Monte Carlo lllumination

CS 5625 Lecture 4
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Surface illumination integral (as sum)

* BRDF tells you how light from a single direction is reflected
* Light coming from a small source behaves similarly

* What about light coming from everywhere?

— approximate incoming light with many small sources on a sphere
(the Iittle bug can't tell the difference...)

— reflected light i1s sum of reflected light due to each source
(each source has its size (X, brightness Lk, and direction W)

L,(wy) = Z Qi L fr (Wi, wr) |wr - N

B |

lreﬂlectecli light lmtensrty of BRDF  cosine factor
in direction W light source k
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Surface illumination integral

* Take the limit as the little area sources get smaller
— collection of separate brightnesses L« becomes a function Li(Ww)

— size of sources turns into an integration measure do

Lr(wr) — /S Li(wi)fr(wi,wr)\wi y n\da(wi)

2
+

“The light reflected to direction W Is the integral, over
the posrtive unit hemisphere, of the incoming light times
the BRDF times the incoming cosine factor, with respect
to surface area.”
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Monte Carlo Integration

Monte Carlo idea: desigh a random experiment whose
average outcome is the answer we want

* Integration:

I = /abf(x)dx

* want to define an “estimator” g(x) such that

Flgx)} =1 for random values of x

— that is, the expected value of g is the answer we seek
when x is chosen randomly.
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Unitorm sampling

e |f xis chosen uniformly at random from [aq, b]:

E{f(a / fla

* 5o, to get the desired answer, set

E{g(x)} = flzx)de =1 for x uniform in [a, b]
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Uniform sampling revisited

* Choosing points uniformly from [a, b] is sampling from a pdf
that has density | / (b — a).

— If we use an estimator g with uniformly sampled x:

b b
Bly@)} = [ g@lp(@)ds = | gla)de

— so If T Is the desired Integrand, the correct estimator Is

g9(x) = (b—a)f(x)
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Convergence rate

* We can get a better estimate of the expected value of g by
generating several values and averaging them.

1 n
G, = ~ ;g(a}z) where z; ~ p

e As n increases, the variance of G, decreases

o’ {Zg(xi)} =) {9} = No*{g}

019}
VN
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Nonuniform sampling

* Choosing points instead from some other distribution over
the interval [a, b] also works just as well

— if we use an estimator g with x ~ p(x)
b
Blg(@)} = [ ga)plo) da

— so If T Is the desired Integrand, the correct estimator Is

() = 12

p(x)

E{g(x)} — / m}?(dﬁ) dr — / f(il?)d$ ds |Oﬂg as p(x)

. p(x) IS not zero!
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Monte Carlo illumination

* Monte Carlo integration is widely used to compute
illumination integrals

— Integrand: product of illumination and BRDF and cosine factor

Ly (w,) = /S L) fr (@i, - mldo(w)

— If we choose; '

Li(wi) fr (Wi, wy) |wi -y
p(wi)

— then: E{g(wz)} — LT (wr) (as long as p > 0 over the whole hemisphere)

w; ~ p(w;) andset: g(w;) =

— this Is an algorithm for computing L !
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-xample: uniform sampling

* |If we select directions uniformly over the hemisphere...

— then: (see notebook

for how. ..

p(wi) ~ 1/(27) >

— 20t because that is the area (solid angle) of the hemisphere; that
way, probabllity integrates to 1

— the correct estimator Is;
Li(w;) fr(wi, wy)|w; - 1

p(w;)
— ZWLi(wi)fT(wi,wrﬂwi y ﬂ‘

g(wi) =
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-xample: cosine-proportional sampling

(see notebook

* If we select directions proportional to |w; - n| for how...)

— then:
p(wi) ~ |wi - n|/m
— factor of & needed so that probabllity integrates to 1

— the correct estimator Is:

Li(w;) fr(wi, wr)|w; - m
p(wz‘)
= l;(w;)fr(ws,ws)

g(w;) =
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Rendering diffuse surface, env. lighting

Start with integral

L, = /S L;(w) kg - (w-n)do(w)

2
+

— choose a probability density on hemisphere: uniform

Fw) = Li(w) ka-(w-m)  pw) = = gw) = 1) _onL(w)ka(w )

p(w)

— better probabllity density: proportional to cos theta

050 giw) = L) _ L (wks

f(w)=L;(w) - kqg-(w-n) p(w) = — g (W)
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Code: diffuse surface / environment light

Color shade(x, k_d, N) {
result = black;
w = sample_hemisphere(N);
if Ishadow(x, w) {
L_env = environment.eval(w)
result +=L_env * k_d
* dot(w, N) * 2m,
}

return result;

}
uniform hemisphere sampling
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Color shade(x, k_d, N) {
result = black;
w = sample_cos_hemisphere(N);
if Ishadow(x, w) {
L_env = environment.eval(w)
result+=L_env * k d * m;
}

return result;

}
cosine-proportional sampling
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Rendering any surface, env. lighting

Start with integral

L, = /s Li(w) - fr(v,w)-(w-n)do(w)

2
+

— one choice of pdf: proportional to BRDF

Fw)=L;(w)- frlv,w)-(w-n) p(w)= : gw) = —>—==M(v)L(w) - (w-n)

— another choice: proportional to environment brightness (this
generalizes uniform)

F(w) = Litw) - fo(v,w) - (wom)  plw) = —Li(w)  g(w) = "0 = Mf(v,w)- (w-n)
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Code: any surface / environment light

Color shade(x, V, brdf, N) {

result = black;
w, p_w = environment.sample(N);
if Ishadow(x, w) {

L_env = environment.eval(w)

f r=Dbrdf.eval(V, w);

result +=L_env *f r

* dot(w, N) / p_w;

}

return result;

}
sampling by lighting environment
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Color shade(x, V, brdf, N) {
result = black;
w, p_w = brdf.sample(N);
if Ishadow(x, w) {
L_env = environment.eval(w)
f r=Dbrdf.eval(V, w);
result+=L_env *f r
* dot(w, N) / p_w;
}

return result;

}
sampling by BRDF
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llumination from area lights

* Area sources defined by a surface and a radiance L;

* For illumination from an area source, the same math applies

— light defines the incident radiance distribution (directions that hit
the light have radiance Ls, others zero)

— sampling by BRDF Is a poor choice unless light Is very large

 Choosing samples according to L;

— there are ways to do this exactly for
particular shapes

— simple, general way Is to choose points
randomly on the light using a pdf over
surface area

— to make this work out easily, rewrite
llumination integral as an area integral
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Lighting by Integrating over a source

|. illumination from a point source

cos 0,

L.=1-f.(v,w) " =1-fr(v,w)-

r2

L, = LSAS ) f’r(va) |

3. illumination from a bunch of small area sources

ny - wil [y - wi|

AA;
Ix — yil?

Lr — zn:Ls ) fr(vawi) .
=1

4. illumination from a large area source

_ v (). B W) 0y - w(y)] w
Lr_/SLS Folv, w(y)) =y dA(y) (¥)
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Rendering any surface, area source lighting

Start with integral

_ (V. W . ny - w(y)| |ny - w(y)|
LT_LLS fr(v,w(y)) |x — ]2 dA(y)

— choose a probability density on S: uniform

=Ls- fr(v,w
f(y) fr(v,w(y T
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Code: any surface / area light
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Color shade(x, V, brdf, N) {
result = black;
for light in lights {
y, p_y = light.sample(x);
if Ishadow(x, ¥) {
L =normalize(y - X);
f r=brdf.eval(V, L);
result += light.radiance * f r
* dot(L, N) * dot(-L, light.normal)
/ distSqr(x, y)
/ P_Y;
}
}

return result;

}

© 2022 Steve Marschner ¢ 19



