05 -orward and deferred shaaing

CS5625 Spring 2022

Steve Marschner

slides adapted from
Kavita Bala and Asher Dunn



Rendering: forward shaading

for each object in the scene
for each triangle in this object
for each fragment £ in this triangle

gl _FragColor = shade(f)
if (depth of f < depthbuffer[x, y])

framebuffer[x, y] = gl FragColor
depthbuffer[x, y] = depth of £
end 1if
end for

end for
end for



Propblem: Overdraw

I
/

!







NVlissed opportunity: spatial processing

Fragments cannot talk to each other

- a fundamental constraint for performance

Many interesting effects depend on neighborhood and geometry
+ bloom
- ambient occlusion
- motion blur
- depth of field

- edge-related rendering effects



NVulti-pass rendering

An old idea
- going back at least to the 80s

- render something, store it, use the result to render something else

- used for dynamic reflections, shadows, etc.

Deferred rendering is a particular type of multi-pass approach

- store data in the image-space pixel grid
- store quantities that would be intermediate results in forward rendering
+ use stored values in later pass(es) to compute final shading

- later passes can work on only some pixels, and can access data from other pixels



Deferred shading approach

First render pass

- draw all geometry
- compute material- and geometry-related inputs to lighting model
- don’t compute lighting

- write shading inputs to intermediate buffer

Second render pass

-+ don’t draw geometry
- use stored inputs to compute shading

- write to output

Post-processing pass (optional, can also be used with fwd. rendering)

+ process final image to produce output pixels



Deferred shading step

for each object in the scene

for each triangle in this object
for each fragment f£ 1n this triangle

gl FragData[..] = material properties of f

if (depth of f < depthbuffer[x, y])

gbuffer[..][Xx, V]
depthbuffer[x, y]

end 1f

end for
end for
end for

gl FragDatal..]
depth of £

Here we're making use of an
OpenGL feature called
"Multiple Render Targets™ in
which the familiar
gl_FragColor is replaced by
an array of values, each of
which Is written to a ditferent
butfer.




ass: output just the materials






for each object in the scene
for each triangle in this object
for each fragment £ 1n this triangle

gl FragData[..] = material properties of f

1f (depth of f < depthbuffer[x, v])
gbuffer[..][x, Y] = gl FragDbatal..]
depthbuffer[x, Vy] depth of £

end 1f

end for
end for
end for

for each fragment £ 1n the gbuffer
framebuffer[x, y] = shade (f)
end for

Here we're making use of an
OpenGL feature called
"Multiple Render Targets™ In
which the familiar
gl_FragColor is replaced by
an array of values, each of
which is written to a different

buffer.







1 he ubershader

Shader which computes lighting based on g-buffer: has code for all material/
lighting models in a single huge shader.

shade (f) {
result = 0;
1f (f 1s Lambertian) {
for each light
result += (n . 1) * diffuse;
end for
} else 1f (f is Blinn-Phong) {

} else 1f (f 1s ...) {

}

return result;




Ubershader inputs

Need access to all parameters of the material for the current fragment:
- Blinn-Phong: kd, ks, n
- Microfacet: kd, ks, alpha

- elc.

Also need fragment position and surface normal

Solution: write all that out from the material shaders:

{outputs} = {f.material, f.position, f.normal}
1f (depth of f < depthbuffer[x, Vv])

gbuffer[x, y] = {outputs}

depthbuffer[x, y] = depth of £
end 1f




Deferred lignting

Single-pass render has to consider all lights for every fragment

- much wasted effort since only a few lights probably contribute
- batching geometry by which lights affect it is awkward

- straight 2-pass deferred has same problem

With deferred shading, fragments can be visited In subsets

- move loop over lights out of the shader: do a shading pass per light
- for each light, draw bounds of (significantly) affected volume
- only compute shading for fragments covered by that

- with depth/stencil games, can only shade fragments inside the volume



Power of Deferred sShading

Can do any image processing between step 1 and step 2!
- Recall: step 1 = fill g-buffer, step 2 = light/shade

+ Could add a step 1.5 to filter the g-buffer

Examples:

- silhouette detection for artistic rendering
* Screen-space ambient occlusion

- denoising based on bilateral filter using geometric info









Amient occlusion

| \\
1




Denoising

[Mara et al. HPG 201 /]



POSt-processing

After pixel values are computed, often more processing is desired

- effects that depend only on pixel values and depth (hot normals, texture, etc.) are the same In
forward or deferred mode

+ pointwise color transforms: color grading, tone processing
- convolution filters: lens flare and bloom

- depth-dependent effects: atmospheric haze



Color grading

ge
ded image

The Matrix (Warner Bros.); comparison: Digital Media Academy



SO0

AR EAK B+
i e B2 A0

.
v

| g R PR YA SR
4

+

“E\E+ XX 2>

Journey | thatgamecompany . i



L imitations of Deferred shading

Each pixel in the g-buffer can only store material and surface info for a single
surface.

- blending/transparency is difficult

- antialiasing is a different ball game

For transparency: a “hybrid” renderer

- deferred shading for opaque objects, forward shading for translucent objects

- allows translucent geometry to know about opague geometry behind it

For antialiasing: smart blurring

- use what is in the g-buffers to blur along but not across edges



Antialiasing

Single shading sample per pixel

Reconstruct by blending nearby samples

- select them by looking for edges
(Morphological AA [Reshetov 09])

- learn about edges using multisample depth
(Subpixel Reconstruction AA [Chajdas et al. 11])



[Reshetov 09]



SRAA

Shaded
sample

Geometric

— Similar Time — < Similar Quality —

(a) 1x Shading + Box (poor, fast) (b) NEW: 1x Shading + SRAA (good, fast) (¢) 16 x Shading + Box (good, slow)

[Chajdas et al. 11]



summary: Deferred shading

Pros

- Store everything you need in 1st pass

- normals, diffuse, specular, positions,...
- G-buffer

- After z-buffer, can shade only what is visible

Cons:

+ transparency (only get one fragment per pixel)

- antialiasing (multisample AA not easy to adapt)

Standard game engines provide both forward and deferred paths



How 1o do all this In OpenGL

When you first fire up OpenGL, all fragment shader output is written to the
framebuffer that shows up in your window

- this Is the default framebuffer

- It actually can contain multiple buffers: front and back for double-buffering; left and right for
stereo/HMD devices. You can control where fragment shader output goes using
glDrawBuffer()

For deferred shading and other multi-pass methods, you instead create a (hon-
default) Framebuffer Object (FBO)

+ you attach images to the FBO to receive fragment shader output

+ color attachments (variable number) receive color data from gl_FragData|...] (gl_FragColor is just
an alias for gl_FragData[0])

- a depth attachment is required for z-buffering to function; stencil attachments are also possible



Framenu

er Object

FBO

DEPTH_A

AC

STENCIL_A

AC

COLOR_A

AC

COLOR_A

AMENT
AMENT
MENTO

AC

MENT

Renderbuffer

Can only be used
by attaching to an FBO

Texture Image

Can be attached to an

FBO, filled with data, and

Texture Image

later sampled as a texture
IN another shading pass

All these images have to match Iin size!



