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These notes are about how we describe optical reflection at surfaces, radio-
metrically.

We’ve discussed how light travels through empty space. Today we look
at how it interacts with stuff in the scene—after all, if the light just travels
unimpeded the pictures will be pretty uninteresting.

1 Scattering

Scattering is when light coming from one direction ends up going into a range
of directions. Specular interactions with smooth metal and glass surfaces is not
scattering; it’s reflection or refraction. I use the term “ideal specular” when I
want to be clear I’m talking about this kind of one-direction-in, one-direction-
out phenomenon.

There are three kinds of descriptions of scattering that are widely used in
graphics. BSDF, Bidirectional Scattering Distribution Function: describes scat-
tering at infinitesimally thin surfaces (either the surface of a thick object or a
thin object like a window or a sheet of paper). BSDF describes scattering both
back to the same side (reflection, BRDF) and through to the other side (trans-
mission, BTDF). This is a function of a point (on a surface) and two directions
(incoming and outgoing, or incident and exitant).

In these notes I’ll mostly be concerned with giving precise definitions of these
quantities.

2 BRDF

Think of a surface, with light incident on it at a particular point. Let’s consider
just the light arriving from an infinitesimal solid angle dωi around the incoming
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direction ωi. If the radiance in this solid angle is Li, then the (infinitesimal)
irradiance on the surface is dEi(ωi) = Liµ(dωi). (Remember that the projected
solid angle measure µ has a factor of n · ωi built into it, so that it assigns a
smaller measure to more grazing solid angles.)

If this is a scattering surface (one that sends light to a range of directions,
not just a single direction as a mirror would), this produces a distribution of in-
finitesimal reflected radiance dLr(ωr) over the hemisphere of outgoing directions
ωr.

The BRDF is the ratio of the reflected radiance to the incident irradiance:

fs(ωi, ωr) =
dLr(ωr)

dEi(ωi)

Now, if we want to get the (finite) radiance resulting from illumination from
some distribution Li(ωi) we can just add up the contributions of illumination
from differential solid angles all over the hemisphere—that is, we integrate:

Lr(ωr) =

∫
H2

fr(ωi, ωr)Li(ωi)dµ(ωi)

Operational version. If you like a concrete operational definition of this as a
derivative, think of the experiment of illuminating the surface with a small area
light source of radiance Li (maybe a frosted light bulb with a dimmer to control
Li and an adjustable iris in front of it to control the solid angle Ωi it illuminates)
and measuring the reflected radiance Lr with a camera. The reflected radiance
will be directly proportional to both the radiance of the source and, in the
limit for small solid angles, the size of the solid angle. The BRDF is just the
constant of proportionality between Lr and Liµ(Ωi)—it is the derivative of Lr

with respect to Ei.

Mathematical version. If you like a more mathematical definition, you can
think of light reflection as an operation on light distributions. You hand an
incident radiance distribution Li : H2 → IR to the BRDF and it hands back
a reflected distribution Lr : H2 → IR. Because of the superposition principle,
this is a linear operator R on functions over the hemisphere:

Under reasonable conditions on the operator and the functions, this type of
operator can always be expressed as an integral: the output is an integral of the
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input multiplied by a kernel function.

R : (H2 → IR)→ (H2 → IR)

: Li 7→
∫
H2

fr(ωi, ·)Li(ωi)dµ(ωi)

We call this kernel function the BRDF.

2.1 BRDFs as densities

The BRDF is a function of four variables, which makes it a bit hard to think
about sometimes. If we think of it in terms of one argument at a time, that can
help.

For light arriving from ωi, the BRDF fr(ωi, ·) is the density of reflectance
over the outgoing hemisphere. Reflectance is a ratio of that tells the fraction
of total irradiance reflected, and the BRDF describes the distribution of this
reflectance over the hemisphere by giving the density function.

If we fix the outgoing direction instead, the function fr(·, ωr) is another kind
of density. It describes the distribution of something we might call “sensitivity”
over the incoming hemisphere. By this I mean: the radiance in direction ωr

depends on light coming from many directions, and fr(ωi, ωr) tells you how
sensitive it is to light from the particular direction ωi.

2.2 Units of BRDF

One question that always comes up is, What does that mean, that the BRDF
has units of inverse steradians? Why can’t it just be unitless, since it relates
radiance out to radiance in? I have three answers to this question.

An answer that also helps explain the name: I observed above that the BRDF
is a density function that measures the density of reflectance (dimensionless
ratio) over the hemisphere (measured in terms of solid angle). This is a density
just like population density (people per square kilometer) or mass density in a
solid (grams per cubic centimeter), so it has units of “reflectance per unit solid
angle.” But since reflectance is dimensionless we state this unit as just “per
unit solid angle” or “one over steradians” (1/sr) or “inverse steradians” (sr−1).

2.3 Properties of the BRDF

Not every function of two directions makes for a good BRDF. There are two
properties all BRDFs have, physically: reflection conserves energy, and they
obey reciprocity.
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Energy conservation The basic requirement of energy conservation is that
when a surface is illuminated with total irradiance Ei then the reflected radiant
exitance Mr is less than Ei. This has to be true for all distributions of irradiance,
so it has to be true of irradiance coming from a small solid angle Ωi in the
direction ωi. If we integrate all the outgoing light for this case we have the
radiant exitance:

Lr(ωr) = fr(ωr, ωi)Li(ωi)µ(Ωi) = fr(ωr, ωi)Ei

Mr =

∫
H2

Lr(ωr) dµ(ωr)

=

∫
H2

fr(ωr, ωi) dµ(ωr)

= Ei

∫
H2

fr(ωr, ωi) dµ(ωr).

So radiant exitance is less than incident irradiance exactly when∫
H2

fr(ωr, ωi) dµ(ωr) < 1.

Here is a less hand-wavey proof that this guarantees energy conservation for
arbitrary incident distributions:

Lr(ωr) =

∫
H2

fr(ωr, ωi)Li(ωi) dµ(ωi)

Mr =

∫
H2

Lr(ωr) dµ(ωr)

=

∫
H2

∫
H2

fr(ωr, ωi)Li(ωi) dµ(ωi) dµ(ωr)

=

∫
H2

Li(ωi)

[∫
H2

fr(ωr, ωi) dµ(ωr)

]
dµ(ωi)

<

∫
H2

Li(ωi) dµ(ωi) = Ei

Reciprocity This is part of a larger principle of reversibility of light transport
paths, known as Helmholtz reciprocity or duality. In the context of the BRDF,
the implication is that BRDFs are invariant with respect to swapping their
arguments. That is:

fr(ω1, ω2) = fr(ω2, ω1).

A physical interpretation is that the sensitivity distribution with the observer
at a given position is the same as the reflected light distribution with the source
at the same position.
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This principle is true in reality, making it a great sanity-checking tool for
measurements, and we try to ensure the BRDF models we invent are reciprocal,
though most rendering systems will still work with non-reciprocal BRDFs.

2.4 BTDF and BSDF

I have so far only talked in detail about the BRDF, but this is only half of
the function—the BSDF—that I promised to talk about. The other half is the
BTDF, and there is really nothing new at all: its definition is identical to the
BRDF, but without the constraint that the two vectors are on the same side of
the surface. The BTDF is radiance over irradiance, just like the BRDF.

Nomenclature note: The R stands for “reflectance”; the T stands for “trans-
mittance.” The “-ance” means “per unit input.” I’m not sure why we don’t
tend to use the word “scatterance” for the BSDF, which is used in some other
fields; we tend to let the S stand for “scattering.”
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