Defending Computer Networks
Lecture 2: Vulnerabilities

Stuart Staniford
Adjunct Professor of Computer Science

Logistics

 Still space in class
— 73 out of 75 taken on Tuesday
— Will be drop-outs
— Restriction to CS M.Eng will be lifted shortly
— Keep attending

* HW1 expected early next week
— Piazza also early next week
 Website up:
— http://www.cs.cornell.edu/courses/CS5434/2015fa/

Main Goals for Today

* Understand system() function vulnerabilities
 CVE classification of vulnerabilities

* QOutline understanding of buffer overflow
vulnerabilities

Junaid Hussain, British Hacker For ISIS, Killed In
US Drone Strike In Syria: Sources

A British hacker believed to be a top cyber expert for the Islamic State group has been killed in a
U.S. drone strike, sources reportedly said Wednesday. Junaid Hussain, a British citizen from

Birmingham, reportedly traveled to Syria in 2013.

The 21-year-old was reportedly killed in the drone strike, which likely involved the U.S. Defense

Department, a U.S. source told Reuters. The strike was conducted Tuesday near the Syrian city

of Raqqa, a CSO Online report said. However, U.S. authorities have yet to officially announce

Hussain’s death.

U.S. and European government sources told Reuters that Hussain was believed to be the leader
of the CyberCaliphate, a hacking group, which in January attacked a Pentagon Twitter account.
The sources could not confirm if Hussain was directly involved in the hack. The hackers took
over Twitter and YouTube accounts belonging to U.S. Central Command, or CentCom, often

used to provide updates about airstrikes against ISIS.

http://www.ibtimes.com/junaid-hussain-british-hacker-isis-killed-us-drone-strike-syria-sources-2070678

System() Function Vulnerabilities

Very basic class of C/Unix vulnerability
“man 3 system”

Been known for decades

Still occurs, however.

Other languages:

— C++: std::system()
— Python: os.system()
— Perl: system LIST

Let’s work through an example

#include <stdio.h>
#include <sys/types.h>
#tinclude <sys/socket.h>
#include <netinet/in.h>
#include <assert.h>
#include <strings.h>
#include <unistd.h>
#include <stdlib.h>

// This code is a very short hack to illustrate server vulnerabilities!!
// Do not write production code like this!!!

int sockFd;
int connFd;
unsigned short port = 3333;

struct sockaddr_in serverAddress;
struct sockaddr_in clientAddress;

void setupSocket(void)
{
unsigned clientLen;
assert((sockFd = socket(AF_INET, SOCK_STREAM, 0)) >=0);
bzero(&serverAddress, sizeof(struct sockaddr_in));
serverAddress.sin_family = AF_INET;
serverAddress.sin_addr.s_addr = INADDR_ANY;
serverAddress.sin_port = htons(port);
assert(bind(sockFd, (struct sockaddr *) &serverAddress, sizeof(struct sockaddr_in)) >= 0);
assert(listen(sockFd, 5)>=0);
clientLen = sizeof(struct sockaddr_in);
assert((connFd = accept(sockFd, (struct sockaddr *)&clientAddress, &clientLen)) > 1);

int getLineFromSocket(char* buffer, int len)

{
int n;
assert(write(connFd, "Type Symbol>", 12) >=0);
n = read(connFd, buffer, len);
buffer[n-2] = "\0';
return n;

void extractCountFromFile(char* fileName, char* answer)
{

char buf[256];

char* start;

FILE* file = fopen(fileName, "r");
assert(file);
fgets(buf, 256, file);
for(start = buf; *start; start++)
{
if(*start ==""]| *start =="\t")
continue;
else
break;
}
if(*start)
{
char* end = index(start, '');
if(end)
{
*end = "\n’;
*(++end) = "\0';
strcpy(answer, start);
}
}
}

void processLine(char® buffer, int len)

{
// line format is "username\n"
char answer[256];
char command[256];
sprintf(command, "ps aux |grep %s |wc > tmp.txt", buffer);
fprintf(stdout, "Buf %s\n", buffer);
fprintf(stdout, "About to execute %s\n", command);
system(command);
extractCountFromFile("tmp.txt", answer);
assert(write(connFd, answer, strlen(answer)) >= 0);

int main(int argc, char* argv(])
{

char buf[256];

int n;

if(argc ==2)

{

port = atoi(argv[1]);

}

setupSocket();

while(getLineFromSocket(buf, 256))

processLine(buf, n);

}

Live Demonstration of Exploitation

General Point

* When writing a server
— Task is to mediate access to server’s resources
— Not grant arbitrary access

— Have to be very careful in channeling
* Constrained client-server protocol
* To general-purpose OS/computer

» Attackers are evil/bad/smart/patient
 They are out to get you!

Side Note

e SQL Injection Vulnerabilities are closely
related

— Eg ;" passed through to SQL server is a statement
separator there too.

 The general issue is failure to properly sanitize
input before passing it to general execution
engines.

Common Vulnerabilities and
Exposures List (CVE)

Initiative by Mitre Corp to create a common
dictionary of known vulnerabilities

— US govt funded
Now an industry standard

Guided by an editorial board from across
industry/academia/government

Excellent Place to Start Looking for Publicly
Known Vulnerabilities in something

— http://cve.mitre.org/cgi-bin/cvekey.cgi?
keyword=excel

‘Excel’ Vulnerabilities

Search Results

|There are 201 CVE entries that match your search.

Name
CVE-2012-5672

CVE-2012-4233

CVE-2012-2543

CVE-2012-1887

CVE-2012-1886

CVE-2012-1885

CVE-2012-1847

CVE-2012-0185

CVE-2012-0184

CVE-2012-0143

CVE-2012-0142

CVE-2012-0141

Description

Microsoft Excel Viewer (aka Xlview.exe) and Excel in Microsoft Office 2007 (aka Office 12) allow remote attackers to cause a
denial of service (read access violation and application crash) via a crafted spreadsheet file, as demonstrated by a .xls file with
battery voltage data.

LibreOffice 3.5.x before 3.5.7.2 and 3.6.x before 3.6.1, and OpenOffice.org (000), allows remote attackers to cause a denial of
service (NULL pointer dereference) via a crafted (1) odt file to vcllo.dll, (2) ODG (Drawing document) file to svxcorelo.dll, (3)
PolyPolygon record in a .wmf (Window Meta File) file embedded in a ppt (PowerPoint) file to tllo.dll, or (4) xIs (Excel) file to
scfiltlo.dll.

Stack-based buffer overflow in Microsoft Excel 2007 SP2 and SP3 and 2010 SP1; Office 2011 for Mac; Excel Viewer; and Office
Compatibility Pack SP2 and SP3 allows remote attackers to execute arbitrary code via a crafted spreadsheet, aka "Excel Stack
Overflow Vulnerability."

Use-after-free vulnerability in Microsoft Excel 2003 SP3, 2007 SP2 and SP3, and 2010 SP1, and Office 2008 and 2011 for Mac,
allows remote attackers to execute arbitrary code via a crafted spreadsheet, aka "Excel SST Invalid Length Use After Free
Vulnerability."

Microsoft Excel 2003 SP3, 2007 SP2 and SP3, and 2010 SP1; Excel Viewer; and Office Compatibility Pack SP2 and SP3 allow
remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted spreadsheet, aka
"Excel Memory Corruption Vulnerability."

Heap-based buffer overflow in Microsoft Excel 2003 SP3, 2007 SP2 and SP3, and 2010 SP1; Office 2008 and 2011 for Mac; and
Office Compatibility Pack SP2 and SP3 allows remote attackers to execute arbitrary code via a crafted spreadsheet, aka "Excel
SerAuxErrBar Heap Overflow Vulnerability."

Microsoft Excel 2003 SP3, 2007 SP2 and SP3, and 2010 Gold and SP1; Office 2008 and 2011 for Mac; Excel Viewer; and Office
Compatibility Pack SP2 and SP3 do not properly handle memory during the opening of files, which allows remote attackers to
execute arbitrary code via a crafted spreadsheet, aka "Excel Series Record Parsing Type Mismatch Could Result in Remote Code
Execution Vulnerability."

Heap-based buffer overflow in Microsoft Excel 2007 SP2 and SP3 and 2010 Gold and SP1, Excel Viewer, and Office Compatibility
Pack SP2 and SP3 allows remote attackers to execute arbitrary code via a crafted spreadsheet that triggers incorrect handling of
memory during opening, aka "Excel MergeCells Record Heap Overflow Vulnerability."

Microsoft Excel 2003 SP3, 2007 SP2 and SP3, and 2010 Gold and SP1; Office 2008 and 2011 for Mac; Excel Viewer; and Office
Compatibility Pack SP2 and SP3 do not properly handle memory during the opening of files, which allows remote attackers to
execute arbitrary code via a crafted spreadsheet, aka "Excel SXLI Record Memory Corruption Vulnerability."

Microsoft Excel 2003 SP3 and Office 2008 for Mac do not properly handle memory during the opening of files, which allows
remote attackers to execute arbitrary code via a crafted spreadsheet, aka "Excel Memory Corruption Using Various Modified
Bytes Vulnerability."

Microsoft Excel 2003 SP3, 2007 SP2 and SP3, and 2010 Gold and SP1; Office 2008 for Mac; Excel Viewer; and Office
Compatibility Pack SP2 and SP3 do not properly handle memory during the opening of files, which allows remote attackers to
execute arbitrary code via a crafted spreadsheet, aka "Excel File Format Memory Corruption in OBJECTLINK Record
Vulnerability."

Microsoft Excel 2003 SP3, 2007 SP2 and SP3, and 2010 Gold and SP1; Office 2011 for Mac; Excel Viewer; and Office
Compatibility Pack SP2 and SP3 do not properly handle memory during the opening of files, which allows remote attackers to
execute arbitrary code via a crafted spreadsheet, aka "Excel File Format Memory Corruption Vulnerability."

Example Entry

CVE-2012-2543 Learn more at National Vulnerability Database (NVD)

e Severity Rating e Fix Information e Vulnerable Software Versions ¢ SCAP Mappings

Description

Stack-based buffer overflow in Microsoft Excel 2007 SP2 and SP3 and 2010 SP1; Office 2011 for Mac; Excel Viewer; and Office
Compatibility Pack SP2 and SP3 allows remote attackers to execute arbitrary code via a crafted spreadsheet, aka "Excel Stack
Overflow Vulnerability."

References

Note: References are provided for the convenience of the reader to help distinguish between vulnerabilities. The list is not intended to be
complete.

e MS:MS12-076

o URL:http://technet.microsoft.com/security/bulletin/MS12-076
e CERT:TA12-318A

e URL:http://www.us-cert.gov/cas/techalerts/TA12-318A.html
e BID:56431

e URL:http://www.securityfocus.com/bid/56431

e SECTRACK:1027752

e URL:http://www.securitytracker.com/id?1027752

CVE Counts By Year

8000

7000

5000
4000
3000
0 T T T T T T T T T T T T T L

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

o2}
o
o
o

Count of Vulnerabilities Reported to CVE List

N
o
o
o

Is That All The Vulnerabilities?

* No!
— Anecdote/single datapoint (8000 vs 122)

* Basically, we have no idea how many software
vulnerabilities exist in total

— Probably millions at least,
— Probably not billions

Example

Vulnerability Discovery Rate for Adobe Reader (SecurityFocus)

250

200 —

150

100

Vulnerabilities/Yr

50

0 — — — —

T T T T T T T

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

T

Buffer Overflow Vulnerabilities

Most important early class of vulnerabilities
— Still important
Will start today, finish in subsequent lecture(s)

Today, will introduce a “fictionalized” account
— How things used to be 10-20 years ago
— Simpler to understand

— Will not match what happens if you look at output of a modern
compiler
* Modern OS/compilers have numerous defenses
 Still sometimes vulnerable, more complex to exploit

— We will expand into more realistic detail next few lectures
Loosely based on Aleph1 Smashing Stack for Fun and Profit.

— http://www-inst.eecs.berkeley.edu/~cs161/fa08/papers/
stack_smashing.pdf

Example 1

void myFunc(int a, int b, int ¢)

{
char bufferl[5];
char buffer2[10];

}

int main(int argc, char* argv(])

{
myFunc(1,2,3);

}

Assembler

* Function Call:
— pushl S3
— pushl S2
— pushl $1
— call myFunc
* Function Prologue:
— pushl %ebp
— movl %esp,%ebp
— subl $S20,%esp

Stack in Example 1

Top of Memory

Buffer2 Bufferl SFP Ret

<€ Saved Frame Pointer
Top of Stack

Stack Pointer %esp Frame Pointer %ebp

Example 2

void myFunc(char *str)

{
char buffer[64];

strcpy(buffer, str);
}

int main(int argc, char* argv(])
{
char large_string[256];
inti;
for(i=0;i<255;i++)
large_string]i] = 'A’;
myFunc (large_string);

}

Stack in Example 2
right before strcpy()

Top of Memory

Buffer[64] i large string
€ Saved Frame Pointer

Top of Stack

Stack Pointer %esp Frame Pointer %ebp

Stack in Example 2
right after strcpy()

Top of Memory

<€ Saved Frame Pointer
Top of Stack

Stack Pointer %esp Frame Pointer %ebp

More Useful Stack for Attacker

Top of Memory

Buffer[64] contains shellcode large_string_
€ Saved Frame Pointer

Top of Stack

Stack Pointer %esp Frame Pointer %ebp

Note similarity to System()

* Both cases it’'s channel mixing

— “” mixed with commands in shell language
— Instruction pointers mixed with data

* Mixing control and data is frequently useful

— But usually dangerous

