeleton should capture the geometric and topological features of the
shape’s articulation.

However, the articulation is yet unknown, so taken as a subproblem, we can investigate methods that consider only the shape in its
rest state as input. As output, we expect a tree of line segments embedded in the object.

Subfields of computer vision are dedicated to registering (full or partial) human skeletons to (color or depth) images (e.g. [Shotton
et al. 2013]). These methods rely heavily on the prior knowledge that the skeleton has a known topology and even a known general
pose. We instead focus on general methods, in particular, those which utilize geometry.

Since an inner skeleton should be deep inside the shape, a natural instinct is to look toward the medial axis: the set of points
having more than one closest point on the shape’s surface [Bloomenthal and Lim 1999]. In 2D, a non-degenerate medial axis is
one-dimensional. However, in 3D the medial axis will contain surface-like 2D features. Thus, direct use of the medial axis as a
skeleton is not possible. It must be post-processed to recover a one-dimensional skeleton. In practice, medial axis computation is
further obstructed by its susceptibility to noise.

2 of 28

P. Blair, Cartoon Animation.

Mesh skinning

A simple way to deform a surface to follow a skeleton

[S
éb

as
tie

n
Do

m
in

é
| N

VI
DI

A]

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation

Part II: Automatic Skinning via Constrained Energy Optimization

Alec Jacobson

Columbia University and ETH Zurich

This document is meant to be a living document (though, perhaps not an immortal one). This version was compiled
on 8 December 2015. If you find clumsy typos or audacious mistakes, please email alecjacobson@gmail.com.

1 Introduction

The traditional character skinning pipeline is labor intensive. We may break the pipeline into three main steps to see where
professional riggers and animators spend the most time, and consequently where modern automatic methods will take over or assist.
Let us recall the linear blend skinning formula so we may track how each step affects a character’s deformation (see Figure 1). The
new position of a point v0 on the shape is computed as the weighted sum of handle transformations applied to its rest position v:

v0 =
mX

j=1

wj(v)Tj

✓
v
1

◆
. (1)

In the first step, a professional rigger must build a control structure inside, on or around the character. In the most traditional case,
this control structure is a hierarchy of rigid bones (directed line segments) referred to as a skeleton. We will see how automatic
skinning methods invite new control structures such as cages, loose points, or selected rigid regions. We will refer to the set of bones,
points, cage vertices etc. as handles. The set of n handles defines the range of the sum in Equation (1).

Second, the rigger paints skinning weights for each bone. This process is iterative, combining expertise with trial and error. Riggers
paint by adding or subtracting weight values, check the effect on a set of canonical pose, adjust the weights, smooth the weights, and
repeat. Furthermore, this process is typically conducted using a 2D mouse interface over a perspective projection on a 2D display:
many view adjustments interrupt and prolong the painting process. These weights are defined for each handle j at any point v on the
shape and enter inside our summation as wj(v) in Equation (1).

Finally, the animator poses the character by applying transformations to each handle. In the traditional case of a skeleton, these
transformations are often stored as relative rotations relating the change of each bone from its “rest” or “identity” pose to its current
pose in the basis of that bone’s parent. The absolute transformation may be recovered by following the skeleton’s forward kinematics
tree. In our skinning formula, the absolute transformation is the affine matrix Tj 2 R3⇥4 that takes handle j from its rest pose in
world space to its current pose.

define handles define weights apply transformations

wi

Ti

H

Figure 1: Though skinning may be broken into three major steps, a professional may iterate between each until satisfied. Modern
research seeks to automate each step.

[J
ac

ob
so

n,
 S

IG
G

RA
PH

 2
01

4
co

ur
se

]

Mesh skinning math: setup

Surface has control points
• Triangle vertices, spline control points, subdiv base vertices

Each bone has a transformation matrix
• Normally a rigid motion

Every point–bone pair has a weight
• In practice only nonzero for small # of nearby bones

• The weights are provided by the user

Points are transformed by a blended transformation
• Various ways to blend exist

wij

Mj

pi

Linear blend skinning

Simplest mesh skinning method

Deformed position of a point is a weighted sum
• of the positions determined by each bone’s transform alone

• weighted by that vertex’s weight for that bone

[L
ew

is
et

 a
l.

SI
G

G
RA

PH
 2

00
0]

p0
i =

X

j

wijMjpi

=

0

@
X

j

wijMj

1

Api

Linear blend skinning in practice

In practice the bone transformations Mj are not given directly
• animators want to use transformation hierarchies to animate character position

• …and also to animate bones

Character mesh is modeled in a canonical pose called “bind pose”
• chosen for convenience and to keep all parts separated

Skeleton is created first to match bind pose
• this establishes proximity between bones and surface (which can be used to help author

weights)

Skeleton is also animated over time

Linear blend skinning in practice

Skinning computations are done in coordinates of skeleton root
• mesh is modeled in these coordinates

• root node of skeleton defines these coordinates

Animated bone matrix Mj(t) has to operate on points in skeleton root coords
• need transform that carries bone j from its bind pose position to its animated position

• bind pose bone xf defined by bind pose xfs of bones:

• animated bone xf defined by animated xfs of bones:

• bone xf in skeleton root coords for skinning equation:

Deformed mesh is then computed in skeleton root coords
• still needs to be transformed to world coordinates by xfs above skeleton in scene graph

MB
j

<latexit sha1_base64="EsH5VYEyfsvkUqhOhzrO4X8XR6I=">AAAB7HicbZDLSgMxFIbPeK31VnXpJlgEV2WmTnG6siiIG6GCvUBbSyZN22gmMyQZoZSCb+DGhSJufSB3voWPYDqjouIPIR//OYec/H7EmdK2/WbNzM7NLyxmlrLLK6tr67mNzboKY0lojYQ8lE0fK8qZoDXNNKfNSFIc+Jw2/Ovjab1xQ6ViobjQo4h2AjwQrM8I1saqnXWvLo+6ubxd8Eq2ETLglssHpU/wysgp2Inyh++QqNrNvbZ7IYkDKjThWKmWY0e6M8ZSM8LpJNuOFY0wucYD2jIocEBVZ5wsO0G7xumhfijNERol7s+JMQ6UGgW+6QywHqq/tan5X60V677XGTMRxZoKkj7UjznSIZr+HPWYpETzkQFMJDO7IjLEEhNt8skmIbjFoufuoxT2nS/wvkOoFwuOWyidu/nKyW0aRwa2YQf2wIEDqMApVKEGBBjcwQM8WsK6t56s57R1xkpv2IJfsl4+ANNGkMY=</latexit>

MP
j (t)

<latexit sha1_base64="8u+HHaBUiru88BrndrghjfaCn20=">AAAB73icbZDLSgMxFIbPeK31VnXpJlgE3Qwz7RSnKwuCuBEqWFtox5JJMxrNXEwyQimCz+DGhSJufR13voWPYDqjouIPIR//OYec/H7CmVSW9WZMTE5Nz8wW5orzC4tLy6WV1RMZp4LQFol5LDo+lpSziLYUU5x2EkFx6HPa9i/3xvX2NRWSxdGxGibUC/FZxAJGsNJW57B/cdrcUtv9Utky3ZqlhTQ49fpO7RPcOrJNK1N59x0yNful194gJmlII0U4lrJrW4nyRlgoRji9KfZSSRNMLvEZ7WqMcEilN8r2vUGb2hmgIBb6RApl7s+JEQ6lHIa+7gyxOpd/a2Pzv1o3VYHrjViUpIpGJH8oSDlSMRp/Hg2YoETxoQZMBNO7InKOBSZKR1TMQnAqFdepohyq9he43yGcVEzbMWtHTrmxf5vHUYB12IAtsGEHGnAATWgBAQ538ACPxpVxbzwZz3nrhJHfsAa/ZLx8AIgKkbc=</latexit>

Mj(t) = MP
j (t) (M

B
j)�1

<latexit sha1_base64="qYhi7nIiBTx1cdsOShpym57sagA=">AAACCnicbZDLSgMxFIbPeLfeqi7dRItQQctMneJ0IYqCuBEqWBXaWjJpWqOZC0lGKEPBnRtfxY0LRdz6BO58Cx/BdEZFxR9CvvOfE5L8bsiZVKb5ZgwMDg2PjI6NZyYmp6ZnsrNzxzKIBKFVEvBAnLpYUs58WlVMcXoaCoo9l9MT93K33z+5okKywD9S3ZA2PNzxWZsRrLTVzC4eNC/yagVtIg1nlfqiLuqr+X6xs3IWr1m9ZjZnFpySqYU02OXyRukTnDKyCmai3NY7JKo0s6/1VkAij/qKcCxlzTJD1YixUIxw2svUI0lDTC5xh9Y0+tijshEnX+mhZe20UDsQevkKJe7PEzH2pOx6rp70sDqXf3t9879eLVJtpxEzP4wU9Ul6UTviSAWonwtqMUGJ4l0NmAim34rIORaYKJ1eJgnBLhYdex2lsG59gfMdwnGxYNmF0qGd2967TuMYgwVYgjxYsAHbsA8VqAKBG7iDB3g0bo1748l4TkcHjHSHefgl4+UD7qCZ+g==</latexit>

Linear blend skinning

Simple and fast to compute
• Can easily compute in a vertex shader

Used heavily in games

Has some issues with deformation quality
• Watch near joints between very different transforms

Linear skinning: classic problems

Surface collapses on the inside of bends and in the presence of strong twists
• Average of two rotations is not a rotation!

[L
ew

is
et

 a
l.

SG
’0

0]
To appear at SIGGRAPH 2003

Figure 4: Top Row: Original examples of a twisting wrist. Middle Row: Linear
blend skin approximation. Bottom Row: Our result using one additional joint.

Original Linear Blend Our Method

Figure 5: Linear blend skinning alone is incapable of capturing correct creasing
around elbows. At the left is an example of a bent elbow. In the middle is the linear
blend skin approximation. notice the interpenetration. In contrast, our method avoids
the interpenetration.

4.1 Additional Joints

To help solve the collapsing geometry problem, our system can
automatically add joints that properly interpolate rotations without
collapsing. This is done by examining the rotation of a joint relative
to the dress pose and computing the new joint as the halfway spher-
ical linear interpolation [Shoemake 1985] of this rotation, located at
the same position in space. More joints with evenly distributed in-
terpolation parameters could be added to sample this rotation space
even better; however, in our experience just a single interpolated
rotation is sufficient.

Figure 4 demonstrates the improvements gained by simply
adding a single interpolated rotation joint in the twisting case. Fig-
ure 5 shows the improvements for the bent elbow case.

Another type of effect not easily captured by the simple linear
blend model is bulging and denting of skins caused by muscles,
tendons, or other substructure. These particular effects cannot be
captured since the joints employed in animating a character do not
typically scale up and down as would be necessary to approximate
these effects.

We have observed that for many characters, the substructure de-
formation effects from muscles and tendons are often simply re-
lated to the angles between joints. For example, a bicep bulge is
small when the elbow is near full extension while the bugle is large
when the elbow is near full flexion. The effect is similar for other
muscles in the body. To capture these effects, our system can add
several joints that scale up and down based on the angle between
particular joints.

We add these scaling joints as follows. First we choose a joint
in the original skeleton that will drive the scaling parameters of the
new joints. Once this driver is chosen, there are two sets of joints
that we add. The first set is “upstream” of the driver and lies in the
middle of the bone connecting the driver to its parent, the second
set is “downstream” and lies in the middle of the bones connecting
the driver to its children.

v1
v2

θ

Driver

J1

J2
J3J4-J7

Figure 6: Our method adds extra joints to characters to help better approximate
deformations. Here J4 through J7 are automatically added upstream joints that scale
depending on the angle θ. As θ decreases, J4 scales up in the direction v1 which is
orthogonal to the bone connecting J1 and J2. Meanwhile, J5 scales up in the direction
v2, orthogonal to both the bone and v1. J6 and J7 operate similarly, but scale down as
θ increases rather than up. Downstream joints are very similar except that these joints
are positioned on the bone from J2 to J3.

All upstream joints are oriented in the same way, with one axis
aligned with the bone as shown in Figure 6. We use four upstream
joints. Two of them scale up about two axes orthogonal to the bone
and a corresponding pair scale down about the two axes orthogonal
to the bone. The scale parameters of these joints are set based on
the angle of the bone connecting the driver to its parent and the
bone connecting the driver to its child. If the driver has multiple
children, a vector that is the sum of the bones connecting the driver
to its children is used to measure the angle. Downstream joints are
similar. We use four downstream joints on each bone connecting
the driver to its children that scale just as the upstream joints do.

The scale parameters are computed as follows. For joints that
scale up, the scale parameter s is

s = 1+
k
2

(
b1 ·b2

‖b1‖‖b2‖
+1

)

where b1 and b2 are the bone vectors used to measure the angle at
the driver joint and k is the maximum scale factor when the angle
between b1 and b2 is zero. For joints that scale down, the scale
parameter is simply s−1. The value for k may be chosen by the
user but in our experience, we have found that 8 works well for our
examples. Again, since vertices may take any scaling of these new
joints, a conservative large value is fine. For example, if a vertex in
fact needed a joint that scaled by 2 instead of 8, it could be assigned
a weight of 1

4 .

5 Fitting the Skinning Model
Once our system has augmented the input skeleton, we use a fitting
procedure to set the parameters of the underlying skinning model
to match the example data well.

As mentioned earlier, the input to the fitting process is a set of ex-
amples. An example is simply a static character mesh paired with
a skeleton. This static mesh is deformed according to the skele-
ton configuration, but it is not attached to the skeleton in any way.
For our results, our examples were generated by exporting rigged
objects from Maya, but they could have been sculpted by hand or
come from another program.

A linear blend skin computes a deformed vertex as described
earlier in Equation 1. Examining this skinning model, only the Mi
are predetermined. These are the coordinate frames associated with
all the joints in the character. That means for each vertex, we are
able to choose the set of influencing joints, influence weights (wi)
and the dress pose vertex position (vd). We would like to choose
the influence sets, weights and dress pose vertex positions that best
approximate the examples and generalize well to new poses.

4

[M
oh

r &
 G

lei
ch

er
 S

G
’0

3]

Dual quaternion skinning

Root problem of LBS artifacts: linear blend of rigid motions is not rigid

Blending quaternions is better
• proper spherical interpolation is hard with multiple weights

• just blending and renormalizing works OK

However, blending rotation and  
rotation center separately  
performs poorly

t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

Figure 5: Interpolation of rigid transformations with rotation center
in the elbow (left) and in the shoulder joint (right). The shoulder is
not a suitable rotation center because it leads to an undesirable drift
of the interpolated transformation.

selection of the center of rotation is not so simple. With character
models, such difficult situations usually occur around the arm-pit or
dorsum. To illustrate the problem more clearly, we use the example
of a skeletally animated piece of cloth.

Let us assume that we have a fully outstretched piece of cloth influ-
enced by two joints, as in Figure 7 left. Vertices close to the bone
emanating from j1 will follow transformation Cj1 , vertices close to
the bone emanating from j2 will follow transformation Cj2 and ver-
tices in between will blend between these two transformations (to
simulate the stretching effect). A problem occurs when switching
the center of rotation from j1 to j2. For example, vertices v1 and
v2 in the figure are close to each other and therefore they will have
similar vertex weights, i.e., approximately 0.5 for both j1 and j2.
Therefore, both vertices will be rotated by approximately the same

Figure 6: Artifacts produced by blending rotations with respect to
the origin (left) are even worse than those of linear blend skinning
(right).

amount (i.e., half of the rotation present in Cj1). However, vertex v1
is slightly closer to j1 and vertex v2 is slightly closer to j2, which
means that v1 will rotate about j1, while v2 will rotate about j2.
This causes a problem depicted in Figure 7 right. Since the rota-
tion centers of v1 and v2 differ considerably, the deformed vertices
v′1,v

′
2 will be quite far apart. This is unfortunate, as nearby vertices

v1,v2 in the reference skin should be mapped to nearby vertices
v′1,v

′
2 in the deformed skin. Violation of this condition manifests

itself as cracks, see Figure 15 left.

j1

j2

v1

v2

v2'
v1'

Figure 7: Problems with rotating vertices around their nearest
joints. On the left is a reference pose and on the right an animated
one.

A method to cope with these problems has been proposed by Kavan
and Žára [2005]. This approach, called spherical blend skinning,
also works by blending translations and rotations (represented by
quaternions) independently. However, the center of rotation is se-
lected in a more sophisticated way. In particular, the center of rota-
tion is not fixed, but is computed at run-time using the actual joint
transformations. To summarize, spherical blend skinning defines
the center of rotation for vertex v influenced by joints j1, . . . , jn as
the point r which minimizes

∑
1≤a<b≤n

‖Cja r−Cjb r‖

This is expressed as a least squares problem which is solved using
Singular Value Decomposition (SVD).

Spherical blend skinning successfully handles situations such as
that depicted in Figure 7, as both v1 and v2 are influenced by the
same set of joints and therefore a suitable center of rotation will
be computed. Unfortunately, spherical blend skinning is expensive
in that the SVD algorithm is rather time consuming and thus it is
not tractable to execute it once per vertex (if real-time speed is re-
quired). Therefore, spherical blend skinning uses the same rotation

5

[K
av

an
 e

t a
l.

SG
 ’0

8]

Dual quaternions

Combines quaternions (1, i, j, k) with dual numbers (1, ε)
• resulting system has 8 dimensions: 1, i, j, k, ε, εi, εj, εk

• write it as sum of two quaternions:

Unit dual quaternions
• inherits quaternion constraint:

• adds one more constraint:

• a 6D manifold embedded in 8D

• represents rigid motions with nice properties

Skinning by blending dual quaternions works well

q̂ = q0 + ✏q✏

kq0k = 1

q0 · q✏ = 0

Figure 13: Proportions of the original model (left) are changed by
applying non-uniform scaling to the character’s arms (right). Our
technique allows scaling transformations to be combined with dual
quaternion skinning (top), thus achieving more realistic deforma-
tions than with linear blend skinning (bottom).

Figure 14: Comparison of linear (left) and dual quaternion (right)
blending. Dual quaternions preserve rigidity of input transforma-
tions and therefore avoid skin collapsing artifacts.

transformations and compare the proposed dual quaternion skin-
ning with linear blending, direct quaternion blending [Hejl 2004],
log-matrix blending [Cordier and Magnenat-Thalmann 2005] and
spherical blend skinning [Kavan and Žára 2005]. As discussed in
Section 2.2, some artifacts are better visualized on a simple model
of cloth (6000 vertices, 12000 triangles and 49 joints). Note that
the only variable in our experiments is the transformation blend-
ing – the input data (model files and postures) are always the same.
The visual results confirm that our DLB method is indeed free of all
the artifacts exhibited by previous methods (see Figures 14, 15, 16
and 17).

In order to compare computational performance, we have imple-
mented both CPU and GPU versions of dual quaternion skinning.

Figure 15: Comparison of direct quaternion blending (left) and dual
quaternion (right) blending. Only the latter delivers smooth defor-
mation.

The average performance of the CPU implementations is reported
in Figure 18 and the number of instructions of our vertex shaders
can be found in Figure 19. Note that our implementation of
log-matrix blending uses an optimization for rigid transformations
based on the Rodrigues formula, as suggested in [Alexa 2002]. Our
vertex shader assumes n = 4 (which is common due to graphics
hardware considerations) and does not perform any optimizations
if there are fewer than 4 influencing joints.

From the measurements, we see that dual quaternion, linear and
direct quaternion blending [Hejl 2004] have quite similar perfor-
mance both on the GPU and CPU. Although our algorithm is
slightly slower than both linear and direct quaternion blending, we
believe that this is not a high price to pay for the elimination of arti-
facts. When compared to log-matrix and spherical blending, we see
that dual quaternion skinning is more than twice as fast (and also
much easier to implement).

Figure 16: Comparison of log-matrix (left) and dual quaternion
(right) blending. The shortest-path property of dual quaternion
blending guarantees natural skin deformations.

14

[K
av

an
 e

t a
l.

SG
 ’0

8]

SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Part I: Direct Skinning Methods and Deformation Primitives Ladislav Kavan

Rest pose Dual quaternions: twistLinear blend skinning Dual quaternion skinning

Figure 9: Unlike linear and dual quaternion skinning, stretchable and twistable bones [Jacobson and Sorkine 2011] allow us to
spread deformations along the length of a bone.

6 Computing normals of skinned surfaces

In the previous sections, we discussed deformations of the actual shape, represented using a polygon mesh. For rendering, it is
necessary to calculate not only deformed vertex positions v0

i 2 R3, but also their corresponding normals n0
i 2 R3. Of course,

once the deformed vertex positions v0
i have been computed, the corresponding normals can be estimated by averaging normals

of adjacent triangles with appropriate weights [Botsch et al. 2010]. While easy to implement, this approach is not well suited for
parallel processing, because the normals computation step would have to wait until all v0

1, . . . ,v
0
n have been computed. Especially

in GPU implementations of direct skinning methods, it is advantageous to calculate the deformed normals n0
i along with the vertex

positions v0
i.

If our model is deformed by a global linear transformation M 2 R3⇥3 (translations obviously do not affect the normals), the normals
transform by its inverse transpose: M�T. With linear blend skinning, we can use this technique with Mi =

Pm
j=1 wi,jTj . For dual

quaternion skinning we can calculate the matrix Mi similarly, by blending unit dual quaternions. In either case, the normals are
computed as:

n0
i = M�T

i ni (16)

While this method is straightforward and very common, the normals computed this way are not always a good approximation of the
true normals which we would obtain by averaging normals of adjacent triangles. This is because for skinned models (either linear or
dual-quat), the transformation matrix Mi changes from one vertex to another; Equation (16) is correct only in parts of the mesh where
the skinning weights are constant, i.e., Mi is constant. In areas where skinning weights have a non-trivial gradient, Equation (16)
leads to biased normals, illustrated in Figure 10. In this figure, the shape is transformed by two skinning transformations T1 and
T2. The problem is that the entire deformation has been achieved only by translating T2; the linear parts of both T1 and T2 are
identities.

Figure 10: A 2D capsule object demonstrating that skinned normals can be a poor approximation of true, geometric normals.

The challenge of calculating more accurate normals of skinned surfaces has been opened by Merry et al. [2006b] and further refined
by Tarini et al. [2014]. The key idea is to assume that skinning weights are continuous functions, which allows us to define the
gradient of a weight in a particular vertex: rwi,j 2 R3. Weight gradients allow us to obtain a more accurate approximation of the
Jacobian of the skinning transformation:

Ji =
mX

j=1

wi,jTj +
mX

j=1

Tjvi(rwi,j)
T (17)

If we compute our normals as n0
i = J�T

i ni, we obtain skinned normals that correctly account for effects such as those shown in
Figure 10. [Tarini et al. 2014] discusses many practical improvements of this idea, such as how the inversion of the Jacobian can be
avoided, and presents a detailed implementation recipe.

9 of 11

[K
av

an
, S

G
’1

4
co

ur
se

]

