
 1

CS5430: System Security (Fall 2023) Programming Project

Phase 1: An authenticated key-value store

General Instructions. Work together in a group of 2 or 3 students from the class.

This programming assignment should be implemented in Java version 11, which is available on
the ugclinux computers.

Due Date. October 16, 2023 at 11:59 pm (in CMS)

Project Overview

An secure authenticated key-value store processes only those requests that have been issued for
users who have previously registered; requests issued for other users are ignored. The system
you will build for Phase 1 is intended to implement this functionality by extending the key-value
store you implemented for Phase 0.

The system you build should be structured in terms of the following Java objects.

• client: This Java object (named Phase1App.java) makes requests to the key-value
store. For our purposes, the client is providing a sequence of tests that exercise the rest of
the system. You write the code for this object.

• client stub: This Java object (named Phase1StubImpl.java) implements an
interface named Phase1Stub.java. The client invokes methods defined by this
interface in order to (i) register at the server, and (ii) perform key-value store operations
at the server. The client stub invokes methods provided by the network in order to cause
the invocation of a methods that the server is providing. We provide a skeleton for
Phase1StubImpl.java, and you add code to this skeleton in order to implement the
required functionality of the client stub methods.

• network simulator: This Java object (named NetworkImpl.java) simulates a
network that connects the client stub to the server. NetworkImpl.java implements
an interface named Network.java. The code we provide implements a network
simulator that delivers requests sent to the server by the client stub and delivers
responses sent to the client stub by the server.

• server: This Java object (named Phase1ServerImpl.java) authenticates each
requested operation to ascertain that it was issued for a registered user. If a request
authenticates then the server should perform the designated operation.
Phase1ServerImpl.java implements an interface named
Phase1Server.java. We provide a skeleton for Phase1ServerImpl.java,
and you add code to this skeleton in order to implement the desired functionality of the
server methods.

In the code we provide (and in the code you submit), each of these objects executes in a separate
Java virtual machine, and Java’s RMI (remote method invocation) is used to invoke their

 2

methods. For technical reasons, each of the objects could throw a RemoteException, so this
exception is listed in the interfaces we give below for the various objects. Your code should not
change any part of the interfaces that we are providing, and your code should not “throw” this
exception.

Details are given below, but here is a high level description of how to use RMI and the network
simulator that we are providing. To convey invocation requests from the client stub to the
methods that the server implements, use the methods handleAuthenticatedRegister
and handleAuthenticatedDo that are implemented by instances of the network simulator.
In the client stub, an instance of the network simulator can be found in the field that is named
network in Phase1StubImpl.java; this field will have been initialized before your code
starts executing. Upon calling these methods, the network simulator will make the appropriate
call to the indicated method that your server is implementing. Network simulator methods
handleAuthenticatedRegister and handleAuthenticatedDo each will
terminate (allowing execution of the client stub to resume) after the invoked server method
returns a value.

As should be clear, you are not starting with a clean slate. Rather, the project requires that you
add code to a given, existing skeleton. Like it or not, that’s the situation you will encounter as a
software developer. And it can be challenging to understand how an existing system works,
why it is structured in some given way, and how to add code without corrupting that structure.

The threat. Your system should defend against Dolev-Yao attackers in the network who are
seeking to subvert the integrity of the authenticated key-value store. The good news: No user is
concerned with keeping values secret, so you need not protect the confidentiality of requests that
clients issue and you need not protect the confidentiality of values in the authenticated key-value
store.

To defend against Dolev-Yao attacks that subvert integrity of messages, use digital signatures on
all messages that traverse the network. To generate and verify these signatures, use the methods
in Signature.java. Use KeyGenerator.java to generate a key-pair called pair (of
type KeyPair as defined in Java.security.KeyPair), as follows.

KeyPairGenerator keyPairGen =
 KeyPairGenerator.getInstance("DSA");
keyPairGen.initialize(2048);
KeyPair pair = keyPairGen.generateKeyPair();

 (Note, Java uses the terminology of public key and private key for what we are calling a
verification key and a signing key, respectively).

Initialization code that we are providing and that gets executed before your code starts will
provide a signing key and a verification key that can be used for the server. These keys were
generated using the code snippet given above. The keys are made available, as follows.

• The server’s signing key will have been stored in a field called signingKey in
Phase1ServerImpl.java. This key is 2048 bits, stored as a base64-encoded byte
array.

 3

• The server’s verification key will have been stored in a field called
serverVerificationKey in Phase1StubImpl.java object. This key is
2048 bits, stored as a base64-encoded byte array.

When testing the security of your system, the course staff will use a different implementation of
Network.java. That implementation gives the necessary control for generating various
forms of Dolev-Yao attacks. We encourage you either to extend NetworkImpl.java or to
replace that network simulator with a different Java object that will give you the capability to
perform various Dolev-Yao attacks. Be warned: if the system you submit does not work
correctly with the vanilla NetworkImpl.java then your system will not work correctly in
the grading environment.

Grading and Submissions

What we are providing. Download from CMS the zip file Phase1.zip. It contains:

• phase1.jar which contains the definitions for the interfaces and abstract classes that
are discussed below. You may inspect the contents of this Jar file by executing:
 jar -xf phase1.jar

• src which is a folder containing skeleton implementations for all of the Java interfaces
and abstract classes that are described below. Your assignment is to fill-in that skeleton
code to produce a secure authenticated key-value store.

• build.sh which is a script that compiles the contents of phase1_impl by linking it
with phase1.jar and outputs a Jar file named phase1_impl.jar.

• run.sh which is a script that executes your program by using the main method located
in phase1_impl.jar as the entry point. Note that run.sh also performs the
necessary RMI setup before executing Phase1App.java.

You should submit a zip file Phase1Impl.zip that contains the following.

• phase1.jar, which should be the exact same phase1.jar file that we provided to
you. (We will check its MD5 hash).

• src which is a folder containing your implementations for all of the Java interfaces and
abstract classes to produce a secure authenticated key-value store.

• build.sh, which is a script that the grader can invoke to compile your project. This
can be a modified version of the build.sh that we provided to you, but it must link
with the above phase1.jar.

• run.sh, which is a script that the grader can invoke to execute your project using
Phase1App.java as the entry point. This can be a modified version of the run.sh
that we provided to you.

• README.txt which describes any changes you made to the build.sh or run.sh
scripts that we provided.

• testRationale.txt which describes the functionality and/or defense that is being
checked by each step of the test program in your Phase1App.java. Include as part of
this discussion a listing of the outputs that a correct system should produce for the test
program in Phase1App.java .

 4

Grading. Project grades will be based on the following rubric

• 20% -- system operates correctly on tests provided in Phase1App.java
• 20% -- how well the tests provided in Phase1App.java exercise the functionality and

security of the system.
• 10% -- the quality of the explanations in testRationale.txt: Does

testRationale.txt explain the checks in Phase1App.java and are all of the
right things being checked.

• 10% -- system operates correctly on tests provided by course staff to exercise
functionality

• 30% -- system operates correctly on tests provided by course staff to exercise resilience
against attacks

• 10% -- code quality, readability, and documentation in the form of comments

Automatic deduction of up to 50% if the program does not compile using build.sh or does
not run using run.sh on the ugclinux computers. Be smart: Try your system on the
ugclinux computers before you submit it.

Interfaces to be Implemented

Detailed functional requirements are given below for each of the Java objects comprising your
system.

client stub. The client stub interface provides methods that the client uses to request operations
in the key-value store. The comments below describe how your implementation of each method
should behave.

public abstract boolean registerUser(String userId) throws
RemoteException;
// Invoked on behalf of userId to initiate a session that allows
userId thereafter to issue authenticated operations. Returns
true if the server registered the user in response to this
request; returns false, otherwise.

public abstract boolean create(String userId, K key, V initVal, M
initMetaVal) throws RemoteException;
// Invoked on behalf of userId to perform create(K key, V
initVal, M initMetaVal) at the key-value store. Returns true if
the server performed the requested operation; returns false,
otherwise.

public abstract boolean writeVal(String userId, K key, V newVal)
throws IllegalArgumentException, RemoteException;
// Invoked on behalf of userId to perform writeVal(K key, V
newVal) at the key-value store. Returns true if the server
performed the requested operation; returns false, otherwise. If

 5

the server indicates that writeVal was invoked when key does not
already exist then throw IllegalArgmentException.

public abstract boolean writeMetaVal(String userId, K key, M
newMetaVal) throws IllegalArgumentException, RemoteException;
// Invoked on behalf of userId to perform writeMetaVal(K key, M
newMetaVal) at the key-value store. Returns true if the server
performed the requested operation; returns false, otherwise. If
the server indicates that writeMetaVal was invoked when key does
not already exist then throw IllegalArgmentException.

public abstract V readVal(String userId, K key) throws
NoSuchElementException, RemoteException;
// Invoked on behalf of userId to perform readVal(K key) at the
key-value store. Returns the value associated with key K if the
server performed the requested operation; returns null,
otherwise. If the server indicates that readVal was invoked when
key K does not already exist then throw IllegalArgmentException.

public abstract M readMetaVal(String userId, K key) throws
NoSuchElementException, RemoteException;
// Invoked on behalf of userId to perform readMetaVal(K key) at
the key-value store. Returns the metavalue associated with key K
if the server performed the requested operation; returns null,
otherwise. If the server indicates that readMetaVal was invoked
when key does not already exist then throw
IllegalArgmentException.

public abstract boolean delete(String userId, K key) throws
RemoteException;
// Invoked on behalf of userId to perform delete(K key) at the
key-value store. Returns true if the server performed the
requested operation; returns false, otherwise.

Register requests to the server are packaged as instances of an AbstractRegisterRequest,
which is defined as follows. It would be the argument to the method
handleAuthenticatedRegister of NetworkImpl.java.

public abstract class AbstractAuthenticatedRegisterRequest
implements Serializable {
 public String userId;
 public byte[] verificationKey;
 public byte[] digitalSignature;
}

Similarly, a request by the client stub for the server to perform any other operations is packaged
as an instance of an AbstractAuthenticatedDoRequest, which is defined as follows. It
would be the argument to the method handleAuthenticatedDo of
NetworkImpl.java.

 6

public abstract class AbstractAuthenticatedDoRequest<K extends
Serializable, V extends Serializable, M extends Serializable>
implements Serializable {
 public String userId;
 public DoOperation<K, V, M> doOperation;
 public byte[] digitalSignature;
}

where a doOperation is defined as

public class DoOperation<K extends Serializable, V extends
Serializable, M extends Serializable> implements Serializable {
 public K key;
 public V val;
 public M metaVal;
 public Operation operation;

 public enum Operation {
 CREATE, DELETE, READVAL, READMETAVAL, WRITEVAL,
WRITEMETAVAL;
 }}

You are being provided with the concrete Java classes
AuthenticatedRegisterRequest.java and AuthenticatedDoRequest.java
that each extends the abstract Java classes
AbstractAuthenticatedRegisterReqiest.java and
AbstractAuthenticatedDoRequest.java respectively. Feel free to edit these files in
order to add additional fields and functionality to the concrete classes.

server. The code you add to Phase1ServerImpl.java should generate responses that are
packaged as follows. You are being provided with the concrete Java classes
AuthenticatedRegisterResponse.java and
AuthenticatedDoResponds.java that each extends the abstract Java classes
AbstractAuthenticatedRegisterResponse.java and
AbstractAuthenticatedDoResponse.java respectively. Feel free to edit these files in
order to add additional fields and functionality to these concrete classes.

For an invocation of the server’s AuthenticatedRegister method, the response that is the
value returned from the server’s method should be an instance of

public abstract class AbstractAuthenticatedRegisterResponse
implements Serializable {
 public Status status;
 public byte[] digitalSignature;

 public enum Status {

 7

 OK, UserAlreadyExists, AuthenticationFailure;
 }
}

It also would be the return type of the handleAuthenticatedRegister method of
NetworkImpl.java.

For an invocation of the server’s AuthenticatedDo method, the response that is the value
returned from the server’s method should be an instance of

public abstract class AbstractAuthenticatedDoResponse<K extends
Serializable, V extends Serializable, M extends Serializable>
implements Serializable {
 public DoOperationOutcome<K, V, M> outcome;
 public byte[] digitalSignature;
}

where a DoOperationOutcomeis defined as

public class DoOperationOutcome<K extends Serializable, V extends
Serializable, M extends Serializable> implements Serializable {
 public K key;
 public V val;
 public M metaVal;
 public Outcome outcome;

 public enum Outcome {
 AUTHENTICATION_FAILURE, SUCCESS, NOSUCHELEMENT,
 ILLEGALARGUMENT;
 }}

AbstractAuthenticatedDoResponse also would be the return type of the
handleAuthenticatedDo method of NetworkImpl.java.

The phase1Server.java methods enable the client stub to perform operations in the key-
value store. These methods implement the following interface. The comments below describe
how your implementation of each method should behave.

public AbstractAuthenticatedRegisterResponse
authenticatedRegister(AbstractAuthenticatedRegisterRequest
request)
 throws RemoteException;
//Invoked in response to a client stub register request on
behalf of user userId to register verificationKey. Return
UserAlreadyExists if this userId is already registered with a
different verification key; return AuthenticationFailure if the
register request cannot be authenticated; otherwise return OK.

 8

public AbstractAuthenticatedDoResponse<K, V, M>
authenticatedDo(AbstractAuthenticatedDoRequest<K, V, M>
request)
 throws RemoteException;
//Invoked in response to a client stub request to perform
CREATE, DELETE, READVAL, READMETAVAL, WRITEVAL, or
WRITEMETAVAL. The operation to invoke is specified by the
field operation, which is a field of the doOperation field of
the request. Return AUTHENTICATION_FAILURE if the request cannot
be authenticated as being on behalf of user userId; otherwise,
return one of SUCCESS, NOSUCHELEMENT, or ILLEGALARGUMENT
according to the semantics of the key-value store operations
defined in Phase 0.

