CS 5625 Lec 2: Shading Models

Kavita Bala Spring 2013

Next few weeks

- Shading Models
 - Chapter 7
- Textures
- Graphics Pipeline

To compute images...

- Light Emission
 - What are the light sources?
- Light Propagation
 - Fog/Clear?
- Light Reflection
 - Interaction with media

© Kavita Bala, Computer Science, Cornell University

Types of Lights

- Directional lights
 - E.g., sunlight
 - Light vector fixed direction

- E.g., bulbs
- Light position fixed

Types of Lights

- Spot lights: Like point light, but also
 - Cut-off angle
 - Attenuation

© Kavita Bala, Computer Science, Cornell University

Types of Lights

Area Lights: generate soft shadows

Types of Light

Environment Maps

© Kavita Bala, Computer Science, Cornell University

To compute images...

- Light Emission
 - What are the light sources?
- Light Propagation
 - Fog/Clear?
- Light Reflection
 - Interaction with media

Bidirectional Reflectance Distribution Function (BRDF)

© Kavita Bala, Computer Science, Cornell University

Surface reflective characteristics

- Spectral distribution
 - Responsible for surface color
 - Tabulate in independent wavelength bands, or RGB
- Spatial distribution
 - Material properties vary with surface position
 - Texture maps
- Directional distribution
 - BRDF
 - Tabulation is impractical because of dimensionality

Radiometry

- Radiometry: measurement of light energy
- Defines relation between
 - Power
 - Energy
 - Radiance
 - Radiosity

© Kavita Bala, Computer Science, Cornell University

Radiometric Terms

- Power: energy per unit time
- Irradiance: Incident power per unit surface area
 - From all directions
 - Watt/m²
- Radiosity: Exitant power per unit surface area
 - Same units

Radiance

- Radiance is radiant energy at x in direction θ: 5D function
 - Power
 - per unit projected surface area
 - per unit solid angle

- units: Watt / m².sr

© Kavita Bala, Computer Science, Cornell University

Why is radiance important?

 Response of a sensor (camera, human eye) is proportional to radiance

 Pixel values in image proportional to radiance received from that direction

Ideal Diffuse Reflection

- Characteristic of multiple scattering materials
- An idealization but reasonable for matte surfaces
- Basis of most radiosity methods

Ideal Diffuse

Lambert's Law

$$I_{diffuse} = I_{light} k_d cos(\theta)$$

 $I_{diffuse} = I_{light} k_d N.L$

Ideal Specular Reflection

- Calculated from Fresnel's equations
- Exact for polished surfaces
- Basis of early ray-tracing methods

© Kavita Bala, Computer Science, Cornell University

Directional Diffuse Reflection

- Characteristic of most rough surfaces
- Described by the BRDF

Classes of Models for the BRDF

- Plausible simple functions
 - Phong 1975;
- Physics-based models
 - Cook/Torrance, 1981; He et al. 1992;
- Empirically-based models
 - Ward 1992

© Kavita Bala, Computer Science, Cornell University

Phong Shading Model

- Classic Phong
 - Ambient
 - Diffuse
 - Specular (Phong highlight)
 - Also fog and transparency possible
- For each light evaluate above

Specular

- Specular
 - Simulates surface smoothness
 - (max {N · H, 0})shininess

$$-H = \frac{L+V}{||L+V||}$$

© Kavita Bala, Computer Science, Cornell University

Phong Reflection Model

$$Diffuse = k_d(N.L)$$
$$Specular = k_s(R.V)^n$$

The Blinn-Phong Model

$$Diffuse = k_d(N.L)$$
$$Specular = k_s(N.H)^n$$

© Kavita Bala, Computer Science, Cornell University

Phong Shading Model

I = ambient + diffuse + specular

$$I = k_a I_a + k_d I_d(N.L) + k_s I_s(N.H)^n$$

- We want all the I's and k's to be functions of (R,G,B)
 - I's are function of light
 - k's are function of material
- Sum over all lights

Terms in Phong

- Ambient
 - "Fake" global illumination
 - Fixed from all directions
 - Makes it not black

Phong	$\rho_{ambient}$	$\rho_{ m diffuse}$	Pspecular	$ ho_{ m total}$	
$\phi_i = 60^{\circ}$	•				
φ _i = 25°	4				
$\phi_i = 0^\circ$	•				
© Kavita Bala, Computer Science, Cornell University					

The Phong Model

- Computationally simple
- Visually pleasing

© Kavita Bala, Computer Science, Cornell University

Real photographs

Phong model

Phong: Reality Check

Phong model

Physics-based model

- Doesn't represent physical reality
 - Energy not conserved
 - Not reciprocal
 - Maximum always in specular direction

© Kavita Bala, Computer Science, Cornell University

Reciprocity

- Interchange L and V
 - Photon doesn't know its direction
 - Same behavior
- Blinn-Phong vs. Phong

Classes of Models for the BRDF

- Plausible simple functions
 - Phong 1975;
- Physics-based models
 - Cook/Torrance, 1981; He et al. 1992;
- Empirically-based models
 - Ward 1992, Lafortune model

© Kavita Bala, Computer Science, Cornell University

Motivation for Cook-Torrance

- Plastic has substrate that is white with embedded pigment particles
 - Colored diffuse component
 - White specular component
- Metal
 - Specular component depends on metal
 - Negligible diffuse component

Cook-Torrance BRDF Model

- Phong: too smooth
- A microfacet model
 - Surface modeled as random collection of planar facets
 - Incoming ray hits exactly one facet, at random

Facet Reflection

- Input: probability distribution of facet angle
- H vector used to define facets that contribute

Cook-Torrance BRDF Model

"Specular" term (really directional diffuse)

$$f_s = \frac{\rho_s}{\pi} \frac{FDG}{N.LN.V}$$

Cook-Torrance BRDF Model

Facet distribution

© Kavita Bala, Computer Science, Cornell University

Facet Distribution

- ullet D function describes distribution of H
- Formula due to Beckmann
 - Statistical model
 - Alpha is angle between N and H
 - Intuitively, deviation of microgeometry from macro normal
 - m is RMS slope of microfacets: large m means more spread out reflections

$$D = \frac{1}{4m^2\cos^4\alpha}e^{-\left[\frac{\tan\alpha}{m}\right]^2}$$

Masking and Shadowing

$$G = min[1, \frac{2N.HN.V}{V.H}, \frac{2N.HN.L}{V.H}]$$

© Kavita Bala, Computer Science, Cornell University

Fresnel Reflection Properties

- Gives coefficients when light moves between different media
- Polarization
- Captures behavior of metals and dielectrics
- Explains why reflection increases (and surfaces appear more "mirror"-like) at grazing angles

Fresnel Equations

$$\eta_1 \sin(\theta_1) = \eta_2 \sin(\theta_2)$$

$$F_p = \frac{\eta_2 \cos(\theta_1) - \eta_1 \cos(\theta_2)}{\eta_2 \cos(\theta_1) + \eta_1 \cos(\theta_2)}$$
$$F_s = \frac{\eta_1 \cos(\theta_1) - \eta_2 \cos(\theta_2)}{\eta_1 \cos(\theta_1) + \eta_2 \cos(\theta_2)}$$

© Kavita Bala, Computer Science, Cornell University

Fresnel Reflectance

$$F = \frac{F_s + F_p}{2}$$

for unpolarized light

- Equations apply for metals and nonmetals
 - for metals, use complex index : n + ik
 - for nonmetals/dieletrics, k = 0

Schlick's approximation of Fresnel

$$R_F(\theta) = R_F(0) + (1 - R_F(0))(1 - \cos(\theta))^5$$

For dielectric

$$R_F(0) = (\frac{\eta - 1}{\eta + 1})^2$$

		/	\cap	١
П	F	()	U	1

Insulator: Water	0.02, 0.02, 0.02		
Insulator: Plastic	0.03, 0.03, 0.03		
Insulator: Glass	0.08, 0.08, 0.08		
Insulator: Diamond	0.17, 0.17, 0.17		
Metal: Gold	1.00, 0.71, 0.29		
Metal: Silver	0.95, 0.93, 0.88		
Metal: Copper	0.95, 0.64, 0.54		
Metal: Iron	0.56, 0.57, 0.58		
Metal: Aluminum	0.91, 0.92, 0.92		

© Kavita Bala, Computer Science, Cornell University

Rob Cook's vases

Classes of Models for the BRDF

- Plausible simple functions
 - Phong 1975;
- Physics-based models
 - Cook/Torrance, 1981; He et al. 1992;
- Empirically-based models
 - Ward 1992, Lafortune model

© Kavita Bala, Computer Science, Cornell University

White paint Blue paint Commercial aluminum Blue plastic (Cavita Bala, Computer Science, Cornell University)

Ward Model

- Physically valid
 - Energy conserving
 - Satisfies reciprocity
 - Easy to integrate
- Based on empirical data

© Kavita Bala, Computer Science, Cornell University

Ward Model

Isotropic and anisotropic materials

Ward Model: Isotropic

$$f_s = \rho_s \frac{1}{4\pi m^2} \frac{1}{\sqrt{N.LN.V}} e^{-\frac{\tan^2\theta_h}{m^2}}$$

- where,
 - m (usually α) is surface roughness

© Kavita Bala, Computer Science, Cornell University

Ward Model: Anisotropic

$$f_s = \rho_s \frac{1}{4\pi m_x m_y} \frac{1}{\sqrt{N.LN.V}} e^{-tan^2 \theta_h (\frac{\cos^2 \phi_h}{m_x^2} + \frac{\sin^2 \phi_h}{m_y^2})}$$

$$f_s = \rho_s \frac{1}{4\pi m_x m_y} \frac{1}{\sqrt{N.LN.V}} e^{-2\frac{(\frac{H.\hat{x}}{m_x})^2 + (\frac{H.\hat{y}}{m_y})^2}{1+N.H}}$$

- where,
 - $-m_x$, m_y are surface roughness in \hat{x} , \hat{y}
 - $-\hat{x}$, \hat{y} are mutually perpendicular to the normal

Normals for Illumination

- In polygonal models, each facet has normal
- But, faceted look (N constant)
 - Directional light (constant diffuse illumination)

© Kavita Bala, Computer Science, Cornell University

Shading Normals

- Normal matches the object (not the polygons)
 - Assume polygons are piecewise smooth approximation
 - Ideally provided by underlying object
 - Otherwise, average normals of nearby facets

Shading Models

- Fast, easy: Phong
- Physically-based model: Cook-Torrance
- Empirically-based model: Ward
- Next time: textures

© Kavita Bala, Computer Science, Cornell University

Books

Email about RTR (3rd ed.)

