08 Glare and Atomospheric Effects

Steve Marschner CS5625 Spring 2022

Scattering in the eye

Scattering also happens inside the eye

Causes "flare" from bright sources to add with other parts of the image

Amount of flare

- depends on angle between the source and the pixel receiving flare
- angle ~= image-space distance, so model as a convolution

Bloom and lenticular flare

Plan

Physics of the Air

- scattering due to gases
- scattering due to aerosols/particles
- distribution of atmosphere

Atmospheric Phenomena

- sunlight
- skylight
- aerial perspective
- clouds

Computational Models

- ray and path tracing
- analytic approximations

Bibliography

- Nishita et al., "Display of The Earth Taking into Account Atmospheric Scattering," SIGGRAPH 1993.
- Preetham, Shirley, Smits, "A Practical Analytic Model for Daylight,"
 SIGGRAPH 1999.
- Hosek & Wilkie, "An Analytic Model for Full Spectral Sky-dome Radiance," SIGGRAPH 2012.

Hosek & Wilkie SIGGRAPH 2012

Obtaining Reference Data

Result: Raw Data

Empirical analytic sky models

CIE Standardized sky model

parameters A...E are tabulated for various conditions and solar elevations

$$\mathbb{F}_{CIE2003}(\theta, \gamma) = (1 + Ae^{B/\cos\theta})(1 + C(e^{D\gamma} - e^{D\frac{\pi}{2}}) + E\cos^2\gamma)$$

· Preetham provides empirical analytic functions for these coefficients in x, y, Y

Hosek extended sky model

$$\mathbb{F}(\theta, \gamma) = (1 + Ae^{\frac{B}{\cos \theta + 0.01}}) \cdot (C + De^{E\gamma} + F\cos^2 \gamma + G \cdot \chi(H, \gamma) + I \cdot \cos^{\frac{1}{2}} \theta)$$
$$\chi(g, \alpha) = \frac{1 + \cos^2 \alpha}{(1 + g^2 - 2g \cdot \cos \alpha)^{\frac{3}{2}}}$$

· They provide tabulated values for A...I, fitted to simulation; models turbidity quite a bit better.

Sky Colour Patterns (sunset)

Hosek & Wilkie SIGGRAPH 2012

Smits SIGGRAPH 1999

Aerial perspective

Attenuation removes light from the viewing ray

 more blue removed, resulting in warmer colors

Inscattering adds light to the viewing ray

 more blue added (usually),
resulting in blue contribution (away from sunrise/sunset)

Computing both requires integration along ray

- density, sun radiance change with h
- analytic approximations used for fast performance

