
09 Shadow Volumes

Steve Marschner

CS5625 Spring 2022

References
F. Crow, “Shadow Algorithms for Computer Graphics.” SIGGRAPH 1977.

• http://dx.doi.org/10.1145/965141.563901

M. McGuire, “Efficient Shadow Volume Rendering.” GPU Gems, 2004.
• https://developer.nvidia.com/gpugems/GPUGems/gpugems_ch09.html

M. Stich et al., “Efficient and Robust Shadow Volumes Using Hierarchical
Occlusion Culling and Geometry Shaders.” GPU Gems 3, 2008.
• https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch11.html

E. Lengyel, “Projection Matrix Tricks.” Presentation at GDC 2007.
• http://www.terathon.com/gdc07_lengyel.pdf

J. Gerhards et al. “Partitioned Shadow Volumes.” EUROGRAPHICS 2015.
• http://www.unilim.fr/pages_perso/frederic.mora/pdf/psv.pdf

http://dx.doi.org/10.1145/965141.563901
https://developer.nvidia.com/gpugems/GPUGems/gpugems_ch09.html
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch11.html
http://www.terathon.com/gdc07_lengyel.pdf
http://www.unilim.fr/pages_perso/frederic.mora/pdf/psv.pdf

Problem cases for shadow maps

Morgan McGuire, GPU Gems

Problem cases for shadow maps

Mark Kilgard, NVIDIA Inc.

slide courtesy of Kavita Bala, Cornell University

Shadow Volumes

• Crow 1977

• Accurate shadows

Image courtesy of BioWare Neverwinter Nights

Shadow volume robustness

G
er

ha
rd

s
et

 a
l.

EG
 2

01
5

Illuminated volume

The idea of shadow
volumes is to explicitly
represent the
boundary between
shadowed and
illuminated volumes of
space as a
triangulated surface.

Overlap of shadow volumes

In 2D, silhouette points divide
closed curves into segments
that face toward and away
from the light. Each light-
facing segment creates a
shadow area.

In 3D, silhouette edges divide
closed surfaces into regions
that are front-facing and
back-facing to the light.
Each front-facing region
creates a shadow volume.

Determining insideness

Filling 2D shapes, at least two ways to
define filled area
• even-odd rule: if a ray starting at the point

crosses the boundary an odd number of
times, the point is inside.

- nice: don’t need oriented path

- not so nice: you end up with a lot of holes

• nonzero winding number rule: if the total number
of clockwise and counterclockwise crossings
of the ray with the boundary are unequal, the
point is inside.

- nice: enclosing a point twice keeps it inside

- need to have oriented boundary (but you do

anyway)
Wikimedia Commons

even-odd rule nonzero winding number

a complex 
path

Determining insideness

In 3D, same rules apply
• nonzero winding number rule will give us

the union, which is what we want

For ray, use viewing ray
• traced implicitly by rasterization

• intersections with a ray are fragments

that land at a pixel

For counting, use stencil buffer

Stencil buffer

an auxiliary buffer like the depth buffer

integer valued

stencil operation controls how fragments affect stencil buffer
• value can be incremented or decremented

• can have different behavior for front or back facing fragments

• can choose to process only fragments that pass or fail the depth test

stencil test controls discarding of fragments based on stencil buffer
• similar to depth test

• can discard fragments when value is greater than, less than, etc. a constant value

Stencil buffer and shadow volumes

1. Draw the scene normally but omitting direct light
• result: color buffer, depth buffer

2. Draw the shadow volume boundary
• configure stencil operation to add up entries and exits along viewing ray

• use ray from fragment position towards eye: pay attention only to shadow boundary fragments

that pass the depth test (are closer than the z-buffer depth)

3. Draw the scene again, this time adding direct light
• configure stencil test to discard fragments with nonzero winding number

• only unshadowed fragments are drawn

Mark Kilgard, NVIDIA Inc.

slide courtesy of Kavita Bala, Cornell University

Details

What polygons to draw
• a quad per shadow volume edge

• 2 vertices are at infinity

Generating these polygons
• can use a geometry shader for this (later)

Problems

Viewpoint in shadow: wrong answers
• the ray doesn’t exit the volume to get its

winding number to 0

• same problem if shadow volume surfaces are

clipped by near plane

slide courtesy of Kavita Bala, Cornell University

Clip plane issues

Alternative counting strategy

Reverse stencil test to z-fail
• use the other half of the viewing ray (from

visible surface to infinity)

Problem: far plane clips volumes
• solution 1: set up projection matrix with

infinite far distance

• solution 2: use depth clamping if

available

Now need the volumes to be closed
• both at surface and at infinity

Geometry shader for shadow volumes

Shader outputs:
• one quad for each silhouette edge

- check for silhouettes using adjacent
vertex information

• for z-fail version, the triangle (front cap)

• for z-fail version, the triangle projected to

infinity and inverted (back cap)

Stich et al. GPU Gems 3

Primitive type:  
GL_TRIANGLES_ADJACENCY 
or GL_TRIANGLE_STRIP_ADJACENCY

Bottom line: maps vs. volumes

Shadow maps
• usually faster, less fill-limited

• easier to get working

• but… prone to sampling artifacts

• but… require management of shadow fields of view

Shadow volumes
• are always pixel accurate

• can be made very robust

• much less tuning than shadow maps

• but… uses a ton of fragment processing (“fill rate”)

