
05 Forward and deferred shading

CS5625 Spring 2022 
Steve Marschner

slides adapted from 
Kavita Bala and Asher Dunn

Rendering: forward shading

for each object in the scene
 for each triangle in this object
 for each fragment f in this triangle

 gl_FragColor = shade(f)

 if (depth of f < depthbuffer[x, y])
 framebuffer[x, y] = gl_FragColor
 depthbuffer[x, y] = depth of f
 end if

 end for
 end for
end for

Problem: Overdraw

Problem: lighting complexity

Just Cause 3 | Avalanche Studios

Missed opportunity: spatial processing

Fragments cannot talk to each other
• a fundamental constraint for performance

Many interesting effects depend on neighborhood and geometry
• bloom

• ambient occlusion

• motion blur

• depth of field

• edge-related rendering effects

Multi-pass rendering

An old idea
• going back at least to the 80s

• render something, store it, use the result to render something else

• used for dynamic reflections, shadows, etc.

Deferred rendering is a particular type of multi-pass approach
• store data in the image-space pixel grid

• store quantities that would be intermediate results in forward rendering

• use stored values in later pass(es) to compute final shading

• later passes can work on only some pixels, and can access data from other pixels

Deferred shading approach

First render pass
• draw all geometry

• compute material- and geometry-related inputs to lighting model

• don’t compute lighting

• write shading inputs to intermediate buffer

Second render pass
• don’t draw geometry

• use stored inputs to compute shading

• write to output

Post-processing pass (optional, can also be used with fwd. rendering)
• process final image to produce output pixels

Deferred shading step 1

for each object in the scene
 for each triangle in this object
 for each fragment f in this triangle

 gl_FragData[…] = material properties of f
 if (depth of f < depthbuffer[x, y])
 gbuffer[…][x, y] = gl_FragData[…]
 depthbuffer[x, y] = depth of f
 end if

 end for
 end for
end for

Here we’re making use of an
OpenGL feature called
“Multiple Render Targets” in
which the familiar
gl_FragColor is replaced by
an array of values, each of
which is written to a different
buffer.

First pass: output just the materials

Deferred Shading Step 2

for each fragment f in the gbuffer
 framebuffer[x, y] = shade (f)
end for

One improvement: shade (f) only executed for visible fragments.

Output is the same →

for each object in the scene
 for each triangle in this object
 for each fragment f in this triangle

 gl_FragData[…] = material properties of f
 if (depth of f < depthbuffer[x, y])
 gbuffer[…][x, y] = gl_FragData[…]
 depthbuffer[x, y] = depth of f
 end if

 end for
 end for
end for

for each fragment f in the gbuffer
 framebuffer[x, y] = shade (f)
end for

Here we’re making use of an
OpenGL feature called
“Multiple Render Targets” in
which the familiar
gl_FragColor is replaced by
an array of values, each of
which is written to a different
buffer.

G-buffer: multiple textures

material properties

position normal

The übershader

Shader which computes lighting based on g-buffer: has code for all material/
lighting models in a single huge shader.

shade (f) {
 result = 0;
 if (f is Lambertian) {
 for each light
 result += (n . l) * diffuse;
 end for
 } else if (f is Blinn-Phong) {
 ...
 } else if (f is ...) {
 ...
 }
 return result;
}

Übershader inputs

Need access to all parameters of the material for the current fragment:
• Blinn-Phong: kd, ks, n

• Microfacet: kd, ks, alpha

• etc.

Also need fragment position and surface normal

Solution: write all that out from the material shaders:

{outputs} = {f.material, f.position, f.normal}
if (depth of f < depthbuffer[x, y])
 gbuffer[x, y] = {outputs}
 depthbuffer[x, y] = depth of f
end if

Deferred lighting

Single-pass render has to consider all lights for every fragment
• much wasted effort since only a few lights probably contribute

• batching geometry by which lights affect it is awkward

• straight 2-pass deferred has same problem

With deferred shading, fragments can be visited in subsets
• move loop over lights out of the shader: do a shading pass per light

• for each light, draw bounds of (significantly) affected volume

• only compute shading for fragments covered by that

• with depth/stencil games, can only shade fragments inside the volume

Power of Deferred Shading

Can do any image processing between step 1 and step 2!
• Recall: step 1 = fill g-buffer, step 2 = light/shade

• Could add a step 1.5 to filter the g-buffer

Examples:
• silhouette detection for artistic rendering

• screen-space ambient occlusion

• denoising based on bilateral filter using geometric info

By differentiating the depth buffer, can locate silhouettes and creases

Silhouette detection

© Kavita Bala, Computer Science, Cornell University

Amient occlusion

Denoising

[Mara et al. HPG 2017]

Post-processing

After pixel values are computed, often more processing is desired
• effects that depend only on pixel values and depth (not normals, texture, etc.) are the same in

forward or deferred mode

• pointwise color transforms: color grading, tone processing

• convolution filters: lens flare and bloom

• depth-dependent effects: atmospheric haze

Color grading

The Matrix (Warner Bros.); comparison: Digital Media Academy

camera image
color graded image

Bloom

Journey | thatgamecompany

Limitations of Deferred Shading

Each pixel in the g-buffer can only store material and surface info for a single
surface.
• blending/transparency is difficult

• antialiasing is a different ball game

For transparency: a “hybrid” renderer
• deferred shading for opaque objects, forward shading for translucent objects

• allows translucent geometry to know about opaque geometry behind it

For antialiasing: smart blurring
• use what is in the g-buffers to blur along but not across edges

Antialiasing

Single shading sample per pixel

Reconstruct by blending nearby samples
• select them by looking for edges 

(Morphological AA [Reshetov 09])

• learn about edges using multisample depth 

(Subpixel Reconstruction AA [Chajdas et al. 11])

MLAA

Figure�9.�Processing�textures�for�the�Edgar�model:��(a)�–�original�aliased�image;�(d)�–�antialiased�image,�processed�with�MLAA;�(b,c)�–�enlarged�regions�of�
left�and�right�images;��(e,f,g) –�visualization�of�pixels�processed�with�MLAA�at�different�zoom�levels.�Pixels�belonging�to�horizontal�shapes�are�marked�with�
green,�vertical�–�with�red�color.�Pixels,�which�are�included�into�horizontal�and�vertical�shapes�simultaneously,�are�shown�as�blue.�Note�that�aliased�pixels�
(top�left)�were�unintentionally�blurred�when�this�paper�was�created�(both�in�electronic�and�paper�form).

[Reshetov 09]

SRAA

Subpixel Reconstruction Antialiasing

for Deferred Shading

Matthäus G. Chajdas⇤
Technische Universität München and NVIDIA

Morgan McGuire
NVIDIA and Williams College

David Luebke
NVIDIA

 Similar Time! Similar Quality!

(a) 1⇥ Shading + Box (poor, fast) (b) NEW: 1⇥ Shading + SRAA (good, fast) (c) 16⇥ Shading + Box (good, slow)

Figure 1: Subpixel Reconstruction Antialiasing produces an image approaching 16⇥ supersampling quality using the shading samples from
a regular 1⇥ grid. It applies a joint bilateral filter inside each pixel based on subpixel geometric samples in a Latin square. Scene from
Marvel Ultimate Alliance 2 (see Figure 8), courtesy of Vicarious Visions. Shown: 4 geometric samples/pixel, planes+normals depth metric.

Abstract

Subpixel Reconstruction Antialiasing (SRAA) combines single-
pixel (1⇥) shading with subpixel visibility to create antialiased im-
ages without increasing the shading cost. SRAA targets deferred-
shading renderers, which cannot use multisample antialiasing.

SRAA operates as a post-process on a rendered image with su-
perresolution depth and normal buffers, so it can be incorporated
into an existing renderer without modifying the shaders. In this
way SRAA resembles Morphological Antialiasing (MLAA), but
the new algorithm can better respect geometric boundaries and has
fixed runtime independent of scene and image complexity.

SRAA benefits shading-bound applications. For example, our im-
plementation evaluates SRAA in 1.8 ms (1280⇥720) to yield an-
tialiasing quality comparable to 4-16⇥ shading. Thus SRAA would
produce a net speedup over supersampling for applications that
spend 1 ms or more on shading; for comparison, most modern
games spend 5-10ms shading. We also describe simplifications that
increase performance by reducing quality.

CR Categories: I3.3 [Picture/Image Generation]: Antialiasing—;
I3.7 [Three-Dimensional Graphics and Realism]: Color, shading,
shadowing, and texture—;

Keywords: antialiasing, deferred shading

⇤chajdas@tum.de, {momcguire, dluebke}@nvidia.com

1 Introduction

Deferred lighting and multisample antialiasing (MSAA) are
powerful techniques for real-time rendering that both work by sep-
arating the computation of the shading of triangles from the com-
putation of how many samples they cover. Deferred lighting uses
deferred shading [Saito and Takahashi 1990] to scale complex illu-
mination algorithms up to large scenes. MSAA resolves edges by
shading multiple samples per pixel; unlike SSAA each primitive is
shaded at most once.

Unfortunately, these two techniques are incompatible (see Sec-
tion 2), so developers must currently choose between high quality
lighting and high quality antialiasing. To achieve antialiasing under
deferred lighting, programs tend to either super sample – at lin-
ear cost in the resolution – or perform Morphological Antialiasing
(MLAA) [Reshetov 2009], a sort of heuristic “smart blur” of the
final image.

We introduce a new technique for subpixel reconstruction an-
tialiasing (SRAA). The core idea is to extend the success of
MLAA-style postprocessing with enough input to accurately recon-
struct subpixel geometric edges. SRAA operates as a postprocess
that combines a G-buffer sampling strategy with an image recon-
struction strategy. The key part is to sample the shading at close
to screen resolution while sampling geometry at subpixel precision,
and then estimate a superresolution image using a reconstruction
filter. That superresolution image is then filtered into an antialiased
screen-resolution image. In practice, the reconstruction and down-
sampling occur simultaneously in a single reconstruction pass. Our
results demonstrate that SRAA can approximate the quality of su-
persampling using many fewer shading operations, yielding a net
4-16⇥ speedup at minor quality degradation compared to shading
at each subpixel sample.

[Chajdas et al. 11]

����

������	
�
�
����

��
���
�
����

Figure 3: Reconstructing subpixel shading with SRAA. Dotted lines
show pixel boundaries; within each, there are four geometric sam-
ples (colored disks) on a 4⇥ 4 sample grid. One of those contains
shading information (yellow disks). At each sample, we compute
bilateral weights from neighboring shading samples (arrows). A
neighboring sample with significantly different geometry is proba-
bly across a geometric edge (blue line), and receives a low weight.

Some more recent approaches lower the shading rate by adapting it
based on the geometry and shading, for instance in Nichols et al.’s
screen-space multiresolution gather methods[Nichols et al. 2010].
While these methods also achieve low shading rates, they are fo-
cused on low-frequency phenomena.

3 Algorithm

3.1 Overview

SRAA exploits the fact that shading often changes more slowly
than geometry in screen space to perform high-quality antialias-
ing in deferred rendering by sampling geometry at higher resolu-
tion than shading. We refer to geometry samples, which capture
surface properties–in our case, the normal and position of a sur-
face fragment–and shading samples, which contain a color. By
upsampling shading onto a “superresolution” image of geometric
data, SRAA creates high-resolution shading data suitable for filter-
ing back down to screen resolution.

SRAA requires two modifications to a standard rendering pipeline.
First, applications must generate normal and position information
at subpixel resolution. See Section 3.4 for details.

Second, applications must perform a reconstruction pass after shad-
ing and before post-processing. This pass refines the results from
shading using the G-buffer information. The output of this re-
construction step is a screen-resolution, antialiased shading buffer
which can then be post-processed as normal. The shading buffer
resolution is usually the same as the screen or slightly higher, but
much lower than the geometry buffers.

Our reconstruction is a modified cross-bilateral filter similar to the
metric used by irradiance caching [Ward and Heckbert 1992]. The
filter accounts for differences in normal and position and is ex-
plained in more detail in Section 3.2.

In figure 3 we can see how our algorithm reconstructs one subpixel.
All shaded neighbors in a fixed radius are considered and interpo-
lated using the bilateral filter weights. After each sub-sample has
been reconstructed, we combine them all together using a box filter
for the final value of that pixel. More sophisticated multi-filters,
for instance a triangle kernel, could be employed for reconstruc-
tion. However, more complex filters have to be carefully tuned to
work well with the extremely small number of samples in the filter
support range.

Notice that due to the fixed radius of the filter support, a variable
number of shaded samples are used to reconstruct a subpixel sam-

Figure 4: Quality comparison between estimating the distance us-
ing normals only, depth only, and both. Some edges can be detected
using only depth, while others require normals. Scene courtesy of
DICE from the Frostbite 2 game engine.

Figure 5: Quality comparison between position estimates based
depth only versus plane equations. The plane distance metric cap-
tures the small insets on the boxes slightly better.

ple. This reduces the total number of G-buffer loads and allows us
to re-order the instructions to improve cache hit rate.

Typically, the filter radius is extremely narrow to avoid blurring and
keep the number of texture lookups at a reasonable level. A larger
filter radius increases the reconstruction quality in theory, but it also
increases the worst-case error. We thus use only shaded samples
which are directly adjacent, allowing us to guarantee a screen-space
error of one pixel.

3.2 Distance metric

We take both position and normal change into account when com-
puting distance. For the position change, we can estimate the dif-
ference by using plane equations. For a source sample represented
by a plane with normal ~ns and a point ps and a target sample pt,
the position difference is �p = �p|(pt � ps) · ~ns|. We combine this
with the normal change term �n = 1� (~ns · ~nt), giving us the total
weight w = exp(�⌧ ⇤max(�n, �p)).

In practice, we have to scale the depth by �p to account for different
depth ranges such that actual discontinuities result in values � 1.
The ⌧ factor determines how quickly the weights fall off and allows
us to easily increase the importance of the bilateral filter. We used
the same ⌧ value (500) in all our testing.

Our algorithm allows several performance/quality trade-offs by
changing how the filter weights are computed. We can estimate
distance between source and target samples by simply comparing
depth values rather than evaluating the plane equation. This ap-
proximation loses some ability to correctly resolve differences in
tight corners or grooves (see Figure 5), but can significantly im-
prove performance.

We can also remove the �n term, which accounts for change in nor-
mal, from the distance metric. Removing normals has the great-
est impact on performance, reducing the read bandwidth by 50%
and simplifying much computation. We have found that using only
depth has a minor quality impact, and seems like a good trade-off
for games; see Figure 4 for a comparison.

Summary: Deferred Shading
Pros

• Store everything you need in 1st pass

- normals, diffuse, specular, positions,...

- G-buffer

• After z-buffer, can shade only what is visible

Cons:
• transparency (only get one fragment per pixel)

• antialiasing (multisample AA not easy to adapt)

Standard game engines provide both forward and deferred paths

How to do all this in OpenGL

When you first fire up OpenGL, all fragment shader output is written to the
framebuffer that shows up in your window
• this is the default framebuffer

• it actually can contain multiple buffers: front and back for double-buffering; left and right for

stereo/HMD devices. You can control where fragment shader output goes using
glDrawBuffer()

For deferred shading and other multi-pass methods, you instead create a (non-
default) Framebuffer Object (FBO)
• you attach images to the FBO to receive fragment shader output

• color attachments (variable number) receive color data from gl_FragData[…] (gl_FragColor is just

an alias for gl_FragData[0])

• a depth attachment is required for z-buffering to function; stencil attachments are also possible

Framebuffer Object

FBO DEPTH_ATTACHMENT
STENCIL_ATTACHMENT
COLOR_ATTACHMENT0
COLOR_ATTACHMENT1

Renderbuffer

Texture Image

Texture Image

Can only be used 
by attaching to an FBO

Can be attached to an 
FBO, filled with data, and 
later sampled as a texture 
in another shading pass

All these images have to match in size!

