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Next few weeks

- Shading Models
— Chapter 7

- Textures

 Graphics Pipeline
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To compute images...

- Light Emission
— What are the light sources?

- Light Propagation
— Fog/Clear?

- Light Reflection
— Interaction with media
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Types of Lights

- Directional lights \\
— E.g., sunlight k

— Light vector fixed direction

» Point lights

~E.g., bulbs  §0)

— Light position fixed
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Types of Lights

- Spot lights: Like point light, but also
— Cut-off angle
— Attenuation

1 GLUT spotlight swine
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Types of Lights

* Area Lights: generate soft shadows
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Types of Light

- Environment Maps
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To compute images...

* Light Emission
— What are the light sources?

- Light Propagation
— Fog/Clear?

- Light Reflection
— Interaction with media
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Bidirectional Reflectance
Distribution Function (BRDF)

specular

directional
diffuse

uniform diffuse £
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Surface reflective characteristics

+ Spectral distribution
— Responsible for surface color
— Tabulate in independent wavelength bands, or RGB

- Spatial distribution
— Material properties vary with surface position
— Texture maps

* Directional distribution
— BRDF
— Tabulation is impractical because of dimensionality
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Radiometry

- Radiometry: measurement of light energy

- Defines relation between
— Power
— Energy
— Radiance
— Radiosity
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Radiometric Terms

- Power: energy per unit time

- Irradiance: Incident power per unit surface
area

— From all directions \\. l
— Watt/m2

- Radiosity: Exitant power per unit surface area
— Same units
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Radiance

- Radiance is radiant energy at x in
direction 0: 5D function

— Power
= per unit projected surface area
= per unit solid angle

— units: Watt / m2.sr
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Why is radiance important?

- Response of a sensor (camera, human
eye) is proportional to radiance

- Pixel values in image proportional to
radiance received from that direction
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Materials - Three Forms

Ideal diffuse
/ (Lambertian)

\ é Ideal

specular

Directional
diffuse
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|[deal diffuse |deal Directional
(Lambertian)  specular diffuse

e o~ X
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|deal Diffuse Reflection

- Characteristic of multiple scattering
materials

- An idealization but reasonable for matte
surfaces

- Basis of most radiosity methods

|deal Diffuse

 Lambert’s Law

e N

Liif fuse = Liignikacos(0)
Liif fuse = liightkaN. L
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Ideal Specular Reflection

- Calculated from Fresnel’s equations
- Exact for polished surfaces
- Basis of early ray-tracing methods
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Directional Diffuse Reflection

- Characteristic of most rough surfaces
- Described by the BRDF
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Classes of Models for the BRDF

- Plausible simple functions
— Phong 1975;

* Physics-based models
— Cook/Torrance, 1981; He et al. 1992;

- Empirically-based models
— Ward 1992
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Phong Shading Model

Classic Phong

— Ambient

— Diffuse

— Specular (Phong highlight)

— Also fog and transparency possible

- For each light evaluate above

© Kavita Bala, Computer Science, Cornell University




Specular

- Specular
— Simulates surface smoothness
— (max {N . H, 0})shininess
_ L+V
)
| L+ V]| H Half-Vector

Specular
__—
\'}
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Phong Reflection Model

Mirror
Reflection
\ R Vector

Vv

Specular

Dif fuse = ky(N.L)

Specular = ky(R.V)"
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The Blinn-Phong Model

H Half-Vector

Specular
_—
\'}

Dif fuse = ky(N.L)
Specular = k(N.H)"
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Phong Shading Model

| = ambient + diffuse + specular
[ = /‘7(1](1 T /\7(/[(/(1\7.[/) T l‘\[\( j\;’iH)”

- We want all the I's and £’s to be functions
of (R,G,B)
— I’s are function of light
— Kk’s are function of material

- Sum over all lights
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Terms in Phong

- Ambient
— “Fake” global illumination

— Fixed from all directions
= Makes it not black
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ps mbient
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The Phong Model

- Computationally simple
* Visually pleasing
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Phong: Reality Check

Real photographs
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Phong: Reality Check

Phong model Physics-based model

15 1 05 0 05 1 15 2 25 3 35 4 45 5 55 6

- Doesn’t represent physical reality
— Energy not conserved
— Not reciprocal
— Maximum always in specular direction
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Reciprocity

* Interchange L and V
— Photon doesn’t know its direction
— Same behavior

» Blinn-Phong vs. Phong
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Classes of Models for the BRDF

- Plausible simple functions
— Phong 1975;

* Physics-based models
— Cook/Torrance, 1981; He et al. 1992;

- Empirically-based models
— Ward 1992, Lafortune model
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Motivation for Cook-Torrance

- Plastic has substrate that is white with
embedded pigment particles

— Colored diffuse component
— White specular component

- Metal
— Specular component depends on metal
— Negligible diffuse component
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Cook-Torrance BRDF Model

- Phong: too smooth

- A microfacet model

— Surface modeled as random collection of
planar facets

— Incoming ray hits exactly one facet, at random
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Facet Reflection

- Input: probability distribution of facet angle

« Hvector used to define facets that
contribute

© Kavita Bala, Computer Science, Cornell University

Cook-Torrance BRDF Model

- “Specular” term (really directional diffuse)

ps FDG
~ ©N.LN.V

fs —
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Cook-Torrance BRDF Model

Facet distribution

F DG

=/
\
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Facet Distribution

e D function describes distribution of H

- Formula due to Beckmann
— Statistical model

— Alpha is angle between N and H
= Intuitively, deviation of microgeometry from macro
normal
—m is RMS slope of microfacets: large m
means more spread out reflections

D 1 6f[tzm o;}z

dAm2costo m
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Cook-Torrance BRDF Model

Masking/shadowing
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Masking and Shadowing

2N.HN.V 2N.HN.L
VH ' VH

G = min|l, ]

-
W \\\\\ — -
Y=
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Fresnel Reflection Properties

Gives coefficients when light moves
between different media

Polarization

Captures behavior of metals and
dielectrics

Explains why reflection increases (and
surfaces appear more “mirror’-like) at
grazing angles

© Kavita Bala, Computer Science, Cornell University




Metal vs. Nonmetal

Fresnel reflectance

A RN

Metals

Nonmetals (k=0)

90
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Highly Non-Linear

10 20 30 40 50 60 70 80 90
angle of incidence 0;

== copper == aluminum = iron diamond = glass = water




Fresnel Equations

W T pysin(fy) = 1 sin(6,)
%2\ Up)

My cos(y) — ny cos

P 11 cos(61) — ny cos (6

(601) (%
P N9 cos(0y) + ny cos(6:

(61) (6

(01) (

)
)
)
)

11 cos(07) + ny cos(0y
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Fresnel Reflectance

Fo+ P
F = fp for unpolarized light

- Equations apply for metals and nonmetals
— for metals, use complex index : n + ik
— for nonmetals/dieletrics, k =0
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Schlick’s approximation of Fresnel

Rp(0) = Rp(0) 4+ (1 — Rp(0))(1 — cos(6))”

For dielectric

| n—159

R#(0) = .
r(0) ('/+1'
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T Toeeeres
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angle of incidence 6;
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Re(0)

Insulator: Water 0.02, 0.02, 0.02
Insulator: Plastic 0.03, 0.03, 0.03
Insulator: Glass 0.08, 0.08, 0.08
Insulator: Diamond |0.17, 0.17, 0.17
Metal: Gold 1.00, 0.71, 0.29
Metal: Silver 0.95, 0.93, 0.88
Metal: Copper 0.95, 0.64, 0.54
Metal: Iron 0.56, 0.57, 0.58
Metal: Aluminum 0.91, 0.92, 0.92
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Rob Cook’s vases

Source: Cook, Torrance 1981
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Classes of Models for the BRDF

- Plausible simple functions
— Phong 1975;

* Physics-based models
— Cook/Torrance, 1981; He et al. 1992;

- Empirically-based models
— Ward 1992, Lafortune model
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Measured BRDFs

S

White paint Blue paint

Commercial aluminum Blue plastic
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Ward Model

 Physically valid
— Energy conserving
— Satisfies reciprocity
— Easy to integrate

- Based on empirical data
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Ward Model

* Isotropic and anisotropic materials
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Ward Model: Isotropic

1 l l‘(I'IIQHE.E

, 5
€ m#

Js = Ps— VN.LNV

- where,
—m (usually o) is surface roughness
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Ward Model: Anisotropic

9 COS~M s /l;r,")
1 —tan?f, (— 4k

13 my

.
,_} S /)::"- r

* where,
—-m,, m are surface roughness in

— are mutually perpendicular to the normal
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Normals for lllumination

* In polygonal models, each facet has
normal

- But, faceted look (N constant)
— Directional light (constant diffuse illumination)
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Shading Normals

- Normal matches the object (not the

polygons)
— Assume polygons are piecewise smooth
approximation

— Ideally provided by underlying object
— Otherwise, average normals of nearby facets
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Shading Models

* Fast, easy: Phong

- Physically-based model: Cook-
Torrance

- Empirically-based model: Ward

* Next time: textures
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Books
- Email about RTR (3rd ed.)

Graphics
Shaders

OpenGL 4.0 shading

Language Cookbook “'1*;.’:‘\“:.” , ! GPU PR02
P T T o
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