03 Overview of Shading for Real Time

Steve Marschner CS5625 Spring 2022

- 1. Light reflection physics
- 2. The traditional basics
- 3. Modern shading basics

Light reflection physics

Sources of light

Point sources

· light from points in the local scene; can be directionally varying—spotlights

Area sources

· light from geometry in the local scene; can be spatially varying—stained glass windows

Directional sources

· light from points far outside the local scene; aka. from fixed directions—e.g. sun

Environment lighting

· light from everything far outside the local scene—e.g. env. maps, sun-sky models

Indirect lighting

· light reflected from other surfaces—e.g. lighting from torchiere lamp

Simple kinds of scattering

Ideal specular reflection

- incoming ray reflected to a single direction
- mirror-like behavior
- arises at smooth surfaces

Ideal specular transmission

- incoming ray refracted to a single direction
- glass-like behavior
- arises at smooth dielectric (nonmetal) surfaces

Ideal diffuse reflection or transmission

- outgoing radiance independent of direction
- arises from subsurface multiple scattering

Ideal specular reflection from metals

Ideal reflection and transmission from smooth dielectrics

Water (ior = 1.33)

Diamond (ior = 2.4)

Two diffuse surfaces

Wenzel Jakob / Mistuba

More complex scattering

Rough interfaces

- metal interfaces: blurred reflection
- dielectric interfaces: blurred transmission

Subsurface scattering

- · liquids—milk, juice, beer, ...
- · coatings—paint, glaze, varnish, ...
- · natural materials—wood, marble, ...
- · biological materials—skin, plants, ...
- low optical density leads to translucency

Reflection from rough metal interfaces

Cu ($\alpha = 0.1$)

Al (anisotropic)

Soft shadows

Point lights cast hard shadows

Area lights cast soft shadows

Shadows from environment lights

Light reflection: full picture

all types of reflection reflect all types of illumination

- · diffuse, glossy, mirror reflection
- · environment, area, point illumination

Categories of illumination

	diffuse	glossy	mirror
point/directional	hard shadows	simple specular highlight	point reflections
area	soft shadows	shaped specular highlight	reflected image of source
environment	soft shadows	blurry reflection of environment	reflected image of environment
indirect	soft indirect illumination	blurry reflections of other objects	reflected images of other objects

The traditional basics

Diffuse (Lambertian) shading, point light

Diffuse + specular (Phong) shading, point light

Diffuse + specular + ambient shading

$$L = c_d \, c_l \, \cos \theta \\ + c_s \, c_l \, (\cos \alpha)^p \\ + c_d \, c_a \\ \text{surface's diffuse color}$$

Texture mapping the diffuse color

Mirror reflection: texture map the reflected light

Hand with Reflecting Sphere. M. C. Escher, 1935. lithograph

Reflection mapping with environment maps

mirror-ball format

latitude-longitude (spherical) format

cubemap format

Shadows as depth cue

Shadows as anchors

Pixar—*Toy Story* (1995)

Categories of illumination

	diffuse	glossy	mirror
point/directional	hard shadows	simple specular highlight	point reflections
area	soft shadows	shaped specular highlight	reflected image of source
environment	soft shadows	blurry reflection of environment	reflected image of environment
indirect	soft indirect illumination	blurry reflections of other objects	reflected images of other objects

= easy to compute using traditional basics

Modern shading basics

"Physics based rendering" in real time

One hears a lot about "PBR" — what does this boil down to?

1. Using reflection models designed to resemble reality

- normally Microfacet models
- models should be energy conserving (reflected energy < incident energy)

2. Making some effort to use physical units consistently

- point lights have inverse-square falloff; area lights and environment lights are consistent
- use floating point pixels when appropriate (allows high dynamic range)
- pay careful attention to gamma correction / sRGB quantization

3. Generally, thinking of shading as approximating a real illumination setup

Reflection models

Lambertian diffuse

fine as is, physically plausible

Mirror specular

fine with Fresnel factor

Glossy specular

needs upgrade

Specular reflection from metal

Reflectance does depend on angle

- but not much
- safely ignored in basic rendering

Specular reflection from glass/water

- Dependence on angle is dramatic!
 - about 4% at normal incidence
 - always 100% at grazing
 - remaining lightis transmitted
- This is important for proper appearance

Fresnel's formulas

- They predict how much light reflects from a smooth interface between two materials
 - usually one material is empty space

$$F_p = \frac{\eta_2 \cos \theta_1 - \eta_1 \cos \theta_2}{\eta_2 \cos \theta_1 + \eta_1 \cos \theta_2}$$

$$F_s = \frac{\eta_1 \cos \theta_1 - \eta_2 \cos \theta_2}{\eta_1 \cos \theta_1 + \eta_2 \cos \theta_2}$$

$$R = \frac{1}{2} (F_p^2 + F_s^2)$$

- R is the fraction that is reflected

-(1-R) is the fraction that is transmitted

where $\eta_1 \sin \theta_1 = \eta_2 \sin \theta_2$

note: the formula in the notes and assignment is different but equivalent.

Types of glossy reflection models

Ad hoc formulas

· e.g.Phong

Physics-based analytical models

- Microfacet-based models
- Kirchhoff-based models

Microfacet BRDF Model

The microfacet idea

- surface modeled as random collection of planar facets
- an incoming ray hits exactly one facet, at random

Key input: probability distribution of facet angle

Common choices:

- Gaussian (Beckmann)
- GGX (orig. for glass, but has become broadly used)

Gaussian (Beckmann) GGX (Trowbridge-Reitz)

Reflection models

Lambertian diffuse

fine as is, physically plausible

Mirror specular

fine with Fresnel factor

Glossy specular

needs upgrade—Microfacet

Sources of light

Point and directional lights

Direct shading computations, simple shadow maps

Area lights

- shading: special solutions for particular shapes
- shadows: blurred point-light shadows or pre-baked

Environment lights

- shading: various methods
- · shadows: approx. with directional lights, pre-bake, or use ambient occlusion

Indirect light

- mirror: dynamic reflection maps
- · diffuse: approximate with ambient occlusion or pre-bake

Shading from point and directional lights

Shading is straightforward

Shadow maps work for shadows

- shadow map resolution is always an issue
- · if shadows are jagged, need more resolution or different projection

Single shadow map, 2048x2048

Four 1024x1024 shadow maps (equal memory)

n Zhang, Chinese U. Hong Kong

Shading from area lights

Traditionally not really doable in real time

· can approximate small area lights with multiple point lights

Some methods work for particular shapes

- polygons and spheres
- exact formulas for diffuse
- good approximations available for microfacet

Shadows from area lights

For small lights, blur the results of shadow mapping

not very accurate, but OK in many settings

For larger lights, one approach is pre-baked shadows

- for geometry that will not move, shadows are fixed
- compute ahead of time, stash in texture map

In near future, ray tracing can be used for accurate shadows

Hard Shadows

Soft Shadows

Shadow Hardening on Contact

Percentage-closer soft shadows

-ernando, NVidia whitepaper ~2005

Shadow baking

Irradiance texture computed using rectangular light

Floor shaded with irradiance from shadow texture

Environment lights

A key tool for modern lighting

especially in outdoor scenes

Remember they are infinitely far away

you can never get closer to the sky by moving around the scene

In physically based context, should be high dynamic range

 Consistent lighting requires environments to illuminate everything (not just be reflected in mirror surfaces)

Provided as texture maps or as analytical sun-sky models

A spherical panorama, aka. enironment map

Shading with environment lighting

Mirror surfaces

standard reflection mapping

Diffuse surfaces

- shading is a very smooth function of the surface normal
- can be handled cheaply using irradiance maps

Glossy surfaces

- surface color is a local average of the environment
- not simple, but approaches exist based on pre-blurred environments (next slide)
- in near future, ray tracing can be used for accurate glossy reflections

Shadows from environment lights

Shadows from very large / environment sources are very soft

- can be beautiful and subtle tools for anchoring objects in 3D
- however, there are not many good and fast methods to compute them

One approach: approximate with directional lights

Ambient occlusion

The extreme case of large light sources is a constant environment

- ordinarily might call this "shadowless" lighting
- but the subtle shadows are still very important

This extreme case allows for some handy approximations

- · for diffuse surfaces, shadowing depends only on how much "sky" a point can see
- this "fraction of sky" is called ambient occlusion

a convex diffuse object in a constant-radiance environment

a non-convex diffuse scene under constant-radiance illumination

a non-convex object in a constant-radiance environment with no shadowing

a non-convex diffuse object in a constant-radiance environment

a non-convex diffuse scene under constant-radiance illumination

Computing ambient occlusion

Can pre-bake AO

- basically the same idea as a baked shadow for an area light
- can store AO as a vertex attribute (quality depends on triangle sizes)
- · ...or in a texture map (can be higher quality but requires texture coordinates, lots of textures)

Can compute approximate AO in real time

- using clever tricks with the depth buffer
- quite approximate
- has limitations (only can be shadowed by visible surfaces, etc.)
- but rather effective in practice, fairly widely used

https://developer.nvidia.com/optix-prime-baking-sample

Irradiance map + SSAO

McGuire et al. HPG '11 10.1145/2018323.2018327

Indirect light

Mirror reflections

- for small/bounded objects: dynamic cubemaps
- for better results in near future:
 use ray tracing

Diffuse reflections

- ambient obscurance
- variant of ambient occlusion
- difference: fraction of rays
 that escape to a particular
 distance

Sources of light

Point and directional lights

Direct shading computations, simple shadow maps

Area lights

- shading: special solutions for particular shapes
- shadows: blurred point-light shadows or pre-baked

Environment lights

- shading: various methods
- · shadows: approx. with directional lights, or use ambient occlusion (baked or SSAO)

Indirect light

- mirror: dynamic reflection maps
- · diffuse: approximate with ambient occlusion or pre-bake light maps

Categories of illumination redux

	diffuse	glossy	mirror
point/directional	hard shadows	simple specular highlight	point reflections
area	soft shadows	shaped specular highlight	reflected image of source
environment	soft shadows	blurry reflection of environment	reflected image of environment
indirect	soft indirect illumination	blurry reflections of other objects	reflected images of other objects

= easy to compute using standard shaders

= can be approximated pretty well