
CS	
  5434	
  HW	
  2	
  –	
  Fall	
  2015	
  
Due	
  Friday	
  Oct	
  2nd	
  @	
  23:59.	
  

 
In this homework you will work in groups of two to build a C program capable of 
parsing packets and storing them in a simple but realistic data structure. The next 
homework will build on this code to do actual detection tasks. 
 
First, download the VM from the following URL (it’s a huge download, so start 
early). Do not re-use the VM from homework 1. 
 
http://www.cs.cornell.edu/courses/CS5434/2015fa/HW2.zip 
 
Some skeleton code and a Makefile has been set up for you in the HW2 
directory. The password for this VM is “peanut”. 
 
Objective 
 
The objective of this assignment is to identify complete TCP connections and 
count packets within each connection session. Your program should use a hash 
table to track this state and must be able to handle arbitrarily large (within 
reason) files and number of connections without failing. It must also be free from 
memory errors. 
 
Input 
 
Your program will read a series of pcap files using libpcap. Input pcap files are 
specified on the command line after the “-r” option, as in the following format: 
 
./hw2 -r file1.pcap file2.pcap file3.pcap 

 
An arbitrary number of files may be specified; your program should parse the 
pcap files in the order given on the command line. Within each file, all packets 
should be sequentially read and processed until there are no more packets 
remaining in the file. Then, without clearing or modifying the existent in-
memory data structures, the next pcap file should be processed. The overall 
effect of inputting sequential pcap files is to simulate the operation of your 
program over an extended input. 
 
The skeleton code provided in hw2.c already does some command line parsing 
for you – check out the inline program comments for details on how to use it. 
 
 
 



 
Data structures and connection state 
 
Your code should have a flow table data structure that stores information about 
each TCP connection found in the input pcap files. Write a hash table with 
chaining and choose an appropriate table size. Third party libraries are not 
allowed. You must write the hash table code yourself. The hash key should 
be based on the 4-tuple <src-ip, dst-ip, src-port, dst-port> (see hints below). For 
each new connection, as defined by seeing the first SYN packet, you should 
create a new entry in the hash table. As additional packets arrive, you should 
maintain a count of the number of packets in that connection, as well as the state 
of the connection. For the purpose of this exercise, you must use a single entry 
for both sides of the TCP conversation. In other words, a packet going from host 
A:port A to host B:port B should be considered part of the same flow as a packet 
going from host B:port B to host A:port A. 
 
For a connection to be considered fully closed, a FIN packet must be sent in 
both directions. The connection-closing handshake is considered complete on 
the first FIN packet sent by the non-initiator. For example, if host A sends a FIN 
to B to initiate connection closure, the connection is not considered closed until B 
has sent its first FIN packet. Note that host A can retransmit FINs; the 
connection is not considered closed until B sends its first FIN. Packets seen after 
connection closure should be ignored. However, a subsequent SYN seen for the 
same 4-tuple after connection closure should be treated as the start of a new 
connection. 
 
Once a connection is closed, you should immediately output the timestamp of the 
FIN packet that caused the connection to close, along with the connection 4-
tuple and the number of packets seen on that connection. The number of packets 
seen include every packet from the SYN to the FIN that completed the 
connection closure. Subsequently, you should free the entry corresponding to 
that particular connection in order to conserve memory, while being careful not to 
lose track of any other flow entries in the connection chain. 
 
Your program should log to stdout in the following format: 
 
hh:mm:ss.us Flow src-ip:src-port -> dst-ip:dst-port second fin after N 

packets. 
 
Sample output 
 
The HW2 directory contains a sample pcap file called nytimes.pcap, which 
consists of packets obtained by capturing the activity of a browser loading the 
New York Times website. The result of running your program on that pcap file 



should look like this (the program output is truncated for brevity): 
 
./hw2 -r nytimes.pcap 
09:07:54.880872 Flow 10.148.1.8:59180 -> 170.149.161.130:80 second fin 
after 16 packets 
09:07:54.897589 Flow 10.148.1.8:59180 -> 170.149.161.130:80 second fin 
after 17 packets 
09:07:54.970421 Flow 10.148.1.8:59214 -> 170.149.161.130:80 second fin 
after 63 packets 
09:07:54.986803 Flow 10.148.1.8:59214 -> 170.149.161.130:80 second fin 
after 64 packets 
09:07:56.499824 Flow 10.148.1.8:59226 -> 170.149.161.130:80 second fin 
after 23 packets 
 

Note that there should be a newline (‘\n’) printed after every line. 
 
We may provide more pcap files at a later time. 
 
Assumptions 
 
For this homework, you should make the following assumptions: 
 

1. Packets will not be malformed. 
2. Non-TCP packets should be ignored (eg. UDP, ICMP, DHCP, etc). 
3. Incomplete flows that do not start with a SYN or have not fully transitioned 

into connection closure should be ignored. 
4. Any stray packets that show up after connection closure (see definition 

above) should be ignored. 
5. FIN packets may be retransmitted. Be careful to check for the exact FIN 

that causes the connection closure. 
 
Submission 
 
Fill in the README file with answers to the questions within. Be concise with 
your answers and keep your responses within the allocated space. 
 
If you have additional source files, you need to update the Makefile accordingly to 
reflect these sources in the build process. Your Makefile needs to be correct – a 
broken Makefile that results in an unsuccessful compile will incur a penalty to 
your score. 
 
Zip up only the README, Makefile and all your source/header files before 
submission. Do not turn in anything else – this includes pcap files, binaries, 
object files or temporary files. Failure to follow these instructions precisely 
will result in a score penalty. 
 
When submitting, make sure to check that your files have been successfully 



uploaded onto CMS and that you have indeed uploaded the right set of files. 
 
 
 
Grading 
 
We will test the correctness of your program using pcap files that you will not 
have access to. Some of these pcap files may be quite large. You need to ensure 
that your program can run with reasonable performance on reasonably large 
pcap files without crashing or leaking memory. Your program should also not 
consume an inordinate amount of memory. 
 
We will also use the valgrind tool to check for leaks or bad memory accesses, 
and apply a score penalty as appropriate. 
 
 
Hints 
 

1. Consider endianness. Byte ordering is different on the network than on 
Intel-based systems. See section 3 of the manpages on byte order (“man 
3 byteorder”) for macros you should use to cope with this. Nothing will 
work correctly until you get this part down. 

2. Think carefully about how to make sure you can relate packets from both 
sides of the connection to the same flow entry. 

3. For the flow hash function, we suggest XOR-ing together the two IP 
addresses and ports, then taking the modulus to the number of buckets of 
your hash table. 

 
 
Homework updates / supplementary material 
 
From time to time, we may post clarifying notes pertaining to the homework. It is 
your responsibility to monitor Piazza for these updates. In addition, while 
attendance for the supplementary lecture is optional, the material and slides 
covered are not optional. Please review all materials before attempting the 
homework. 
 
 
Questions 
 
If you have questions regarding the homework, please post them on Piazza. 
 
For feedback and other non-homework related issues, please e-mail 
zteo@cs.cornell.edu. 



 
 
 
Best of luck!	
  


