
Chapter 7

Discretionary Access
Control

7.1 The DAC Model

In a discretionary access control (DAC) policy, the initial assignment and sub-
sequent propagation of all privileges associated with an object are controlled
by the owner of that object and/or other principals whose authority can be
traced back to the owner. DAC policies are what commercial operating systems
typically enforce. Here, the principals are users; the objects include files, I/O
devices, and other passive system abstractions.

The assignment of privileges by a DAC policy can be depicted using a table
that has a row for each principal and a column for each object. The table
entry for a principal P and an object O lists privileges corresponding to those
operations on O that are authorized when invoked by execution being attributed
to P . Figure 7.1, for example, gives a table that assigns privileges for users fbs,
mmb and jhk to perform operations on files c1.tex, c2.tex, and invtry.xls.
Only execution attributed to fbs can read (r) or write (w) c1.tex and c2.tex;
only execution attributed to mmb can write invtry.xls; execution attributed to
any of the three users can read invtry.xls.

object
principal c1.tex c2.tex invtry.xls
fbs r, w r, w r

mmb r, w
jhk r

Figure 7.1: Example DAC Policy

129

September 2013 Copyright Fred B. Schneider All rights reserved.

130 Chapter 7. Discretionary Access Control

The table that Figure 7.1 depicts is called an access matrix.1 However,
the term “matrix” here is misleading, because the row and column order has
no significance; in a matrix, it would. An access matrix really just specifies
an unordered set Auth of triples, where ⟨P ,O,op⟩ ∈ Auth holds if and only
if principal P holds privilege op for object O. We call Auth an authorization
relation.

Any DAC policy can be circumvented if principals are permitted to make
arbitrary changes to Auth. Yet as execution of a system proceeds, changes to
Auth will inevitably be needed. New objects must be accommodated, object
reuse requires changing the set of principals that are authorized to access an
object, and trust relationships between principals evolve in response to events
both inside and outside of the computing system. To characterize permitted
changes to Auth, a DAC policy includes commands. Each command specifies a
parameter list, a Boolean precondition, and an action. If the command is invoked
and the precondition holds, then the action is executed; if the precondition does
not hold, then the command fails. Evaluation of the precondition and execution
of the action is assumed to be indivisible.2 The precondition and action are
permitted to name constants, Auth, and the formal parameters.

As an example, here is a command that might be found on a system where
principals are system users.

addPriv(U,U ′,O, op): command
pre: invoker(U) ∧ ⟨U,O,owner⟩ ∈ Auth ∧ op ≠ owner
action: Auth ∶= Auth ∪ {⟨U ′,O,op⟩}

The precondition that guards addPriv is

invoker(U) ∧ ⟨U,O,owner⟩ ∈ Auth ∧ op ≠ owner

where predicate invoker(U) is satisfied if and only if addPriv is invoked by
execution attributed to user U . So, the precondition implies that the invoker of
addPriv has the owner privilege for an object O and that op is not the owner

privilege. The action specified by addPriv is an assignment statement

Auth ∶= Auth ∪ {⟨U ′,O,op⟩}

that adds to Auth a triple authorizing operation op on object O by user U ′.
Thus, addPriv is consistent with the defining characteristic for a DAC policy—
the owner of object O is the principal that grants privileges for operations on
O.

Separation of Privilege suggests that it is better to have a distinct privilege3

say op∗ for granting a privilege op than to have a single generic privilege, like
owner, that allows any privilege to be granted. So a better command than
addPriv would be:

1Some prefer the term a protection matrix.
2In practice, checking a precondition and executing the code for the action is likely to

involve multiple atomic actions. It suffices that the effect nevertheless appears indivisible
with respect to execution of other commands.

3Privilege op∗ is sometimes called a copy flag for op.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.1. The DAC Model 131

grantPriv(U,U ′,O, op): command
pre: invoker(U) ∧ ⟨U,O,op∗⟩ ∈ Auth
action: Auth ∶= Auth ∪ {⟨U ′,O,op⟩}

7.1.1 Finer-Grained Principals: Protection Domains

The Principle of Least Privilege suggests that the set of operations a principal
should be authorized to execute depends on the task to be performed. Users are
thus too coarse-grained to serve as the basis for aggregating privileges in DAC
policies. This leads to employing protection domains as the set of principals.
Each thread of control is associated with a protection domain, each protection
domain is associated with a different set of privileges, and we allow transitions
from one protection domain to another as execution of the thread proceeds.
Different sets of privileges can now be associated with a thread as it progresses
from one task to the next, and the Principle of Least Privilege is now easily
instantiated.

For efficient implementation, protection-domain transitions must be associ-
ated with events that a run-time environment can detect cheaply. For instance,
protection-domain transitions that coincide with certain kinds of control transfer
(e.g., invoking a program) are typically inexpensive for a run-time environment
to support, as are those that coincide with certain state changes (e.g., changing
from user mode to supervisor mode). But few processors could efficiently sup-
port protection-domain transitions being triggered by branches to some specific
instruction or by stores to an arbitrary memory location.

When an operating system supports protection domains, certain system calls
cause protection-domain transitions. System calls for invoking a program or
changing from user mode to supervisor mode are obvious candidates. Some
operating systems provide an explicit domain-change system call rather than
implicitly linking protection-domain transitions to other functionality; the ap-
plication programmer or a compiler’s code generator is then required to decide
when to invoke this domain-change system call.

Since distinct tasks are typically implemented by distinct pieces of code, the
Principle of Least Privilege could be well served if we associate different protec-
tion domains with different code segments. We might, for example, contemplate
having a protection domain U▷pgm for each code segment pgm executing on
behalf of a user U . Here, pgm could be an entire program, a method, a pro-
cedure, or a block of statements; it might be executed by a process started by
user U or by a process started by some other user in response to a request from
U . Ideally, protection domain U▷pgm would hold only the minimum privileges
needed for pgm to execute for U .

Figure 7.2 reformulates the access matrix of Figure 7.1 in terms of principals
that are protection domains associated with code segments corresponding to
entire programs: a shell (sh), a text editor (edit), and a spreadsheet application
(excel). Notice, c1.tex and c2.tex now can be written by user fbs only while
executing edit, and invtry.xls can be accessed only by executing excel (with
mmb still the only user who can perform write operations to that object).

September 2013 Copyright Fred B. Schneider All rights reserved.

132 Chapter 7. Discretionary Access Control

object
domain c1.tex c2.tex invtry.xls
fbs▷sh

fbs▷edit r, w r, w
fbs▷excel r

mmb▷sh

mmb▷edit

mmb▷excel r, w
jhk▷sh

jhk▷edit

jhk▷excel r

Figure 7.2: Example DAC Policy for Domains

A given protection domain might or might not be appropriate for execution
that performs a given task and, therefore, according to the Principle of Least
Privilege, transitions ought to be authorized only between certain pairs of pro-
tection domains. For example, we would expect that execution in a shell should
be allowed to start either a text editor or a spreadsheet application, but exe-
cution in a spreadsheet application should not be allowed to start a shell. We
can specify such restrictions by defining an enter privilege for each protection
domain and by including protection domains in the set of objects that can be
named by Auth. A protection domain D must possess the enter privilege for a
protection domain D ′—that is, ⟨D , D ′,enter⟩ ∈ Auth must hold—for execution
in D ′ to be started by execution in D .4 Figure 7.3 incorporates such constraints,
using e to denote the enter privilege.

7.1.2 Amplification and Attenuation

The sets of privileges before and after a protection-domain transition are likely
to be related.

Attenuation of Privilege. Suppose execution in a protection domain D
initiates a subtask, which is executed in protection domain D ′. Then D ′,
having a more circumscribed scope, should not have all of the privileges
D has. We use the term attenuation of privilege for a transition into a
protection domain that eliminates privileges.

Amplification of Privilege. Suppose execution in a protection domain
D ′ implements an operation on some object O, as a service to execution

4An alternative to having protection domains be objects is having code segments (inde-
pendent of user) be objects. With this alternative, we specify a protection domain from which
a user U is allowed to next start execution of code segment pgm by granting that protection
domain an execute privilege for object pgm.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.1. The DAC Model 133

object

domain c
1
.t
e
x

c
2
.t
e
x

i
n
v
t
r
y
.x
l
s

f
b
s
▷
s
h

f
b
s
▷
e
d
i
t

f
b
s
▷
e
x
c
e
l

m
m
b
▷
s
h

m
m
b
▷
e
d
i
t

m
m
b
▷
e
x
c
e
l

j
h
k
▷
s
h

j
h
k
▷
e
d
i
t

j
h
k
▷
e
x
c
e
l

fbs▷sh e e

fbs▷edit r, w r, w
fbs▷excel r

mmb▷sh e e

mmb▷edit

mmb▷excel r, w
jhk▷sh e e

jhk▷edit

jhk▷excel r

Figure 7.3: Example DAC Policy with Domain Entry

in a protection domain D . Then D ′ should grant privileges for O that D
does not. We use the term amplification of privilege for a transition into
a protection domain that adds privileges.

Notice that attenuation of privilege and amplification of privilege both have
a role to play in supporting the Principle of Least Privilege. Attenuation of
privilege, for instance, underlies restricted delegation. Here, one principal P
requests that a task be performed by another principal P ′, granting P ′ only
the subset of privileges P ′ requires for that task. Amplification of privilege is
crucial for supporting data abstraction, where users of an object are deliberately
kept ignorant of how that object is implemented.

The Confused Deputy. Protection-domain transitions bring the risk of a
confused deputy attack. Here, a client issues requests that cause some server to
abuse privileges it holds but the client does not hold.

To make this concrete, consider a server to handle requests that name a
client’s file. The server computes a function F on that file, writes that value to
the file, and records billing information in the server’s file charges.txt.

Server : operation(f : file)
S1: buffer := FileSys.Read(f)
S2: results := F (buffer)
S3: chrgs := calcBill(results)
S4: FileSys.Write(f , results)
S5: FileSys.Write(charges.txt, chrgs)
end Server

September 2013 Copyright Fred B. Schneider All rights reserved.

134 Chapter 7. Discretionary Access Control

Further, suppose the server but no client holds a write privilege for charges.txt,
and that when processing a each request from a client C, a domain change oc-
curs so the server is granted read and write privileges C holds for file named
in f .

We might expect that since client C lacks write privileges for the server’s
file charges.txt, then C cannot cause the contents of charges.txt to become
corrupted. But that expectation is naive. By naming charges.txt as the argu-
ment in its request, C would cause the server to execute with f = charges.txt.
Execution of S4 would then corrupt charges.txt, since the server does hold
a write privilege for that file. What happened? The server functioned as a
deputy to the client, and the deputy became “confused” by the client’s request.
Specifically, the deputy was fooled into writing results to a file (charges.txt)
even though the client did not hold write privileges for that file.

One obvious defense is for the server to check that the client holds appro-
priate privileges for the file named in f . This defense, however, would require
programmers to include checks in every program that might invoke operations
on objects whose names were passed in arguments. Many programmers would
regard adding those checks as onerous and not bother.

A more elegant defense is to combine naming and authorization. Instead
of names for objects (like files), we might require programs to use unforgeable
bundles comprising the name for an object along with privileges for that object.
Bundles would provide the sole means by which programs name, hence access,
objects. In the example above, the client request would convey a bundle for
a file (incorporating a read and write privileges). The server would use this
client-supplied bundle for reading and updating that file. The server would also
have a bundle for charges.txt (incorporating a write privilege). Since the
client does not have a write privilege for charges.txt, a client-supplied bundle
for charges.txt could not incorporate a write privilege. So a request from the
client, where a charges.txt bundle was provided as the file name for f , would
cause write S4 to fail. The confused deputy is no longer duped into writing the
wrong content into charges.txt.

A final approach to preventing confused deputy attacks could be to associate
different sets of privileges with the different statements in a piece of code. For
example, instead of granting a write privilege for charges.txt to all statements
in Server , we might instead only grant it to S5 (and not to S4). Now, execution
of S4 with f = charges.txt will fail, so the confused deputy attack no longer
works. The primary problem with this defense is the complexity that comes from
having to define and manage the larger numbers of such fine-grained protection
domains.

7.1.3 *Undecidability of Privilege Propagation

A central concern when designing the commands for changing authorization
relation Auth is having assurance that certain privileges cannot be granted to
particular principals. We can formalize this concern as a predicate.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.1. The DAC Model 135

tape T ≪ u v w x y z ␢ ␢ ␢ ⋯

6

mem ∶ q
control unit

read/write head at position pos

T [0] T [pos]

Figure 7.4: A Turing Machine

Privilege Propagation. CanGrant(Prins,C,Auth, ⟨P,O,op⟩) is true if
and only if principal P eventually can be granted privilege op to object O
by starting from authorization relation Auth and allowing principals not
in Prins to execute commands from set C.

Typically, Prins would be the set of principals that are both trusted and autho-
rized to grant ⟨P,O,op⟩ and, therefore, if CanGrant(Prins,C,Auth, ⟨P,O,op⟩)
holds, it then indicates unauthorized propagation of privilege.

To determine whether CanGrant(Prins,C,Auth, ⟨P,O,op⟩) holds, we might
write a program that computes the value of CanGrant(Prins,C,Auth, ⟨P,O,op⟩)
by generating all authorization relations that principals not in Prins executing
sequences of commands from C could derive from Auth. However, if commands
create new principals or new objects then there might be an infinite number of
infinite-length command sequences to try. Termination is not guaranteed for a
program undertaking such an enumeration. So that approach is not guaranteed
to work.

What other approaches might we use? None! We prove below that any
program that computes the value of CanGrant(Prins,C,Auth, ⟨P,O,op⟩) could
be used to solve the halting problem for Turing machines. The latter is well
known to be an undecidable problem—a decision problem for which no algorithm
can exist that terminates with a correct answer for every input. By reducing
Privilege Propagation to an undecidable problem, we establish there cannot exist
a program that always correctly evaluates CanGrant(Prins,C,Auth, ⟨P,O,op⟩)
for any possible arguments.

Review of Turing Machines and Undecidability. A Turing machine is
an abstract computing device. It has an infinite tape, a read/write head, and a
control unit with finite memory. Figure 7.4 depicts these components.

The tape comprises an infinite sequence T [0], T [1], ... of tape squares. Each
tape square is capable of storing some symbol from a finite set Γ ∪ {≪,␢}.
Symbol ≪ is stored in T [0] to indicate that this is the first tape square; ␢ is
stored in any tape square that has never been written.

September 2013 Copyright Fred B. Schneider All rights reserved.

136 Chapter 7. Discretionary Access Control

The read/write head is always positioned at tape square T [pos], which we
refer to as the current tape square. The control unit uses the read/write head to
sense and/or change the symbol stored in the current tape square. In addition,
the control unit can reposition the read/write head, moving it one tape square
left or right.

The control unit has a memory mem capable of storing one symbol from
finite set Q of control states. We avoid confusion between tape and memory
symbols by assuming that Q and Γ ∪ {≪,␢} are disjoint. The control unit
performs execution steps, as specified by a transition function δ. By defining

δ(q, γ) = ⟨q′, γ′, v⟩

where v ∈ {−1,1}, we specify that the following execution step occurs when
mem = q and T [pos] = γ:

T [pos] ∶= γ′; mem ∶= q′; pos ∶= pos + v

That is, γ′ becomes the symbol stored by current tape square T [pos], q′ becomes
the new control state, and the read/write head position moves left (v = −1) or
moves right (v = 1).

We impose two requirements on what execution steps are possible by the
Turing machines that we will consider.

• An execution step δ(q, γ) is defined for each possible symbol γ ∈ Γ∪{≪,␢}
and control state q ∈ Q − {qF }, where qF is called the halt state for the
Turing machine.

• No execution step replaces the ≪ symbol stored at T [0] nor moves the
read/write head off the left end of the tape: for each q ∈ Q − {qF } there
exists some q′ ∈ Q such that δ(q,≪) = ⟨q′,≪,1⟩.

A Turing machine is said to halt when no execution step is defined, so the first
of these requirements implies that execution of a Turing machine halts if and
only if qF is stored into the control state.

One way to represent transition function δ for each possible q ∈ Q−{qF } and
γ ∈ Γ∪{≪,␢} is with a transition table that has ∣Q−{qF }∣ rows and ∣Γ∪{≪,␢}∣
columns; the cell in the row for q and the column for γ contains the value of
δ(q, γ). This representation has finite size because Q and Γ are, by definition,
finite sets. So, the transition table could be stored in a finite number of tape
squares on a Turing machine’s tape.

A Turing machine configuration is characterized by a triple ⟨T,pos,mem⟩,
where T is a tape, 0 ≤ pos, and mem ∈ Q. The configuration is considered initial
if pos = 0 and mem = q0 hold; it is considered terminal if mem = qF holds.
Execution steps of a Turing machine M induce a relation Ð→ on configurations;

⟨T,pos,mem⟩Ð→ ⟨T ′,pos ′,mem ′⟩

September 2013 Copyright Fred B. Schneider All rights reserved.

7.1. The DAC Model 137

holds if and only if an execution step starting from configuration ⟨T,pos,mem⟩
produces configuration ⟨T ′,pos ′,mem ′⟩.5 An execution in which M halts is
described by a finite sequence of configurations

⟨T0,pos0,mem0⟩Ð→ ⟨T1,pos1,mem1⟩Ð→ ⋯Ð→ ⟨Ti,posn,memn⟩

where configuration ⟨T0,pos0,mem0⟩ is initial and configuration ⟨Ti,posn,memn⟩
is terminal. An execution that does not halt is described by an infinite sequence
of configurations

⟨T0,pos0,mem0⟩Ð→ ⟨T1,pos1,mem1⟩Ð→ ⋯Ð→ ⟨Ti,posi,memi⟩Ð→ ⋯

where configuration ⟨T0,pos0,mem0⟩ is initial and no subsequent configuration
is terminal.

Besides performing execution steps, Turing machines read input and produce
output. A finite-length input inp is conveyed by storing inp on the Turing ma-
chine’s tape prior to execution; the output of the execution is the tape’s contents
when (and if) execution of the Turing machine halts. We write M(inp) = out
to denote that execution of Turing machine M on input inp halts and produces
output out , and we write M(inp) = � if M does not halt on input inp.

Halting Problem Undecidability. Because transition functions have finite-
length representations, the description for a Turing machine can itself be the
input to a Turing machine. So it is sensible to speak about a Turing machine
M that produces as its output the result of analyzing some Turing machine
M ′ whose description is provided to M as an input. The halting problem is
concerned with constructing a Turing machine MHP that satisfies the following
specification.

MHP(M, inp)∶{ 0 if M(inp) = �
1 if M(inp) ≠ � (7.1)

Thus, MHP(M, inp) = 1 if and only if Turing machine M halts on input inp.

A Turing machine MHP that satisfies specification (7.1) cannot exist. We
prove this by showing that the existence of MHP would lead to a contradiction.
Assume MHP exists. We use MHP to construct a Turing machine M that
satisfies the following specification:

M(inp)∶{ 0 if MHP(M, inp) = 0
� if MHP(M, inp) = 1

(7.2)

That is, M invokes MHP and either (i) terminates with output a 0 or (ii) loops
forever. So there are two cases to consider.

5Formally, ⟨T,pos,mem⟩ Ð→ ⟨T ′,pos ′,mem ′⟩ holds if and only if δ(mem, T [pos]) =
⟨mem ′, γ′, v⟩, pos ′ = pos + v, T ′[pos] = γ′, and T ′[i] = T [i] for all i where i ≠ pos holds.

September 2013 Copyright Fred B. Schneider All rights reserved.

138 Chapter 7. Discretionary Access Control

object
principal P0 P1 P2 P3 P4 P5 P6

P0 ≪ nxt
P1 u nxt
P2 v nxt
P3 w, q nxt
P4 x nxt
P5 y nxt
P6 z, end

Figure 7.5: Representation of a Turing Machine Configuration by Auth

• Case 1: M(inp) = 0. From (7.2), we conclude MHP(M, inp) = 0 holds.
According to specification (7.1) for MHP , this means that M(inp) does
not halt. But this leads to a contradiction, because we assumed for this
case that M(inp) = 0, which implies execution of M(inp) did halt.

• Case 2: M(inp) = �. From (7.2), we conclude MHP(M, inp) = 1 holds.
According to specification (7.1) for MHP , this means that M(inp) halts.
But this leads to a contradiction, because we assumed for this case that
M(inp) does not halt.

Since both cases lead to contradictions, we conclude that the existence of MHP

leads to a contradiction—no Turing machine can solve the halting problem.

Privilege Propagation and Undecidability. We now prove that deter-
mining whether CanGrant(Prins,C,Auth, ⟨P,O,op⟩) holds is an undecidable
problem. We do this by showing that a program CG could be used to solve
the halting problem if invoking CG(C) for a set C of commands determines
whether there exists a finite sequence of commands from C that eventually
causes ⟨P,O,op⟩ ∈ Auth to hold.

The heart of the proof is a construction for simulating any given Turing
machine M . We represent M ’s configuration by using an authorization relation
Auth where the set of objects equals the set of principals. And we simulate M ’s
execution steps by using a set C of commands, where every execution ofM is sim-
ulated by a sequence of commands. Moreover, the commands in C are defined in
such a way that ⟨P0, P0, qF ⟩ ∈ Auth holds if and only if M halts. Consequently, a
program CG that determines whether CanGrant(∅,C,Auth, ⟨P0, P0, qF ⟩) holds
would constitute a solution to the halting problem.

Figure 7.5 depicts an authorization relation Auth that represents a Turing
machine configuration ⟨T,3,q⟩ for a tape T storing: ≪ u v w x y z ␢ ␢ ␢
The representation is based on the following.

• ⟨Pi, Pi, xi⟩ ∈ Auth signifies that symbol xi ∈ Γ ∪ {≪,␢} is stored by tape
square T [i].

September 2013 Copyright Fred B. Schneider All rights reserved.

7.1. The DAC Model 139

• ⟨Pi, Pi, q⟩ ∈ Auth signifies that mem = q and pos = i hold, where q ∈ Q and
0 ≤ i.

• The linear order of tape squares is encoded by privileges: nxt, end, ≪:

– ⟨P,P,≪⟩ ∈ Auth implies that principal P is used to represent T [0].
– ⟨P,P, end⟩ ∈ Auth implies that principal P is used to represent the

last non-blank tape square of T .

– ⟨P,P ′,nxt⟩ ∈ Auth implies that the tape square represented using
principal P ′ immediately follows the tape square represented using
principal P .

The need for ⟨P,P ′,nxt⟩ privileges at first might seem puzzling. It arises
because tape squares for a Turing machine are linearly ordered, we are associ-
ating each tape square with a distinct principal, but we have not assumed any
ordering on principals and Auth does not induce one.6 To create the ordering
on tape squares, we define an ordering relation ≺ on principals. Let Ppos be the
principal that corresponds to tape square T [pos]. We desire that Pi ≺ Pi+1 hold
for 0 ≤ i, and we encode this relation by having ⟨P,P ′,nxt⟩ ∈ Auth hold if and
only if P ≺ P ′ does.

The set CTM of commands to simulate execution steps for a Turing machine
are based on that Turing machine’s transition function δ. The precondition of
each command describes a Turing machine configuration; the action updates
Auth in accordance with the changes to the configuration prescribed by δ. Fig-
ure 7.6 gives the commands. The commands are constructed in a way that, at
any time, there is at most one command for which argument values exist to
satisfy its precondition. Invoking that command simulates the next execution
step of the Turing machine being simulated.

For example, the Turing machine execution step specified by δ(q, γ) = ⟨q′γ′,1⟩
is simulated by commands CR and CR-end in Figure 7.6.

• CR handles the case where the read/write head position is not at the
right-most tape square that is not ␢; this case is distinguished because the
current tape square corresponds to some principal P for which there does
exist another principal P ′ where ⟨P,P ′nxt⟩ ∈ Auth holds.

• CR-end handles the case where the read/write head position is at the right-
most tape square that is not ␢; this case is distinguished by having the
tape square correspond to a principal P where ⟨P,P, end⟩ ∈ Auth holds.

And an execution step specified by δ(q, γ) = ⟨q′, γ′,−1⟩ is simulated by CL in
Figure 7.6.

CHALT of Figure 7.6 is included in CTM so that ⟨P0, P0, qF ⟩ is granted if ever
privilege qF is granted to any principal. This command does not simulate a

6You might hope that the integer subscripts used to construct names for principals would
suffice to define an ordering on the principals. But we assumed only that different principals
have different names; integer subscripts are merely a convenient notation for that.

September 2013 Copyright Fred B. Schneider All rights reserved.

140 Chapter 7. Discretionary Access Control

CR(p, p′, q, q′, γ, γ′): command
pre: δ(q, γ) = ⟨q′, γ′,1⟩

∧ ⟨p, p, q⟩ ∈ Auth ∧ ⟨p, p, γ⟩ ∈ Auth ∧ ⟨p, p′,nxt⟩ ∈ Auth
action: Auth ∶= Auth − {⟨p, p, q⟩, ⟨p, p, γ⟩}

Auth ∶= Auth ∪ {⟨p, p, γ′⟩, ⟨p′, p′, q′⟩}

CR-end(p, q, q′, γ, γ′): command
pre: δ(q, γ) = ⟨q′, γ′,1⟩

∧ ⟨p, p, q⟩ ∈ Auth ∧ ⟨p, p, γ⟩ ∈ Auth ∧ ⟨p, p, end⟩ ∈ Auth
action: Auth ∶= Auth − {⟨p, p, q⟩, ⟨p, p, γ⟩, ⟨p, p, end⟩}

p′ ∶= newPrincipal()
Auth ∶= Auth ∪ {⟨p, p, γ′⟩, ⟨p′, p′, q′⟩, ⟨p′, p′, end⟩, ⟨p, p′,nxt⟩}

CL(p, p′, q, q′, γ, γ′): command
pre: δ(q, γ) = ⟨q′, γ′,−1⟩

∧ ⟨p′, p′, q⟩ ∈ Auth ∧ ⟨p′, p′, γ⟩ ∈ Auth ∧ ⟨p, p′,nxt⟩ ∈ Auth
action: Auth ∶= Auth − {⟨p′, p′, q⟩, ⟨p′, p′, γ⟩}

Auth ∶= Auth ∪ {⟨p′, p′, γ′⟩, ⟨p, p, q′⟩}

CHALT(p): command
pre: ⟨p, p, qF ⟩ ∈ Auth
action: Auth ∶= Auth − {⟨p, p, qF ⟩}

Auth ∶= Auth ∪ {⟨P0, P0, qF ⟩}

Figure 7.6: Commands CTM to Simulate a Turing Machine

Turing machine’s execution step, but now CanGrant(∅,CTM ,Auth, ⟨P0, P0, qF ⟩)
holds if and only if the Turing machine being simulated halts. Thus, a program
that evaluates CanGrant(∅,CTM ,Auth, ⟨P0, P0, qF ⟩) would constitute a solu-
tion to the halting problem. The halting problem is undecidable, so we have
proved what we set out to show—that no single program can exist to evaluate
CanGrant(∅,C,Auth, ⟨P0, P0, qF ⟩) for an arbitrary value of C.

This undecidability result does not imply that a program cannot exist to
compute the value of CanGrant(∅,C,Auth, TupleP,O,op) for one or another
specific command set C. Such programs do exist, and they have even been
implemented for command sets C that model DAC policies enforced by actual
systems. The undecidability result nevertheless is important, because it gives
insight into the difficulty of analyzing an important class of authorization mech-
anisms.

7.1.4 Implementation of DAC

At the heart of any implementation of DAC will be a scheme for representing
authorization relation Auth. That scheme must support certain functionality:

September 2013 Copyright Fred B. Schneider All rights reserved.

7.1. The DAC Model 141

• computing whether ⟨P,O,op⟩ ∈ Auth holds and, therefore, a principal P
is authorized to perform some operation op on a given object O,

• changing Auth in accordance with commands the DAC policy defines, and

• associating a protection domain with each thread of control and perform-
ing transitions between protection domains as execution proceeds.

In addition, support for two kinds of review are also often desired: (i) listing,
for a given principal, the privileges it holds for each object, and (ii) listing, for
a given object, the principals and the privileges each holds for that object.

The naive scheme for representing Auth is to employ a 2-dimensional array-
like data structure resembling an access matrix. But such an array is likely
to be sparse, because a typical principal will hold privileges for only a small
fraction of all objects in a system. Implementors thus favor data structures
that store only the non-empty cells of the access matrix. There are two general
approaches. An access control list encodes the non-empty cells associated with
a column (object); a list of capabilities encode the non-empty cells associated
with a row (principal).

Access control lists and capabilities can, in theory, express the same policies.
In practice, they differ in important ways. One such difference is the cost of
performing revocation and review. With access control lists, revocation of access
to an object O by some principal is straightforward—that principal is simply
deleted from a list associated with O. And it is relatively cheap to enumerate
the principals and their privileges for a given object. But listing for all objects
what privileges are granted to some specified principal requires scanning the
access control lists for all of those objects, and that is likely to be expensive.

With capabilities, the cost of performing revocation or review depends on
implementation details. When the capabilities held by a principal are easy to
find—for example, they are stored in an easily located list associated with that
principal—then determining what privileges a given principal holds is cheap.
But if capabilities are instead scattered throughout the memory and files acces-
sible to principals, then determining what privileges are held by a given principal
could be infeasible. Revocation of access to an object O by some principal P
requires finding all copies of certain capabilities directly or indirectly accessible
to P . That cost is implementation dependent but rarely insignificant (as will
become clear in §7.3).

Many find access control lists attractive because the implementation—a ref-
erence monitor and a list—is localized, which enables a separation of concerns.
That analysis ignores the cost and complexity of managing the many small pro-
tection domains that must be defined explicitly for instantiating the Principle
of Least Privilege when access control lists are in use. When authorization
is enforced with capabilities, that complexity is eliminated because protection
domains are not defined explicitly. But, when capabilities are being used, a
potentially large set of components must now be analyzed to understand what
accesses are, or could become, possible as execution proceeds. This same de-
centralization, however, is what makes capabilities so appealing for controlling

September 2013 Copyright Fred B. Schneider All rights reserved.

142 Chapter 7. Discretionary Access Control

access to user-defined objects. And, as the confused deputy attack in §7.1.2
showed, considerable benefits accrue from the combined naming and authoriza-
tion that capabilities implement.

7.2 Access Control Lists

The access control list for an object O is a list

⟨P1,Privs1⟩ ⟨P2,Privs2⟩ . . . ⟨Pn,Privsn⟩ (7.3)

of ACL-entries. Each ACL-entry ⟨Pi,Privsi⟩ is a pair, where Pi names a prin-
cipal, Privsi is a non-empty set of privileges, and op ∈ Privsi holds if and only
if ⟨Pi,O ,op⟩ ∈ Auth holds. For example, the access control list for invtry.xls
in Figure 7.1 is

⟨fbs,{r}⟩ ⟨mmb,{r,w}⟩ ⟨jhk,{r}⟩.

7.2.1 Access Control List Representations

Long access control lists are difficult for people to understand and, therefore,
problematic to update; they are also expensive for enforcement mechanisms to
scan when authorizing access requests. Therefore, representations have been
proposed for shortening the number of ACL-entries in an access control list
and/or for making important but complicated kinds of updates easier to per-
form.

Groups of Principals. Particularly in corporate and institutional settings,
users might be granted privileges by virtue of membership in a group. Students
who enroll in a class, for example, should be given access to that semester’s
class notes and assignments simply because they are members of the class.

The minimalist approach is to list group members individually on the various
access control lists. However, if membership in a group confers privileges for
many objects, then adding or deleting a member requires updating many access
control lists. That can be error-prone. Moreover, updating an individual access
control list can be subtle. Suppose, for example, user U is in some group where
membership grants privilege op for object O. If U is being dropped from the
group then you might be tempted to delete op from the ACL-entry naming U
in the access control list for O. But this ignores the possibility that U might
also be a member of some other group that also grants op for O to its members,
in which case U should not lose the op privilege for O.

We avoid these difficulties by allowing names for groups of principals to
appear in access control lists.

Groups in Access Control Lists.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.2. Access Control Lists 143

– A group declaration associates a group name with a set of principals.
The set is specified either by enumerating its elements or by giving
a predicate that all principals in the set must satisfy.7

– An ACL-entry ⟨G,Privs⟩, where G is a group name and Privs is a
set of privileges, grants all privileges in Privs to all principals P that
are members of G.

Groups in ACL-entries introduce indirection that eliminates the need to update
multiple access control lists when group membership changes—only the group
declaration needs to be changed. Moreover, given ACL-entry ⟨G,Privs⟩ on the
access control list for an object O, deleting P from G revokes P ’s privileges to
O only if P does not appear elsewhere on that access control list (directly or
through membership in some other group).

Permission and Prohibition. That a given principal does not hold a spec-
ified privilege is sometimes what’s important. Yet in order to conclude that P
does not hold op for an object O, we would have to enumerate and check all
principals granted op by the access control list for O. This process—especially
when groups are present—could be time-consuming. So some systems allow a
prohibition op to appear in an ACL-entry. As the term suggests, ACL-entry
⟨P,{op}⟩ specifies that execution of operation op by P is prohibited.

The introduction of prohibitions does raise a question about the meaning of
an access control list that contains both a privilege op and a conflicting prohibi-
tion op for the same principal. Different systems resolve this conflict in different
ways, but it is not uncommon to base the resolution on the relative order of the
conflicting ACL-entries. A system, for example, might give precedence to the
first one in the list.

7.2.2 Pragmatics

Designers and implementors of access control mechanisms are primarily con-
cerned with three things: flexibility, understandability, and run-time cost. With-
out sufficient flexibility, we might not be able to specify the security policy we
desire. But support for flexibility usually brings complexity and cost. We should
eschew complexity, because it introduces the risk that people will be unable or
disinclined to write or understand policies; it also tends to undermine our as-
surance in an access control mechanism’s implementation. And higher run-time
costs are problematic if this causes access-control policies that involve less check-
ing to be favored over those that enforce what really is needed.

Principals. For any given system, the choice of what can be principal is con-
strained in practice by the availability of efficient means for attributing (au-

7An enumeration should be short enough so that the absence or presence of specific prin-
cipals is unlikely to be overlooked; a predicate for characterizing a set should be transparent
enough so that it defines all of the intended principals and no others.

September 2013 Copyright Fred B. Schneider All rights reserved.

144 Chapter 7. Discretionary Access Control

thenticating) accesses, since the name of a principal making a request is what’s
needed for checking an access control list.

Operating systems typically have mechanisms for authenticating users and
processes. Some language run-time environments do even better and attribute
execution of each statement to the current chain of nested procedure invoca-
tions.8 Such a setting would, for instance, allow a distinct protection domain
to be associated with the execution by some program pgm3 invoked by a call
within pgm2, itself invoked by a call from pgm1, running on behalf of user U
versus the protection domain just before pgm3 is invoked or just after it returns.

Independent of what constitutes a principal, care should be exercised in
recycling principal names. Otherwise, some future incarnation of a principal
name could inadvertently receive privileges held by a past incarnation. One
solution is simply not to reuse principal names, but this (i) requires saving
enough state to ensure no future principal name duplicates a past name and (ii)
constrains the choice of principal names, potentially making policies harder to
understand. The more widely-adopted solution is, as part of deleting a principal
from the system, to delete that principal’s name from all access control lists.

Objects. The set of objects also constrains what policies can be expressed
using access control lists. Each object must be associated with some reference
monitor. The reference monitor must intercept every access to the object, and
that requirement restricts possible choices for objects. In addition, each access
control list must be stored in a way that its integrity is protected. Two solutions
here are common: (i) store the access control list with the object, so that
updates to the access control list are checked by the reference monitor; (ii)
store the access control list with the reference monitor that reads it, so that the
mechanism protecting the integrity of the reference monitor also protects the
integrity of the access control list.

Operating system abstractions are particularly well suited to serve as the
objects when access control lists are in use. First, system calls are then the only
way to access an object; a reference monitor is embedded in the operating sys-
tem routine that handles a system call. Second, operating system abstractions
typically either are large enough (e.g., files) to accommodate storing their own
access control lists or are relatively few in number (e.g., locks or ports) so that
the operating system’s memory can be used to store the access control lists.

ACL-entry Representations. Many advocate terse representations for ACL-
entries, starting from a debatable premise that checking shorter access control
lists is faster.9 One approach is to employ patterns and wildcard symbols for
specifying names of principals, so that a single ACL-entry can replace many (in-
cluding names that could be added in the future); another approach is to replace

8One such a scheme was used in Figure 7.3, another is discussed in §7.5.
9The premise is debatable because a terse representation might require additional compu-

tation or lookups per ACL-entry. And the cost of the additional computation per ACL-entry
might well exceed the savings of processing fewer ACL-entries.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.3. Capabilities 145

a set of ACL-entries that grants privileges with a set of ACL-entries imposing
prohibitions on the compliment if the latter is shorter. Terse representations
are often harder for humans to understand, though, so there can be a trade-off:
human understandability versus computation time for enforcement. And cheap
enforcement of a poorly understood policy is not a desirable outcome.

7.3 Capabilities

Abstractly, a capability is a pair ⟨O,Privs⟩, where O is an object and Privs
is a set of privileges. Any principal that holds capability ⟨O,Privs⟩ is granted
privileges Privs for operations on O. So the authorizations specified by Auth
are enforced provided two properties remain satisfied during execution.

• Invocation by principal P of operation op on an object O requires that P
hold a capability ⟨O,Privs⟩ with op ∈ Privs.

• Capabilities cannot be counterfeited or corrupted.

The first property suggests that capabilities could provide the sole means by
which principals identify and access objects, supplanting ordinary names and
addresses. This is called capability-based addressing. It was suggested in §7.1.2
for solving the confused deputy problem.

The second property stipulates that we prevent unauthorized creation of new
capabilities and prevent unauthorized changes to existing capabilities. A variety
of schemes have been developed for implementing this capability authenticity ;
the classics are outlined below (in §7.3.1 though §7.3.4). In all of these schemes,
changes to Auth are supported by providing routines that enable an authorized
principal P to

• create a new object and, in so doing, receive a capability for that object,

• transfer to other principals one or more capabilities P holds, with atten-
uation and/or amplification of privilege applied where specified, and

• revoke capabilities that derive from capabilities P holds.

So privileges are controlled by the owner or by principals whose authority can
be traced to the owner, because all capabilities for an object O are derived from
the one received initially by the principal that created (owns) O. This makes
the policies DAC.

Object Names. Unless the object name O in a capability ⟨O,Privs⟩ always
identifies the same unique object—independent of what principal is exercising
⟨O,Privs⟩ or of when that capability is being exercised—then transferring capa-
bilities or even storing them could have unintended consequences. For example,
if an object name O designates an object Obj but is later recycled to designate
object Obj ′, then by holding ⟨O,Privs⟩ long enough, a principal eventually gets

September 2013 Copyright Fred B. Schneider All rights reserved.

146 Chapter 7. Discretionary Access Control

privileges to access Obj ′ (even though access to Obj was what had been au-
thorized).10 And if an object name O designates object Obj in one principal’s
address space but Obj ′ in another’s, then transferring ⟨O,Privs⟩ unwittingly
gives the recipient privileges to Obj ′ (even though a capability for Obj was
being transferred).

One approach to naming objects is to employ a single, global virtual address
space. An object that occupies len bytes and starts at a virtual address v is
given name ⟨v, len⟩. Virtual address spaces found on today’s processors are
large enough (64 bits) for distinct objects each to be assigned distinct virtual
addresses from now until (almost) eternity. Object names (virtual addresses)
thus never need to be recycled. The object’s length is being incorporated into its
name to ensure that distinct but overlapping objects nevertheless have different
names. For example, the byte and a doubleword that start at the same virtual
address v are different objects and they now receive different names: ⟨v,1⟩ versus
⟨v,8⟩.

Address-translation hardware, however, is not the only way to implement a
mapping from names in capabilities to addresses where the corresponding ob-
jects are stored. It suffices for the run-time environment to maintain a directory
that maps object names to memory addresses. Principals are expected to invoke
a system routine (passing an object name and an operation name) to perform
each operation on an object; this system routine uses the directory to determine
where the object is stored and then performs the named operation on the ob-
ject found at that location. Notice, this scheme allows objects to be relocated
dynamically, because updating only a single directory entry—rather than the
name field in every capability for that object—suffices. Also, either a real or
virtual address can be stored in the directory entry for an object.

Capability Archives. Often, a main memory representation is used for capa-
bilities held by executing principals, and an archive is kept in secondary storage
to save capabilities for objects (e.g., files) that persist when principals holding
those capabilities are not executing. Capabilities for accessing the archive are
held by a special, trusted principal. This trusted principal executes as long as
the system is running (it might be part of the operating system); it retrieves
and loads appropriate capabilities into main memory whenever a principal re-
quires them. The retrieval keys are often human-readable names, so the archive
resembles a file system directory.

7.3.1 Capabilities in Tagged Memory

Hardware support for tagged memory is rarely found in commodity computers.
Nevertheless, this approach to capability authenticity is worth understanding
because it is both elegant and illuminating.

10This problem can be avoided if the run-time environment’s object-deletion routine also
eliminates or revokes all capabilities naming the object. But, as will become clear, some
implementations of capabilities are not amenable to the bookkeeping necessary for this.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.3. Capabilities 147

In a computer having tagged memory, each register and each word of memory
is assumed to store a tag in addition to storing ordinary data. We assume 1-bit
tags in the hypothetical scheme outlined here. Capabilities are stored in words
having tags that equal 1; all other data is stored in words having tags that equal
0. For example, assume 64-bit memory words and that object names can be
63-bit virtual memory addresses. The hardware might then define a capability
⟨O ,Privs⟩ to be any two consecutive words that start on an even address, where
both words have tags that equal 1:

ta
g

object name

1 O
word 1 (even address)

ta
g

type privileges

1 T p0 p1 . . . pn
word 2 (odd address)

Here, Privs comprises a type T for object O and a privileges bit string p0 p1 . . . pn.
The type defines how p0 p1 . . . pn is interpreted. For some types, each bit
pi specifies whether the capability grants its holder a corresponding privilege
priv i for O ; for other types (e.g., memory segments), pre-defined substrings of
p0 p1 . . . pn specify other properties of O (e.g., the segment length) needed for
enforcing an access control policy.

Tag bits alone are not sufficient to ensure that capabilities cannot be coun-
terfeited or corrupted, though. The processor’s instruction set must be defined
with capability authenticity in mind. Typically, this entails enforcing restric-
tions on updates to words whose tags equal 1 and on changes to tags. For
example, a user-mode instruction11

cap copy @src, @dest (7.4)

for copying two consecutive words of memory from source address @src to des-
tination address @dest would cause a trap unless (i) the source and destination
both start on even addresses, (ii) the tags on both words of the source equal 1,
and (iii) the principal executing (7.4) has read access to the source and write
access to the destination.

User-mode invoke and return instructions for invoking operations on ob-
jects would also have restrictions. If cap is a capability for object O and op is
an integer, then execution of

invoke op, @cap

might work as follows. A trap occurs if cap is not a capability, 0 ≤ op ≤ n
does not hold, or privilege bit pop in cap equals 0. Otherwise, execution of
the invoke (i) loads integer op into some well known register (say) r1, (ii)
synthesizes a capability retCap of type return that records in its object name
field the address of the instruction following the invoke, (iii) pushes @retCap
onto the run-time stack, and (iv) executes instructions starting at address O .

When an invoke instruction is executed, the code starting at O is presumed
to be a case statement which, based on the contents of r1, transfers control to

11We write @w to denote the address of w.

September 2013 Copyright Fred B. Schneider All rights reserved.

148 Chapter 7. Discretionary Access Control

operation number op of O . Control is later transferred back to the invoker by
popping @retCap off the run-time stack and executing

return @retCap

which loads the program counter with the contents in the object name field of
retCap (the previously stored address of the instruction immediately after the
invoke in the caller) and also, to prevent reuse, sets the tags in retCap to 0.
Executing a return causes a trap if @retCap cannot be read or if retCap is not
a capability that has type return.

Ordinary instructions executed in supervisor mode can suffice for most other
capability manipulations, provided executing those instructions in user mode
causes a trap if the instruction attempts to set a tag to 1 or change the contents
of a word having a tag equal 1. System routines executed in supervisor mode
would likely be provided for the following functionality.

• New objects and their capabilities are created by calling a system rou-
tine that instantiates the object, generates a corresponding capability cap,
stores cap in the caller’s address space, and returns @cap to the caller.

• Capabilities can be propagated from one principal to another that do not
share an address space (so cap copy would not work) by calling operating
system routines to send and receive capabilities. The operating system
presumably has access to every principal’s address space and can execute
the needed cap copy instruction.

• The functionality of the cap copy instruction might be extended to per-
form attenuation and amplification, where desired, by having the source
and destination principals invoke system routines.

– Attenuation is supported by a system routine that takes as inputs (i)
a set Rmv of privileges to remove and (ii) the address of a capability
having some set Privs of privileges; it returns the address of another
capability for the same object but with Privs − Rmv as its set of
privileges.

– Amplification is supported by a system routine that takes as inputs
the addresses for two capabilities: one capability names an object
O with some type T and a set PrivsO of privileges, and the second
capability gives type T as its name (and type as its type) and a set
PrivsA of privileges; it returns the address of a new capability for
object O with type T but having PrivsO ∪PrivsA as its privileges.

Tagged-memory capabilities can even be used to ensure that appropriate
privileges are held for each and every memory access that a principal makes.
Figure 7.7 suggests a format for such a capability to a memory segment.12 It
particularizes the type and the privileges bit string in the capability format

12A memory segment is a contiguous region of an address space; it is defined by a starting
address and a length.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.3. Capabilities 149

ta
g

object name

1 O
word 1 (even address)

ta
g

type re
a
d

w
ri

te

ex
ec

u
te

length

1 0 . . . 0 R W X Len
word 2 (odd address)

Figure 7.7: Example Format of Capability for a Memory Segment

given above, as follows. Type 0...0 signifies that the capability is for a memory
segment; object name O gives the starting address of the memory segment;
prefix p0, p1, and p2 (labeled R, W , and X) of the privileges bit string specifies
privileges for operations read, write, and execute; and suffix p3 p4 . . . pn specifies
the segment length.

Such memory segment capabilities might be integrated into a processor’s
memory access logic, as follows.

• A set of segment capability registers store capabilities for memory seg-
ments.13 And a memory access to some address α is allowed to proceed
only if (i) α is the address of a word in some memory segment whose
capability currently resides in a segment capability register and (ii) the
requested operation (read, write, or execute) is one for which the cor-
responding privileges bit is set in that capability. An access-fault trap
occurs, otherwise.

• The processor provides a supervisor-mode instruction

load scr scr , @cap

for loading a segment capability register scr with the memory segment
capability stored at address @cap; this instruction causes a trap if executed
in user mode or when cap is not a capability having type 0...0.

The operating system then provides routines that use these hardware fa-
cilities and allow execution to map and unmap memory segments. The set of
mapped memory segments at any given time defines a protection domain by
establishing what memory can be addressed, hence what set of capabilities the
executing principal holds. In some systems, the set of mapped memory segments
for a given principal will be partitioned: memory accessible to every principal,
memory accessible only to this principal throughout its execution, and memory
accessible only while some operation on a given object is being executed.

An operating system might support having more memory segments being
mapped at a given time than there are segment capability registers. To ac-
complish this, system software multiplexes the segment capability registers in

13In some architectures, these register might contain a capability for a segment that itself
contains capabilities for segments. This additional level of indirection allows a small number of
segment capability registers to support addressing a significantly larger number of segments.

September 2013 Copyright Fred B. Schneider All rights reserved.

150 Chapter 7. Discretionary Access Control

much the same way that a small set of page frames is multiplexed to create a
much larger virtual memory. Specifically, the operating system maintains a set
MappedSegs of the capabilities for memory segments that are mapped. When-
ever an access fault trap occurs, the corresponding trap-handler checks whether
MappedSegs contains a capability seg cap (say) for the memory segment en-
compassing the address that caused the access-fault. If MappedSegs does, then
the trap handler replaces the contents of some segment capability register with
seg cap and retries the access; otherwise, the memory access attempt is deemed
to violate the security policy.

7.3.2 Capabilities in Protected Address-Spaces

Modern processor hardware invariably enforces some form of memory protec-
tion, if only to protect the operating system by isolating its code and data from
user programs. Typically, memory is partitioned into one or more regions and
access restrictions are enforced on each region. Although coarse-grained in com-
parison to tagged memory, this simple form of memory protection does suffice
for implementing capability authenticity.

We segregate capabilities and store them together in memory regions that
cannot be written by user mode execution. Operating system routines, which
execute in supervisor mode, are granted read/write-access to these memory re-
gions. And functionality that requires creating or modifying capabilities is im-
plemented by the operating system (rather than by special-purpose instructions,
as for tagged memory). So there would be system routines for instantiating a
new object (and its corresponding capability), copying capabilities, sending and
receiving capabilities between principals, and the invocation and return from
operations on objects (with attenuation and amplification).

Capabilities Stored in Virtual Memory Segments. One scheme for im-
plementing this protected address-space approach uses segmented virtual mem-
ory. A virtual address here is a bit string; some predefined, fixed-length prefix
of that bit string is interpreted as an integer s that identifies a segment, and
the remaining suffix specifies an integer offset for a word w in the segment:

segment offset

s w
address

A segment table, which comprises a set of segment descriptors, is used during
execution to translate virtual addresses into real addresses. See Figure 7.8.
Each segment descriptor gives the name, length, and starting address for a
segment, as well as access bits (R, W , and X) that indicate whether words in
the segment can be read, written, and/or executed. The segment table thus
defines an address space and access restrictions on the contents of that address
space.

The operating system associates a segment table with an executing process
by loading the (real) address of that segment table into the processor’s segment

September 2013 Copyright Fred B. Schneider All rights reserved.

7.3. Capabilities 151

segment table
register

-
Name Length re

a
d

w
ri

te

ex
ec

u
te

Start

s len R W X

segment table
segment

s

-

Figure 7.8: Addressing with a Segment Table

table register, which is considered part of the processor context.14 We can thus
arrange for execution by the operating system and for execution by each process
to use different segment tables and, therefore, to have different (virtual) address
spaces and/or different access restrictions being enforced.

The use of segments to store capabilities is now straightforward. The access
bits in segment descriptors allow us to implement one or more virtual address
spaces where writes are prohibited. By requiring all user-mode execution to use
such segment descriptors for accessing segments that contain capabilities, the
operating system prevents user-mode execution from counterfeiting or corrupt-
ing capabilities. Principals are implemented as user-mode processes, with the
set of capabilities held by a principal defined to be those capabilities stored in
designated segments (which user-mode execution can read but not write).

The size and format of capabilities being implemented here is defined by
software. And the choice of what segments are designated for storing capabilities
is unconstrained. Often a convention is adopted (e.g., only segments named
with low-numbers store capabilities), but alternatively the operating system
could itself store the names of all segments dedicated to storing capabilities.
Segment descriptors on some architectures contain bits unused by the address-
translation hardware, and a run-time environment might employ these bits to
indicate whether a segment stores capabilities versus ordinary data.

The use of memory segments to store capabilities does not preclude the use
of capabilities to control access to memory. As above for the tagged-memory
implementation of capabilities, the operating system would provide routines
to map and unmap a memory segment. The map and unmap routines for a

14The processor context comprises the general-purpose registers, the program counter, and
any other processor state that must be saved and restored when an operating system time-
multiplexes the processor over a collection of tasks.

September 2013 Copyright Fred B. Schneider All rights reserved.

152 Chapter 7. Discretionary Access Control

segment s would check that the invoker holds a capability caps for s, where
caps specifies appropriate read, write and/or execute access privileges. If the
invoker does hold such a capability, then map (unmap) modifies the invoker’s
segment table and adds (deletes) the segment descriptor for s. The segment
table thus simulates the set of segment capability registers, which explains why
the information found in a segment descriptor is so similar to what is found in
a memory segment capability.

When capability authenticity is implemented by memory segments, a seg-
ment table specifies which capabilities the executing process holds and which
other data it can access (because those data segments have been mapped). So
a segment table defines a protection domain, and protection-domain transitions
require changing that segment table.

For example, protection-domain transitions typically accompany operation
invocations. An operating system routine to invoke an operation might expect
to be passed two arguments:15 the name op of the operation and the address
@cap of a capability for an object on which op is to be performed. Execution
then proceeds as follows.

1. Authorization. Validate that (i) the segment named by @cap is dedicated
to storing capabilities (so cap is a capability), (ii) the caller can read cap
(and thus holds that capability), and (iii) cap grants permission for op.

2. Segment Table Construction. If the checks in step 1 are satisfied then
build a segment table containing segments for capabilities and state that
should be accessible when performing op on the object named by cap.

3. Control Transfer. In software, orchestrate the designated transfers of con-
trol to and from op in obj : (i) construct a capability retCap of type return
for the return address, (ii) push @retCap onto the run-time stack, (iii) load
the segment table register with the address of the new segment table, and
(iv) transfer control to the code for op in obj .

Run-time environment support for other functionality involving capabilities
would be built along similar lines.

Capabilities Stored in Kernel Memory. Even if segmented virtual mem-
ory is not supported by a processor, we should expect to find a single memory
region that can be accessed by supervisor-mode but not by user-mode execu-
tion.16 To implement capabilities using such kernel memory :

• All capabilities are stored in the protected memory region.

• Each principal is implemented by a user-mode process.

15These arguments give the same information that the invoke instruction expects to find
in registers for the tagged-memory implementation of capabilities discussed in §7.3.1.

16Without such hardware support, the integrity of an operating system’s local storage is
easily compromised by user programs.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.3. Capabilities 153

Capabilities are then typically organized in tables, historically called c-lists (for
“capability list”). Each entry in a c-list stores a single capability and is identified
by its index into the table. Some schemes have a separate c-list for each process;
in others, c-lists are shared by processes.

Operating system routines then provide the sole means for creating, examin-
ing, and manipulating capabilities and the c-lists that store them. For example,
send and receive routines might be implemented to pass capabilities from one
process to another, whether or not those processes share a c-list. Specifically,
a process P could invoke send, giving a destination process P ′ and identifying
some capabilities that would then be buffered at P ′ for receipt; by invoking re-
ceive, P ′ would cause any buffered capabilities to be moved to a specified c-list
and would obtain the indices where they are stored.17

The operating system would also provide routines for creating and managing
c-lists. The routine for creating a new process might have an argument that
specifies whether the new process should share access to the caller’s c-list or
get a new one (and, for a new c-list, what subset of the caller’s capabilities
and privileges are included). Call/return operations would not only transfer
control but might cause a new c-list to be constructed temporarily for use by
the invoked code. This new c-list could be populated with capabilities associated
with the invoked code as well as attenuated and/or amplified versions of specified
capabilities in the caller’s c-lists.

7.3.3 Cryptographically-Protected Capabilities

The protections required for capability authenticity are well matched to the
security properties that digital signatures provide. Consequently, digital signa-
tures provide an alternative to hardware-implemented tags or protected mem-
ory. The costs—both in compute time and space—can be significant, but digital
signatures are the only practical way to implement capabilities in some settings.

Our starting point is a digital signature scheme comprising algorithms to
generate and to validate signed bit strings, where the following properties hold.

• Unforgeability. For any bit string b, only those principals that know private
key k can generate k-signed bit string k-S(b).

• Tamper Resistance. Principals that do not know k find it infeasible to
modify k-S(b) and produce a different k-signed bit string k-S(b′).

• Validity Checking. Any principal that knows the public key K correspond-
ing to a private key k can validate whether a sequence of bits is a k-signed
bit string.

We then implement capabilities as signed bit strings, because the Unforgeabil-
ity and Tamper Resistance properties imply capability authenticity18 and the

17A system call to examine the capability stored for each index would be provided so P ′

can determine what the new capabilities authorize.
18More precisely, this implementation of capability authenticity requires a digital signature

September 2013 Copyright Fred B. Schneider All rights reserved.

154 Chapter 7. Discretionary Access Control

Validity Checking property gives a way for system components to ascertain
whether a bit string represents an authentic capability.

Specifically, for cap a bit string that gives the name, type, and privileges
for an object O , the kO-signed bit string kO-S(cap) serves as a capability that
grants its holders the specified privileges for O . Implicit, here, are the following
assumptions about key distribution.

(i) Private key kO is known only by component(s) authorized to generate
capabilities for O .

(ii) Corresponding public key KO is available to any principal needing to check
the authenticity of a capability represented as kO-S(cap).

Assumption (i) holds if the operating system enforces memory isolation between
user-mode processes; and assumption (ii) can be discharged by broadly dissem-
inating digital certificates signed by some well-known trusted authority. Notice
that code to generate capabilities or to check capability authenticity need not
execute in supervisor mode—user mode works just fine for performing these
cryptographic calculations.

In some systems, only one component, such as the operating system, is au-
thorized to create capabilities. So a single public key validates the authenticity
of all capabilities. In other systems, a well known mapping defines which public
key validates capabilities for each given object; the mapping typically uses some
characteristic(s) of an object, such as its name or type, to select that public key.
For instance, capabilities for all objects of each given type T might be validated
by a single well known public key KT .

Capabilities implemented as signed bit strings are easy to transfer between
processes on the same computer and even between different computers. It is just
a matter of copying the bits (assuming infrastructure is in place to disseminate
public keys for checking capability authenticity). However, performing ampli-
fication and attenuation for a capability k-S(cap) being transferred is another
matter. The Tamper Resistance property implies that a component with knowl-
edge of private key k must be involved—either to generate a new capability with
modified privileges or to modify the privileges in k-S(cap) directly. But sharing
private keys is risky, and cryptographic computations are costly. Yet absent
support for amplification and attenuation, the Principle of Least Privilege now
becomes harder to support.

Three costs are noteworthy when a digital signature scheme is used to sup-
port capability authenticity: the amount of space required to store a signed
bit string, the amount of time required to generate one, and the amount of
time required for validity checking. To facilitate a comparison with the use

scheme that is secure against selective forgery under a known message attack. Security against
a known message attack accounts for the possibility that attackers might have access to some
authentic k-signed bit strings (i.e., capabilities) but would not be able to get an arbitrary bit
string signed (because any reasonable security policy the system enforces should preclude gen-
erating arbitrary capabilities on demand). Selective forgery is the right concern here, because
we want to prevent an attacker from generating capabilities that grant specific privileges for
specific objects.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.3. Capabilities 155

of hardware-implemented tagged memory or protected address-spaces, suppose
that the name, type, and privileges conveyed by a capability can together be
represented in 64 bits.

For a digital signature scheme being deployed in 2010, NIST recommends
2048-bit RSA with SHA-256. The cost estimates that follow are derived from
available implementations of those algorithms on commodity hardware, although
the conclusions hold for other digital signature algorithms as well.

• To create a signed bit string b, a tag is appended to b. The length of this
tag depends on the RSA key size and not on how long b is; for 2048-bit
keys, that tag will be approximately 2048 bits. Thus, our implementation
of capabilities as signed bit strings entails a substantial space overhead—a
2048 bit tag is required in order to protect 64 bits of content.

• The execution time required to create or check the validity of a tag for a
64 bit string b is dominated by the RSA key size. Creation of k-S(b) using
a 2048-bit RSA key takes many orders of magnitude longer than the time
required for a kernel call; validity checking takes somewhat less time, but
execution time still is orders of magnitude longer than the time required
for a kernel call.

Needless to say, cryptographic protection is a relatively expensive way to im-
plement capability authenticity.

Cryptographically-protected capabilities, however, can be attractive in dis-
tributed systems. Consider the alternatives and what they cost for that setting.
If hardware-implemented tags or protected memory regions are used to imple-
ment capabilities, then transmitting a capability from one computer to another
requires communication between the operating systems at those computers. The
integrity and authenticity of that communication must be ensured. Digital sig-
natures are the usual defense here. So signature generation and validity checking
is necessary for transmitting a capability between computers—the costs of cryp-
tographic computation that we were trying to avoid would be incurred, anyway.

Also note that cryptographic protection allows the authenticity of a capa-
bility to be checked locally, in user mode. Such a local check is considerably
cheaper than querying the operating system on a remote computer that gener-
ated a capability. In fact, transferring a capability even between two principals
executing on the same computer does not require the operating system to serve
as an intermediary, which can have various advantages.

Extension to Support Restricted Delegation. Viewed abstractly, a prin-
cipal P that holds a capability ⟨O,Privs⟩ performs a restricted delegation to
some other principal P ′ by generating and forwarding to P ′ a new capability
⟨O,Privs ′⟩, where Privs ⊃ Privs ′ holds. With the cryptographic implementation
of capabilities described above, a principal holding a private kO must participate
in every restricted delegation of capabilities for object O. In a distributed sys-
tem, all holders of kO might be located on distant hosts; communication delays
are now problematic. An extension we discuss here, overcomes the problem.

September 2013 Copyright Fred B. Schneider All rights reserved.

156 Chapter 7. Discretionary Access Control

Instead of a single private key kO, we admit an open-ended set of private
keys. Some key from this set is included in each capability and, as before,
capabilities are represented using signed bit strings.

Authenticity for Capabilities with Delegation. A ki-signed bit
string does not represents an authentic capability ⟨O,Privs⟩ unless

(i) ki = kO holds, or

(ii) ki is the private key included in the representation of some authentic
capability ⟨O,Privs ′⟩, where Privs ′ ⊃ Privs holds.

Clause (i) will be satisfied by any authentic capability for O that was generated
along with the creation of object O. Clause (ii) concerns capabilities produced
by restricted delegations. It defines authenticity for a capability C, recursively,
in terms of checks involving all capabilities in the chain of restricted delegations
that led to the creation of C.

Knowledge of the public key Ki that corresponds to a private key ki suffices
for checking whether a bit string is ki-signed. Thus, to discharge clause (ii)
for validating authenticity of a capability C, a principal requires access to the
public keys and sets of privileges associated with all of the capabilities in the
chain of delegations that produced C. By including that information in the
representation of C, it is available when needed.

So a capability ⟨O,PrivsN ⟩ is represented using signed bit string

kN -S(O, PdgO(PrivsN ,KN+1), kN+1) (7.5)

where PdgO(PrivsN ,KN+1) gives the pedigree for the capability by listing a
sequence d0 d1 . . . dN of delegation certificates

di = ki-S(O,Privsi,Ki+1),

each characterizing a restricted delegation in the chain that led to the creation
of the capability represented by (7.5).

If K0 is chosen to be well known public key for object O (so k0 = kO and
K0 = KO hold) then PdgO(PrivsN ,KN+1) contains exactly the information
needed to check the authenticity of capability (7.5). And we check authenticity
of a capability by using its pedigree, as follows.

Authenticity from Pedigree. A capability represented by (7.5) is au-
thentic if and only if the following tests are satisfied.

(i) Use well known public key KO for object O to check that delegation
certificate d0 is a kO-signed bit string.

(ii) For 0 ≤ i < N , use public key Ki+1 in di to check that delegation
certificate di+1 is a ki+1-signed bit string.

(iii) Use public key KN to check that (7.5) is a kN -signed bit string.

(iv) For 0 ≤ i < N , use Privsi from di and use Privsi+1 from di+1 to check
that Privsi ⊃ Privsi+1 holds.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.3. Capabilities 157

1. Choose a new private key kN+2 with corresponding public key KN+2

2. Construct pedigree PdgO(PrivsN+1,KN+2) for the new capability:

(a) Use kN+1 from (7.5) to construct kN+1-S(O,PrivsN+1,KN+2).
(b) Append kN+1-S(O,PrivsN+1,KN+2) to PdgO(PrivsN ,KN+1) found

in (7.5), thereby obtaining PdgO(PrivsN+1,KN+2).

3. Use kN+1 found in (7.5) to construct kN+1-signed bit string

kN+1-S(O, PdgO(PrivsN+1,KN+2), kN+2)

that serves as the representation of authentic capability for ⟨O,PrivsN+1⟩.

Figure 7.9: Generation of a Restricted Delegation ⟨O,PrivsN+1⟩

The idea behind representation (7.5) is simple, even if Authenticity from
Pedigree looks complicated with all those subscripts. N in (7.5) is the number
of restricted delegations that were performed to produce the capability being
represented. And each delegation certificate ki-S(O,Privsi,Ki+1) character-
izes authentic capabilities C ′ produced through restricted delegation from an
authentic capability that itself is a ki-signed bit string—such a C ′ would be
represented by a signed bit string that can be validated using public key Ki+1

(i.e., a ki+1-signed bit string) and must grant a subset of the privileges in Privsi.
Figure 7.9 gives steps for generating the representation for an authentic capa-
bility ⟨O,PrivsN+1⟩ produced by performing a restricted delegation from an
authentic capability ⟨O,PrivsN ⟩ represented using (7.5). So, for example, if a
capability ⟨foo,{r,w,x}⟩ is generated with the creation of file foo and repre-
sented according to (7.5) by

kfoo-S(foo, kfoo-S({r,w,x}, Krwx), krwx) (7.6)

then the procedure in Figure 7.9 would yield representations repC r
foo for capa-

bility ⟨foo,{r}⟩ and capability repC rw
foo for ⟨foo,{r,w}⟩ obtained by delegations

on (7.6), as follows.

repC r
foo = krwx-S(foo, kfoo-S({r,w,x},Krwx) krwx-S({r},Kr), kr)

repC rw
foo = krwx-S(foo, kfoo-S({r,w,x},Krwx) krwx-S({r,w},Krw), krw)

7.3.4 Capabilities Protected by Type Safety

Programs written in type-safe programming languages associate a type with
each variable, and their execution is restricted to ensure that only values with a
suitable type are stored in variables. Since support for capabilities also involves
enforcing restrictions on values, a natural question is whether the restrictions
type safety introduces can be used to implement the restrictions capabilities

September 2013 Copyright Fred B. Schneider All rights reserved.

158 Chapter 7. Discretionary Access Control

require. We answer in the affirmative here by defining types for capabilities,
where (i) possession of a suitable capability is necessary for executing operations
on objects, and (ii) capability authenticity is enforced.

Type Safe Execution. For our purposes, it suffices that a type T defines
(i) a set valsT containing values that includes the special constant � indicating
uninitialized, and (ii) a set opsT of operations defined on values in valsT . The
following restrictions are then enforced for type-safe execution:

Type-Safe Assignment Restriction. Throughout execution, variables
declared to have type T only store elements of valsT .

Type-Safe Invocation Restriction. Throughout execution, only oper-
ations in opsT are invoked for values in valsT .

For any types T and T ′, relation T ⪯ T ′ is defined to hold if and only if
valsT ⊇ valsT ′ and opsT ⊆ opsT ′ both hold. Notice that T ⪯ T ′ characterizes
when the type-safe execution restrictions above are not violated by storing values
of type T ′ in variables declared to have type T .

A static check of the program text can establish that execution of a given as-
signment statement will comply with the Type-Safe Assignment Restriction, as
follows. Assignment statement v ∶=Expr evaluates Expr and stores the resulting
value in variable v. Letting type(x) denote the type of a variable or expression
x, the following condition implies that Expr ∈ valstype(v) holds, which is what
Type-Safe Assignment Restriction requires for executions of v ∶=Expr .

Type-Safe Assignment. Execution of v ∶=Expr cannot violate Type-
Safe Assignment Restriction if type(v) ⪯ type(Expr) holds.

This condition is statically checkable if the declaration for v gives type(v) and
if declarations for the variables and operators in Expr suffice to infer a type for
the value Expr produces.

Next, consider an invocation statement

call obj .m(Expr1 , . . . ,Expri , . . . ,ExprN) (7.7)

Here, obj is a program variable that designates some object and m names an
operation. The definition for type(obj) will give declarations for all operations
supported on instances of type(obj), where a declaration for an operation m
might have the following form.

m∶operation(p1 ∶T1, . . . , pi ∶Ti, . . . , pN ∶TN) bodym end

This declares each formal parameter pi to have a type Ti and associates program
statement bodym with the operation. Execution of invocation statement (7.7)
assigns the value of each argument Expri to the corresponding formal parameter
pi and then executes bodym.

To ensure type-safe execution for invocation statement (7.7), we must be con-
cerned both with the Type-Safe Assignment Restriction and with the Type-Safe

September 2013 Copyright Fred B. Schneider All rights reserved.

7.3. Capabilities 159

Invocation Restriction. Assume that checking has established bodym exhibits
type-safe execution when started in a state where pi = Expri holds for 1 ≤ i ≤ N .
Type-Safe Assignment Restriction for (7.7) is then implied it the Type-Safe As-
signment Restriction holds for pi ∶=Expri where 1 ≤ i ≤ N which, according to
Type-Safe Assignment, requires that Ti ⪯ type(Expri) holds for 1 ≤ i ≤ N . And
Type-Safe Invocation Restriction requires that obj ≠ � and m ∈ opstype(obj) hold.
Three conditions thus characterize type-safe invocation statements.

Type-Safe Invocation. An invocation statement

call obj .m(Expr1 , Expr2 , . . . , ExprN)

for an operation

m∶operation(p1 ∶T1, . . . , pi ∶Ti, . . . , pN ∶TN) bodym end

never violates the Type-Safe Assignment Restriction or the Type-Safe In-
vocation Restriction provided the following hold:

– obj ≠ �
– m ∈ opstype(obj)

– type(pi) ⪯ type(Expri) for 1 ≤ i ≤ N .

Condition obj ≠ � must be checked at run-time if analyzing the program text
cannot guarantee that it always holds prior to reaching the invocation state-
ment; the other two conditions can be discharged statically by using the type
declarations present in the program text.

Capability Types. We now can explore how capabilities might be imple-
mented using types. For a type T whose values valsT are objects and whose
operations opsT include m1, m2, ..., mN (but perhaps others too), the capability
type

cap(T){m1,m2, . . . ,mN}

is a type whose set of values is the values of type T and whose set of authorized
operations is the subset of operations m1,m2, . . . ,mN also supported by T :

valscap(T){m1,m2,...,mN} = valsT

opscap(T){m1,m2,...,mN} = opsT ∩ {m1,m2, . . . ,mN}

Substitution into the definition of ⪯, we get that

cap(T){m1,m2, . . . ,mP } ⪯ cap(T ′){m1
′,m2

′, . . . ,mQ
′}

holds if and only if T ⪯ T ′ and {m1,m2, . . . ,mP } ⊆ {m1
′,m2

′, . . . ,mQ
′} hold.

Therefore, if C ⪯ C ′ holds for capability types C and C ′ then a Type-Safe
Invocation for operation m of an object designated by variable obj having type

September 2013 Copyright Fred B. Schneider All rights reserved.

160 Chapter 7. Discretionary Access Control

C will exhibit type-safe execution even if an object having type C ′ is stored in
obj .

To make these definitions concrete and understand their implications, con-
sider a type dbase that supports three operations: read(x , val), update(x , val),
and reset(). We declare two variables to store capabilities for objects of type
dbase:

var cap1 ∶cap(dbase){read ,update}
cap2 ∶cap(dbase){read}

Assume that cap1 designates object db1 and cap2 designates object db2 .
Invocation statement call cap1 .update(. . .), when its argument values have

suitable types, satisfies Type-Safe Invocation because cap1 ≠ � holds (by as-
sumption) and cap1 is declared to have a capability type that includes operation
update (since opstype(cap1) = {read ,update}). So a principal holding a capability
that includes an update privilege for db1 —therefore, the principal should be au-
thorized to execute update—is allowed to perform that operation by exercising
that capability. An access that should be permitted is permitted.

What about an access that should be denied? A capability that does not
include a privilege for update should not enable invocation of that operation.
For example, cap2 does not include a privilege for update. So an attempt
to use cap2 for such an invocation had better violate type-safety. And, in-
deed call cap2 .update(. . .) does not satisfy Type-Safe Invocation, since update ∈
opstype(cap2) does not hold.

Generation of New Capabilities. Expressions whose evaluation produce
values having type capability will be called capability expressions. A careful def-
inition for capability expressions enables type-safe execution to prevent forgery
of capabilities. At a minimum, the class of capability expressions must include
(i) expressions that manufacture a capability whenever a new object is created
and (ii) expressions that materialize a capability already held by the principal
evaluating the expression.

We embrace that minimum. To satisfy (i), we introduce capability expression
new(T). When new(T) is executed, the run-time environment creates a new
object having type T and returns a capability authorizing all operations for
that new object. And, to satisfy (ii), we define all variables declared with type
capability to be capability expressions, thereby allowing existing capabilities
to be retrieved for copying (perhaps between principals) and to be used for
invocations.

Capability-Valued Expressions. An expression Expr is defined to have
type cap(T){m1,m2, . . . ,mN} if

– Expr is the invocation of built-in function new(T) and m1, m2, ... ,
mN are operations that objects of type T support.

– Expr is either a variable or function that was declared to have type
cap(T){m1,m2, . . . ,mN}.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.3. Capabilities 161

Returning to the type dbase example, consider two additional variables.

var cap3 ∶cap(dbase){read ,update, reset}
cap4 ∶cap(dbase){write}

Thus, by definition, assignment statements

cap1 ∶=new(dbase), cap2 ∶=new(dbase), cap3 ∶=new(dbase)

all satisfy Type-Safe Assignment. And in each case, Type-Safe Assignment
ensures that the variable being assigned ends up storing an object with sup-
port for those operations the capability authorizes. Assignment statement
cap4 ∶=new(dbase), however, does not satisfy Type-Safe Assignment: opscap4 ⊆
opsnew(dbase) does not hold. Since execution of cap4 ∶=new(dbase) would forge
a write privilege, having cap4 ∶=new(dbase) violate Type-Safe Assignment is
exactly what we desire.

Capability-Valued Expressions also allows a variable with capability type to
appear as the right-hand side of an assignment statement. Such assignment
statements not only can be used to transfer capabilities between principals but
they can implement attenuation of privilege. For example, consider cap2 ∶= cap1 ,
which satisfies Type-Safe Assignment because type(cap2) ⪯ type(cap1) holds.
This assignment stores into cap2 a capability for db1 that authorizes fewer
operations than cap1 does; the assignment statement implements attenuation
of privilege.

Type-Safe Assignment does not allow amplification of privilege, though. As-
signment statement cap1 ∶= cap2 does not satisfy Type-Safe Assignment because
type(cap2) ⪯ type(cap1) does not hold. This means that program fragment

cap1 ∶= cap2 ; call cap1 .update(. . .) (7.8)

is not type safe, which is exactly what we desire—allowing (7.8) to execute would
enable a principal holding a capability (cap2) for db2 that authorizes only read
operations to invoke an update operation on db2 (since call cap1 .update(. . .) is
type safe).

A form of amplification is intrinsic in the usual lexical scoping rule for vari-
ables declared in an object. This scoping rule stipulates that variables declared
in an object may be named within that object’s operations but not outside.
For example, Figure 7.10 defines a type dbase. It declares a single variable
dbCntnt , which stores the state of a dbase instance; the scoping rule allows
dbCntnt to be named within the body of operations read , update, and reset
but not elsewhere. A form of amplification thus occurs during execution of the
operations, because the body of an operation can directly access the object’s
variables. Moreover, if variables with capability types are declared within an
object, then only by executing an operation can these capabilities be exercised.
So, a principal executing an operation has amplified privileges relative to what
it had when executing outside the operation.

September 2013 Copyright Fred B. Schneider All rights reserved.

162 Chapter 7. Discretionary Access Control

type dbase = object
var dbCntnt : map

read : operation(x ∶ field , var val ∶ field)
val ∶=dbCntnt[x]
end read

update: operation(x ∶ field , val ∶ field)
dbCntnt[x] ∶= val
end update

reset : operation()
dbCntnt ∶=∅
end reset

end dbase

Figure 7.10: Definition of type dbase

7.3.5 Revocation of Capabilities

Revoking a principal’s authorization can be problematic when Auth is imple-
mented using capabilities. To delete ⟨P,O,op⟩ from Auth, we must find and
delete or invalidate all copies of capability ⟨O,Privs⟩ that P is holding and
where op ∈ Privs is satisfied. Moreover, the rationale for revoking P ’s au-
thorization to O might well apply to other principals that received copies of
⟨O,Privs⟩ directly or indirectly from P . With transitive revocation, we would
be required to delete or invalidate those copies of ⟨O,Privs⟩ too.

Brute-Force Approaches. Brute-force approaches to find and delete copies
of a capability are perhaps the most obvious approach to implementing re-
vocation. However, this is feasible only if the capability of interest can be
found by scanning a relatively small amount of storage. Capabilities that em-
ploy hardware-implemented tagged memory or cryptographic protection can be
stored anyplace in a principal’s address space; brute-force searching is infeasible
here.

Brute-force approaches are feasible when capabilities are implemented by
strong-typing declarations or by protected address-spaces in virtual memory
segments or kernel memory, because then all capabilities are stored in a small
number of easily identified memory locations. Some systems19 employ brute-
force approaches to revocation by adopting a hybrid approach to authorization.
Here, capabilities and access control lists are both used. Access to persistent
objects, such as files on disk, is controlled by access control lists; access to
resources that do not outlive their creators is controlled by capabilities. So
capabilities can be stored in kernel memory, where brute-force approaches to
revocation are feasible.

19Unix is an example of such a system. See §7.4 for details.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.3. Capabilities 163

Intermediaries. Another method for ensuring that capabilities concerning a
given object can easily be found for deletion is to define an intermediary Ô for
each given object O. Capabilities that any principal holds for a given object O
are stored only in Ô. Therefore, invoking operations at intermediary Ô is the
only way that a client P can exercise a capability for O.

The implementation of Ô might (i) store a c-list of capabilities concerning
O for each principal or (ii) store a single copy of each capability ⟨O,Privs⟩
plus a list L⟨O,Privs⟩ of principals holding ⟨O,Privs⟩. In either case, a capability
⟨O,Privs⟩ that P holds is now easily revoked, because it is stored in a well known
location (i.e., in Ô). An intermediary is basically a reference monitor, and the
information it stores is equivalent to an access control list. The approach then
is just a capability-based implementation of access control lists.

Revocation Tags. An alternative to finding and deleting revoked capabilities
is simply to block access attempts that use them. This can be implemented by
ensuring that some reference monitor is consulted whenever a capability is used
to perform an access. Include a revocation tag in each capability; a capability is
now a triple ⟨O,Privs, revTag⟩. And, for each object O, the reference monitor
maintains a set RevTagsO containing revocation tags for revoked capabilities
for O.

• Revocation. A capability ⟨O,Privs, revTag⟩ is revoked by adding revoca-
tion tag revTag to RevTagsO. This operation is authorized only if the
revocation privilege is present in Privs.

• Validity Checking. An access attempted through ⟨O,Privs, revTag⟩ is de-
nied by the reference monitor if revTag ∈ RevTagsO holds, because then
⟨O,Privs, revTag⟩ had already been revoked.

Capability authenticity is presumed to prevent principals from changing the
revocation tag in a capability; the operating system is presumed to protect
the integrity of RevTagsO and to provide a system call for adding elements to
RevTagsO (but preventing other changes to RevTagsO).20

Capabilities that incorporate revocation tags can be used to support selective
revocation. Here, we seek means to revoke capabilities that some subset of
principals hold for a given object. One solution is to define a capability-facsimile
generation operation facGen(⋅, ⋅), with associated privilege (say) fg . Provided
fg ∈ Privs holds, execution of

cap ∶= facGen(⟨O,Privs, revTag⟩, Privs ′)
20In the implementation just sketched, RevTagsO grows without bound. This could be

problematic when memory is finite. An element revTag can be removed from RevTagsO once
all capabilities containing that revocation tag have been deleted. It would be possible to as-
certain that those capabilities have all been deleted, for example, when a principal that cannot
share its capabilities with other principals is terminated and all of its storage is reclaimed.
Also, RevTagsO can be deleted when object O is deleted, so for short-lived objects the storage
required by RevTagsO is unlikely to be a problem.

September 2013 Copyright Fred B. Schneider All rights reserved.

164 Chapter 7. Discretionary Access Control

generates and stores in cap a capability ⟨O,Privs ∩Privs ′, revTag ′⟩, thereby
assigning to cap a capability for O that has a fresh revocation tag and (possibly)
attenuated privileges.

Principals whose authorization for an object O might have to be revoked
all together can now be given capabilities having the same revocation tag.
Moreover, if some principal P passes a capability ⟨O,Privs, revTag⟩ to an-
other principal and that capability is forwarded further, then all those copies of
⟨O,Privs, revTag⟩ are revoked when revTag is added to RevTagsO. Revocation
tags thus support only a limited form of selective revocation: Prior to dissem-
inating capabilities to principals, we must anticipate what sets of capabilities
should together be revoked (because all capabilities in each such a set must
share a revocation tag), and these sets must be non-intersecting (because each
capability contains only one revocation tag).

Capability Chains. Indirection is the basis for our final approach to imple-
menting revocation of capabilities. The idea is simple. We permit the object
named in a capability to be another capability. Now, chains of capabilities can
be constructed that lead to the capability for a given object O. And an access
to O using a capability C is permitted if and only if (i) C starts a chain of
capabilities that all satisfy capability authenticity, (ii) the chain ends with a
capability for O, and (iii) each capability in the chain contains privileges that
authorize the requested access to O.21

Figure 7.11 gives an example. Each of the capabilities there (including C1)
starts a chain that ends with a capability for object O. So a principal P is au-
thorized to invoke an operation op on object O if P holds one of the capabilities
Ci depicted in Figure 7.11, and op ∈ Privsk holds for every capability Ck in the
chain from Ci to C1 (the capability for O).

A chain of capabilities is severed if all copies of some capability C that
appears in a chain are deleted. After the chain is severed, access attempts that
traversed C in order to reach some capability ⟨O,Privs⟩ no longer succeed. So
any principal that is authorized to delete all copies of C is authorized to perform
a selective revocation. For instance, with the chains in Figure 7.11, deleting all
copies of C2 revokes access to O from capabilities C3, C4, C5, C6 or C7; access
to O from C1 or C8 is unaffected, though.

The authorization for a principal P to delete a capability C might derive
from P being authorized to update the memory that contains C. Or it might
derive from P holding a capability ⟨C,{...,delCap, ...}⟩ for C, where the delCap
privilege is required by the operation that deletes capabilities.

Capability chains support richer forms of selective revocation than revoca-
tion tags do. Because chains can overlap, deletion of (all copies of) a single
capability could revoke a union of sets of capabilities, where each set could

21Condition (iii) is just one of several sensible schemes for deciding whether an operation
should be permitted. An alternative would be to require that the last capability in the chain
authorize the operation and all other capabilities traversed in the chain grant an indirect priv-
ilege. We might in addition require that the principal making the access hold all capabilities
in the chain.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.4. Case Study: DAC in Unix 165

C2 Privs3 C3

C3 Privs4 C4

C4 Privs5 C5

6

6

C1 Privs2 C2

C2 Privs6 C6

C6 Privs7 C7

6

6

6

O Privs1 C1

C1 Privs8 C8

666

Figure 7.11: Chain of Capabilities

have each been revoked by itself. This is illustrated in Figure 7.11. Deleting
all copies of C3 also revokes C4 and C5; deleting all copies of C6 also revokes
C7; and deleting C2 revokes the union of those sets plus C3 and C6. Thus, in
contrast to revocation tags, indirection allows non-disjoint sets of capabilities
to be revoked.

7.4 Case Study: DAC in Unix

The access control policy implemented by Unix22 is concerned with authorizing
requests that processes make to perform operations on files. However, file names
are used in Unix to name most other system resources, too. All operations on
files and other system resources are implemented by operating system code. So
authorization can be enforced by a reference monitor located in the operating
system.

• A unique user id identifies a user, and a unique group id identifies a group
of users. Each process executes with an effective user id and an effective
group id that together specify the protection domain for that process.23

• Each file F has an associated access control list, a user id ownerF that
is the file’s owner, and a group id groupF that is the file’s group. This
information is stored in the i-node for the file, along with other meta-data.

22The mechanisms featured in this section should be common to most versions of Unix and
also will be found in many other of today’s commercial operating systems.

23Newer versions of Unix allow concurrent membership in multiple groups.

September 2013 Copyright Fred B. Schneider All rights reserved.

166 Chapter 7. Discretionary Access Control

Only the owner of a file is permitted to change the access control list for that
file, so Unix implements DAC.24

Access control lists in Unix sacrifice expressiveness in favor of succinctness.
The access control list for a file F defines three sets of privileges: the owner’s
privileges PrivsF .owner , the group’s privileges PrivsF .group, and others’ privi-
leges PrivsF .other . A process having euid as its effective user id and egid as its
effective group id is authorized to perform an operation requiring a privilege p
provided the following holds.

(p ∈ PrivsF .owner ∧ euid = ownerF)
∨ (p ∈ PrivsF .group ∧ euid ≠ ownerF ∧ egid = groupF)
∨ (p ∈ PrivsF .other ∧ euid ≠ ownerF ∧ egid ≠ groupF)

(7.9)

Authorization check (7.9) was doubtless selected by the Unix designers be-
cause it can be efficiently evaluated by executing a nested if -then-else state-
ment. The semantics that (7.9) defines is somewhat unintuitive, though. For
instance, a process executing with effective group id egid might not be able to
exercise a privilege p on a file whose access control list authorizes p to group
egid . This is illustrated by a file F where

PrivsF .owner = {r}, PrivsF .group = {r,w}, PrivsF .other = ∅

hold. You would expect that a process for which egid = groupF holds should be
permitted to perform an operation requiring privilege w, since w ∈ PrivsF .group
holds. However, if euid = ownerF holds then such a request would be denied
according to (7.9), because w ∉ PrivsF .owner implies the first disjunct of (7.9)
is false and euid = ownerF implies the second and third disjuncts are false too.

Unix employs three identifiers—r, w, and x—for designating file access priv-
ileges. A small number of bits thus suffices to represent the privilege sets that
appear on Unix access control lists, a design decision made when memory and
disk space were dear. Which operations are authorized by identifiers r, w, and
x depends on the type of file. Unix distinguishes between ordinary files, direc-
tories, and special files. Ordinary files and directories are storage abstractions;
special files provide a uniform way for authorizing access to I/O devices and
system abstractions, such as ports. Figure 7.12 summarizes the intended effects
of r, w, and x for ordinary files and for directories; the interpretation of r, w,
and x for special files is idiosyncratic to the object.

From Figure 7.12, we conclude that the appearance of x on the access control
list for an ordinary file authorizes execution of an exec system call naming the
file. For ordinary files that store executables, specifying x but not r protects a
proprietary executable, since it allows clients to execute the code but not steal
it. A file that has r but not x forces an executable to be copied before it can

24In contemporary versions of Unix, only a system administrator (user id root) is permitted
to change a file’s owner. This restriction prevents an unscrupulous user from changing the
owner of a file as a means to (i) circumvent a resource accounting scheme that charges a file’s
owner for space occupied by that file or (ii) store stolen information in a file that seemingly
implicates another user in the theft.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.4. Case Study: DAC in Unix 167

Privilege
File Type

Ordinary Directory

r can read file contents
can read file names stored
in the directory but not
other information

w
can change file contents
or truncate file

can change directory con-
tents, allowing file cre-
ation, deletion, renaming.

x can execute file

can traverse directory to
access files or subdirecto-
ries; can read information
in the i-node for the file.

Figure 7.12: Interpretations for Unix Privileges

be executed—the executable is now stored in a file having the client’s user id
as owner. For a directory, x is interpreted as allowing the stat system call.
By restricting execution of stat, Unix offers a way to block file accesses that
include a specified directory on paths used to identify files.

Domain Change in Unix. Change the effective user id and/or the effective
group id of process and, according to (7.9), the domain of that process changes.
Unix supports such domain change by providing suid and sgid privileges. Each
extends the meaning of x for ordinary files that store executables.25 When a file
F having suid executes, the effective user id is changed to ownerF ; analogously,
sgid causes the effective group id to be changed to groupF . So domain-change
is coupled with the exec system call.

In early versions of Unix, suid was used primarily by programs that imple-
mented system services. Accesses by programs executing as root receive special
treatment from the Unix operating system—they are not subject to restrictions
specified in access control lists. So programs implementing system services were
executed with effective user id root. All manner of design sins could be over-
come (but also committed) when system services are granted unfettered access
to everything. This architecture, however, also meant that attackers could ac-
cess any file simply by discovering an exploitable bug in a system service.

Subsequent versions of Unix addressed this weakness by better embracing
the Principle of Least Privilege.

• Fewer system services execute with effective user id root. Instead, distinct
system services are assigned different user id’s, all files associated with a
given service are owned by that service-specific user id, and programs
implementing the service execute suid to that user id.

25Different versions of Unix assign different semantics to suid and sgid for directories. The
details are not important for our discussion.

September 2013 Copyright Fred B. Schneider All rights reserved.

168 Chapter 7. Discretionary Access Control

• New system calls allow a process to change its effective user id without in-
voking exec. So domain change is no longer wed to exec, and fine-grained
domains can be associated with regions of code within an executable. In
addition, some Unix versions add a single saved user id for each process
and provide system calls that allow an effective user id to be stored there.
This functionality enables a domain change that returns to what the ef-
fective user id was before. It also refines the definition of a protection
domain to comprise a pair containing the effective user id and the saved
user id.

Lower-overhead Authorization Checks. Because its designers were con-
cerned about run-time overhead, Unix systems only implement an approxima-
tion to the access control scheme just explained. Authorization is partitioned
into a potentially expensive check, which is done infrequently, and cheaper
checks, which are performed for each file access. The expensive check is moved
into an additional system call. This open system call for a file must be executed
prior to attempting read or write system calls on that file.

The constraint that open be executed first is enforced because read and
write require a file handle argument (rather than a file name), and invoking
open is the only way to obtain a file handle for a given file. The open system call
takes as arguments (i) a full path that names a file and (ii) a bit mask specifying
accesses (r and/or w). Provided (7.9) allows traversal of each directory named
in (i) and also allows access to the file as specified in bit mask argument (ii)
then execution of open returns a file handle that, thereafter, can be used for
the specified accesses to this file. So open requires information stored in the
i-node for a file as well as information from all directories traversed to reach
that file. The cost for executing open thus could be high, even if all of the
needed information is cached in main memory. But the cost for authorization
of read and write is always low, since these operations need only check a small
amount of system state stored for a given file handle.

The usual Unix implementation of a file handle as an offset into a per-
process file-descriptor table is analogous to naming capabilities by using indices
into per-process c-lists. Execution of open returns the index; read and write

perform operations on a file only when provided with an index for a file descrip-
tor authorizing that operation on the file. Moreover a typical Unix system also
supports a close system call, which deletes a file descriptor and a fork system
call, which creates a new process that executes with a copy of the invoker’s
file-descriptor table. Some Unix systems even support inter-process communi-
cations with send and recv system calls that not only allow opaque data to be
transmitted from one process to another but allow entries to be copied from a
sender’s file-descriptor table to the receiver’s.

The hybrid of access control lists and capability-like authorization (file han-
dles denoting file descriptors) just outlined is not a panacea. Its latency for
revocations can be unbounded, because the access control list is not rechecked
each time read and write execute (since only open does that check). So a

September 2013 Copyright Fred B. Schneider All rights reserved.

7.5. Case Study: Stack Inspection 169

process that successfully executes an open naming a file F can continue exe-
cuting read and write operations for F long after the authorizing privileges
have been deleted from the access control list for F or from the access control
lists for directories traversed to reach F . That exposure was unlikely to be long
when hardware failures and software bugs meant that processes rarely ran un-
interrupted for very long. Those days are long gone, however. Improvements in
hardware speed and in software reliability bring significantly longer intervals of
exposure, making it harder for designers of contemporary systems to rationalize
reductions in authorization overhead by risking unbounded revocation times.

7.5 Case Study: Stack Inspection

By permanently associating domains of protection with programs, modules, or
objects, we run the risk of confused deputy attacks. We can mitigate this risk by
having privileges granted during execution of a code unit depend, at least in part,
on execution history. So we are instantiating the Principle of Least Privilege,
using knowledge about the past to establish what task is being performed and
granting privileges accordingly.

An approximation to this history-based approach for authorization is pro-
vided by by stack inspection. Here, authorization decisions are based on aspects
of the execution history recorded in a run-time stack for each process. A new
frame is pushed onto this stack whenever execution of a code unit is invoked;
that frame is popped when the code unit returns to its invoker. Thus, the run-
time stack records all code units in which a statement S either is actively being
executed or is suspended awaiting termination of a code unit that S invoked.

As an illustration, consider the client-server system of Figure 7.13. If we
monitor the run-time stack during execution, we find a single frame just before
C1 in Client starts executing as user uid , two frames when S1 in Server starts
executing (C1 is suspended), and three frames while F2 in the FileSys.Read
operation invoked by S1 is executing (C1 and S1 are suspended):

Client(uid)

C1

Server .DoIt
Client(uid)

C1↑S1

FileSys.Read
Server .DoIt
Client(uid)

C1↑S1↑F2

Here, we are using infix ↑ operator26 in labels for snapshots—a label S↑S′↑S′′
indicates that statement S is suspended having invoked a code unit containing
statement S′, S′ is suspended having invoked a code unit containing statement
S′′, and S′′ is executing.

26By convention, we depict a stack by drawing its base towards the bottom of the page, and
the stack grows in the upward direction. The ↑ in S↑S′ conveys the direction of stack growth
when S invokes S′.

September 2013 Copyright Fred B. Schneider All rights reserved.

170 Chapter 7. Discretionary Access Control

In authorization policies defined using stack inspection, a set of privileges is
derived from the run-time stack. Run-time stacks thus define the domains of
protection for this authorization regime. And the set of privileges authorized
by a given run-time stack is derived from sets of privileges associated with
the frames comprising that run-time stack—each frame gets privileges from a
declaration for the code unit whose invocation the frame records. Figure 7.14
declares file access privileges for code units Client , Server , and FileSys. The
declarations imply that stack frames for execution of Client under user id uid are
associated with read and write privileges to files in directory /fsys/Users/uid
but have no privileges for /fsys/Server/acntFile or any other files; both read

and write privileges for file /fsys/Server/acntFile are associated with stack
frames for execution of Server .

The set of privileges enforced for the protection domain defined by a run-
time stack is the intersection of the privilege sets associated with the frames
comprising that stack. Any larger set would admit execution by a code unit

Client : process(uid)
C1: Server .DoIt(“/fsys/Users/uid/dataFile”)
C2: Server .DoIt(“/fsys/Server/acntFile”)

end Client

Server : service
DoIt : operation(f : file)

S1: buffer := FileSys.Read(f)
S2: results := F (buffer)
S3: chrgs := calcBill(results)
S4: FileSys.Write(f , results)
privileged do
S5: FileSys.Write(“/fsys/Server/acntFile”, chrgs)
end

end DoIt
end Server

FileSys: service
Read : operation(f : file) : string

F1: CheckPrivilege(⟨f ,read⟩)
F2: fetch and return contents of file f
end Read

Write: operation(f : file; v : string)
F3: CheckPrivilege(⟨f ,write⟩)
F4: extend file f with v
end Write

end FileSys

Figure 7.13: Client/Server using Stack Inspection

September 2013 Copyright Fred B. Schneider All rights reserved.

7.5. Case Study: Stack Inspection 171

Code Unit Objects Privileges

Client(uid) /fsys/Users/uid/∗ read, write
Server /fsys/Users/∗ read, write

/fsys/Server/acntFile read, write
FileSys /fsys/* read, write

Figure 7.14: Privileges Declared for Client/Server Code Units

but with the privileges declared for that code unit not being enforced, which
seems undesirable. Notice that the intersection-based definition causes the con-
fused deputy attack being attempted by C2 in Client to fail in statement S4

for lack of a write privilege to /fsys/Server/acntFile. In particular, the priv-
ileges declared for code unit Client(uid) do not include a write privilege for
/fsys/Server/acntFile, and therefore any intersection of privilege sets that in-
volves a stack frame for Client(uid) will not either. Thus the CheckPrivilege at
F3 fails whenever FileSys.Write is invoked by S4 from C2.

The intersection-based definition for protection domains implies that a pro-
tection domain transition accompanies execution that causes a stack frame to
be pushed or popped. Since invocation pushes a new frame onto the run-time
stack, invocations cause protection domain transitions. By definition, the new
protection domain’s privileges intersects an additional set of privileges. Fur-
thermore, because P ⊇ (P ∩Q) holds for all sets P and Q, we conclude that the
privilege set associated with the new protection domain cannot be a superset
of the set before. The domain of protection entered by executing an invocation
thus cannot have added privileges.

Yet there are situations where added privileges are necessary. For instance,
successful execution of FileSys.Write invoked by S5 in Server .DoIt requires
a write privilege for file /fsys/Server/acntFile, despite the absence of that
privilege from the intersection of privilege sets associated with frames on the
run-time stack. Execution of S4, however, had better not be granted that same
privilege or else the confused deputy attack at C2 will succeed. A notation to
specify amplification of privilege is needed.

We should be willing to grant additional privileges to specified statements
whose executions can be trusted not to abuse those privileges. To achieve this
effect, we allow a stack frame temporarily to be marked privileged during execu-
tion, and we redefine the set of privileges associated with a run-time stack. The
new definition omits from the intersection all stack frames that appear below
one that is marked privileged. So the set DomPrivs(rts) of privileges associated
with the protection domain for a run-time stack rts[1..top] is formally defined
as follows

DomPrivs(rts) = ⋂
bot≤j≤top

FPrivs(rts[j]) (7.10)

where FPrivs(f) is the set of privileges associated with a stack frame f , and
bot identifies the top-most stack frame marked privileged (with bot = 1 if rts

September 2013 Copyright Fred B. Schneider All rights reserved.

172 Chapter 7. Discretionary Access Control

contains no frames marked privileged).

We illustrate the definition of DomPrivs(rts) by depicting three snapshots
of a run-time stack, where

√

indicates stack frames that are marked privileged.
In each, DomPrivs(⋅) is the intersection of the associated privilege sets for only
the non-shaded stack frames.

E ← top
D
C
B
A ← bot

(a)

E ← top
D
C

√

B ← bot
A

(b)

E ← top
√

D ← bot
C

√

B
A

(c)

Notice that while E is executing, DomPrivs(⋅) for snapshot (b) can contain
privileges not declared for A; for snapshot (c), it can contain privileges not
declared for A, B, or C.

We have thus far ignored how programmers specify when a stack frame
becomes marked privileged. One approach is for “marked privileged” to be
among the attributes that can be declared for a code unit. If a code unit is
invoked having that attribute declared, then the frame pushed onto the run-time
stack would be marked privileged. Only small blocks of statements typically
need to exercise amplified privileges, so packaging these blocks as separate code
units can be problematic. First, invocation is an expensive form of control
transfer. Second, parameter-passing now must be employed to share state with
the blocks of statements being granted amplified privileges.

Systems that support stack inspection avoid these problems by adopting a
finer-grained approach. They introduce a syntax

S: privileged do T end

for specifying a block T of statements that should be executed with amplified
privileges. Execution of S causes the frame currently at the top of the run-time
stack to be marked privileged just before T is executed; when T terminates,
the frame is unmarked if it was unmarked when S started execution.27 In
Figure 7.13, S5 of Server appears in a privileged do but S4 does not. The
following snapshots of the run-time stack are possible.

Server .DoIt
Client(uid)

C1↑S4

FileSys.Write
Server .DoIt
Client(uid)

C1↑S4↑F3

√

Server .DoIt
Client(uid)

C1↑S5

FileSys.Write
√

Server .DoIt
Client(uid)

C1↑S5↑F3

27Although this operational semantics supports arbitrary nesting of privileged do state-
ments, no additional privilege amplification results from such nesting.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.5. Case Study: Stack Inspection 173

The invocation of FileSys.Write by S4 (snapshot C1↑S4↑F3) thus does not exe-
cute with a write privilege for file /fsys/Server/acntFile, because that privilege
is not declared for code unit Client(uid). But the invocation by S5 (snapshot
C1↑S5↑F3) does, since privileges associated with the stack frame for Client(uid)
are no longer part of the intersection that defines the set of privileges associated
with the run-time stack. Consequently, the confused deputy attack at C2 is
foiled.

7.5.1 Stack Inspection Implementation Details

The obvious implementation of stack inspection is simply to use a stack for
storing the privilege sets associated with each code unit that is executing or
suspended:

var pds : array[0 ..] of record
fPrivs : set of privileges initial(∅)
marked : boolean initial(false)
end record

pdsTop : integer initial(0)

Code for the various operations involving this stack appears in Figure 7.15.
Invocation of a code unit CU causes associated set FPrivs(CU) of privileges
to be pushed onto pds; return causes that stack to be popped. Entry/exit from
a privileged do marks/unmarks the frame appearing at the top of the stack.
And the code for CheckPrivilege(p) uses a loop28 that, starting from the top
frame of pds, checks for privilege p in pds[⋅].fPrivs sets, thereby computing
whether p is a member of DomPrivs(pds) according to definition (7.10).

Using Stack Compression. In the above implementation, all of the opera-
tions except CheckPrivilege have small and fixed run-time costs. The run-time
cost of CheckPrivilege, however, is linear in the height of the pds stack. This
linear cost can become problematic if the number of CheckPrivilege operations
is anticipated to be large or if CheckPrivilege invocations appear in code units
whose invocations are deeply nested.

A fixed-cost implementation of CheckPrivilege is possible, though. We again
employ a stack of privilege sets

28We have that 1 ≤ pdsTop holds whenever CheckPrivilege is invoked, because invocations
of CheckPrivilege appear only inside code units. So the following is an invariant for the loop
in CheckPrivilege.

1≤i≤pdsTop ∧ (∀j ∶ i<j≤pdsTop ∶ ¬pds[j].marked)

∧ inInter = p ∈
⎛
⎝ ⋂
i≤j≤pdsTop

pds[j].fPrivs
⎞
⎠

When the loop terminates, pds[i]marked ∨ 1 = i holds, which implies that pds[i] must be
marked privileged and/or be the frame at the bottom of the stack. Moreover, since the loop
invariant holds when the loop terminates, we conclude that inInter equals true if and only if
p ∈ DomPrivs(rts) holds.

September 2013 Copyright Fred B. Schneider All rights reserved.

174 Chapter 7. Discretionary Access Control

Invoke: operation(CU : code unit)
pdsTop := pdsTop + 1
pds[pdsTop].fPrivs := FPrivs(CU)
pds[pdsTop].marked := false
end Invoke

Return: operation
pdsTop := pdsTop − 1
end Return

DoPrivEnter : operation
pds[pdsTop].marked := true
end DoPrivEnter

DoPrivExit : operation
pds[pdsTop].marked := false
end DoPrivExit

CheckPrivilege: operation(p : privilege)
var i : integer

inInter : boolean
inInter ∶= (p ∈ pds[pdsTop].fPrivs)
i ∶= pdsTop
while ¬pds[i]marked ∧ 1 ≠ i do

i ∶= i − 1
inInter := inInter ∧ (p ∈ pds[i].fPrivs)
end

if ¬inInter then throw protection exception
end CheckPrivilege

Figure 7.15: An Implementation of Stack Inspection

var cpds : stack of set of privileges

but now we arrange for the each stack frame to store the set of all privileges
associated with a protection domain—not just those privileges associated with
a single code unit. In particular, we ensure

cpds.top() = DomPrivs(rts) (7.11)

holds throughout execution, where cpds.top() evaluates to the contents of the
frame appearing at the top of stack cpds. Figure 7.16 compares a snapshot of
stack pds and the equivalent snapshot of stack cpds for a hypothetical partial
execution A↑B↑C↑D↑E, where the statement suspended in code unit B and the
one executing in E are within privileged do statements. Notice how a single
frame of cpds may store the intersection of privileges stored by a sequence of
frames in pds, thereby “compressing” privilege sets into a form ideally suited
for the stack inspection operations.

September 2013 Copyright Fred B. Schneider All rights reserved.

7.5. Case Study: Stack Inspection 175

√

FPrivs(E) FPrivs(E)
FPrivs(B) ∩ FPrivs(C) ∩ FPrivs(D) ∩ FPrivs(E)

FPrivs(D) FPrivs(B) ∩ FPrivs(C) ∩ FPrivs(D)
FPrivs(C) FPrivs(B) ∩ FPrivs(C)

√

FPrivs(B) FPrivs(B)
FPrivs(A) ∩ FPrivs(B)

FPrivs(A) FPrivs(A)
pds cpds

Figure 7.16: Stack Compression Example

A CheckPrivilege implementation having fixed run-time cost now is trivial.
CheckPrivilege(p) simply checks whether p ∈ cpds.top() is true. Code for that
operation and for the others appears in Figure 7.17. This code exploits the
insight that an invocation or entry operation causing transition from one pro-
tection domain PD to a new one PD ′ is ultimately followed by an operation
causing the transition from PD ′ back to PD . If the transition to new protec-
tion domain PD is being implemented by cpds.push(PD) and definition (7.11)
holds, then the transition back can then be implemented by cpds.pop(). More-
over, each operation requires only a fixed number of stack operations, thereby
having fixed run-time cost.

Invoke: operation(CU : code unit)
var pd : set of privileges
pd ∶= cpds.top()
cpds.push(FPrivs(CU) ∩ pd)
end Invoke

Return: operation
cpds.pop()
end Return

DoPrivEnter : operation
cpds.push(FPrivs(currCU))
end DoPrivEnter

DoPrivExit : operation
cpds.pop()
end DoPrivExit

CheckPrivilege: operation(p : privilege)
if p ∉ cpds.top() then throw protection exception
end CheckPrivilege

Figure 7.17: Stack Compression Implementation

September 2013 Copyright Fred B. Schneider All rights reserved.

176 Chapter 7. Discretionary Access Control

A more-detailed explanation of the code for each of the operations in Fig-
ure 7.17 follows.

• If a code unit CU is invoked when the protection domain PD is stored
by the top-most stack frame of cpds then there will be a transition to
protection domain FPrivs(CU)∩PD . By pushing FPrivs(CU)∩PD onto
cpds, (7.11) will continue to hold—the set of privileges associated with the
current protection domain is now stored in cpds.top(). The subsequent
return from CU causes a transition to the protection domain that was
in force prior to the invocation; the pop to cpds thus does not invalidate
(7.11).

• If a privileged do in a code unit CU commences when the protection
domain PD is stored by the top-most stack frame of cpds then, accord-
ing to (7.10), the protection domain will transition to FPrivs(CU). If
we assume currCU is the currently executing code unit, then by push-
ing FPrivs(currCU) onto cpds, (7.11) will again hold—we restore to
cpds.top() the set of privileges associated with the current protection
domain. Exit from that privileged do causes a transition to the protec-
tion domain that was in force prior to the push of FPrivs(currCU); a pop
on cpds thus suffices to re-establish the truth of (7.11).

7.5.2 Privileges for Code Units

Stack inspection was originally developed for defending against attacks conveyed
in web pages or other content downloaded from the Internet. For that setting,
the identity of the author or of another other trusted principal that attests to
authenticity of some code seemed a reasonable basis for predicting the trust-
worthiness of that code. Code believed to be trustworthy is granted privileges
for accessing system resources; other code is granted virtually no privileges and,
therefore, its ability to inflict damage is limited.

Two schemes were then employed for associating privileges with code units:

• Associate sets of privileges with code libraries. Where a code unit is loaded
from thus determines its privileges.

• Associate sets of privileges with digital signatures. When multiple signa-
tures on a code unit are allowed, then the code unit is granted the union
of the privilege sets associated with all of the signing keys.

Code installed in system libraries or digitally-signed by well known software
providers is now easily distinguished from code obtained from potentially dis-
reputable sources. And that was the original goal. We might, however, also
have as our goal to support the Principle of Least Privilege at the granularity of
code units. That, unfortunately, is not easily achieved if what set of privileges
is granted to a code unit is determined by its library or digital signature(s).
This is because we would likely want distinct code units each to be granted
different sets of privileges; the number of separate code libraries and/or signing
keys would become unwieldy when the number of code units is large.

September 2013 Copyright Fred B. Schneider All rights reserved.

Exercises for Chapter 7 177

Exercises for Chapter 7

7.1 DAC policies are defined in §7.1 with a model that comprises an authoriza-
tion relation Auth and a set C of commands. As with any model, certain things
are easy to express but other things can be awkward or impossible to express.
Illustrate this incompleteness by describing access control policies that would
be awkward or impossible to express in this model.

7.2 In some systems, the same object might have different names. We see
this in many guises: (i) when shared memory segments are mapped to different
virtual addresses in different processes, (ii) when aliasing occurs in a high-level
language program through parameter passing or the use of pointers, (iii) when
either a symbolic or a hard “link” is created for accessing the same file from
different directories, and (iv) when a device in a network is named by its network
address and that device is “multi-homed”.

(a) What, if any, opportunities could this functionality provide to attackers
if O in ⟨P ,O,op⟩ could be one of many names that principals use for the
object.

(b) Explain how objects that might have multiple names could be accommo-
dated by extending the model §7.1 comprising an authorization relation
Auth and set C of commands.

7.3 Consider an authorization relation Auth and a set C of commands that
together specify an access control policy. Must this necessarily specify a DAC
policy? If so, explain why. If not, give conditions on Auth and/or C that ensure
the policy will be DAC.

7.4 What efficiently checked constraints on the initial value of Auth and any set
C of commands would ensure that each of the following access control policies
are being enforced? If such constraints cannot exist, then explain why; if they
do exist, indicate the extent to which the constraints rule out things that they
shouldn’t.

(a) At most one principal has privileges for accessing each given object.

(b) Any principal granted privilege w for an object is also granted privilege r.

(c) Principal P0 is never granted privilege r for object Obj 0.

(d) No principal is ever granted a privilege that would subsequently allow
principal P0 to be granted a privilege r for object Obj 0.

7.5 Consider a graph G = ⟨N,E,L⟩ comprising a finite set N of nodes, a finite
set E of edges (each edge, a pair of nodes), and a function L that assigns a
label L(e) to each edge e. G can be represented by a diagram where (i) dots
correspond to nodes and (ii) for each edge e = ⟨n,n′⟩ in E, an arrow labeled
L(e) is drawn from the dot representing n to the dot representing n′.

September 2013 Copyright Fred B. Schneider All rights reserved.

178 Chapter 7. Discretionary Access Control

(a) Describe how the information in an authorization relation Auth can be
represented by such a graph.

(b) Give necessary and sufficient conditions on such a graph for it to define
an authorization relation Auth.

(c) The transitive closure G∗ of graph G is defined to be the graph ⟨N,E∗, L⟩
where E∗ is the smallest set of edges such that

– E ⊆ E∗ holds, and

– if edges ⟨n,n′⟩ and ⟨n′, n′′⟩ are in E∗ and have the same label then
so is an edge ⟨n,n′′⟩ with that label.

What kinds of insights become apparent from the diagram of transitive
closure G∗ for a graph G that corresponds to a given authorization relation
Auth.

7.6 For each of the following, (i) devise a sensible authorization policy, (ii)
model it by using an authorization relation Auth and a set C of commands, and
(iii) explain whether the authorization policy is DAC.

(a) Every user U of a file system has a separate directory DU which, for each
file that it lists, associates either a read (r) or read/write (rw) privilege as
well as a list of all users authorized to link that file. DU is updated by
the system whenever (i) U invokes a system call to create or delete a file
or (ii) U invokes a system call to link or unlink to a file in another user’s
directory. So DU contains an entry for every file that U has created (but
not yet deleted) or linked (but not yet unlinked). Execution of system
calls to read, write, create, delete, link, and unlink is restricted in
the expected way.

(b) An e-cash system is implemented using objects—each called a reserve
note—to represent transferable sums of money. The system includes op-
erations to create a reserve note (presumably because some goods of equiv-
alent value have been produced), delete a reserve note (in exchange for a
good with equivalent value), and transfer a reserve note from one user to
another.

(c) The users of a course-management system are students, graders, and pro-
fessors. The objects it manages include assignment descriptions, student-
submitted solutions, answer keys, and grades. Operations are supported
so that a student may submit a solution, read the answer key, and/or
look-up the grade; a grader may read the answer key, read and annotate
a student solution, and/or assign a grade (but cannot change that grade,
thereafter); a professor may post an assignment description, post an an-
swer key, and/or review a student solution for which a grade has already
been assigned and then post an updated grade.

September 2013 Copyright Fred B. Schneider All rights reserved.

Exercises for Chapter 7 179

7.7 Consider a collection of fine-grained objects Obj 1, Obj 2, ..., Objn. A
set Privsi of privileges is associated with accesses to object Obj i, and an access
control policy is specified in terms of an authorization relation Auth and set C of
commands. Given is a system that (only) supports access control for relatively
coarse-grained objects, Obj ′1, Obj ′2, ... Obj ′m where m < n holds. Suppose
each coarse-grained object groups a set of fine-grained objects. Describe an
authorization relation Auth ′, set C′ of commands, and sets Privs ′i of privileges
for each Obj ′i to ensure that the authorization requirements imposed by the
original fine-grained access control restrictions will still be enforced

*7.8 Consider the following candidates for a restriction that might be imposed
on a set C of commands. For each candidate, (i) explain whether the restriction
makes privilege propagation into a decidable problem and (ii) support your
claim with an undecidability argument or with a decision procedure.

(a) No principals or objects are created or deleted.

(b) No principals or objects are created, but principals and objects may be
deleted.

(c) No principals are created but objects can be created; principals and objects
may be deleted.

(d) The action for each command contains a single assignment statement that
adds or deletes a single triple.

*7.9 Consider a fixed set {P1, P2, . . . , Pn} of principals, which also serve as
the sole objects in the system. Suppose there are only two kinds of privileges.
Privilege pp (for propagation permitted) does not propagate beyond its initial
assignment in Auth; privilege t (for token) can propagate according to the
following commands.

grantToken(P,P ′): command
pre: invoker(P) ∧ ⟨P,P ′,pp⟩ ∈ Auth ∧ ⟨P,P,t⟩ ∈ Auth
action: Auth ∶= Auth ∪ {⟨P ′, P ′,t⟩}

takeToken(P,P ′): command
pre: invoker(P ′) ∧ ⟨P,P ′,pp⟩ ∈ Auth ∧ ⟨P,P,t⟩ ∈ Auth
action: Auth ∶= Auth ∪ {⟨P ′, P ′,t⟩}

There are no other commands.

(a) Is the privilege propagation problem for t decidable for this system? If it
is, then give an efficient algorithm for deciding whether some sequence of
grantToken and takeToken commands can cause ⟨P,P,t⟩ ∈ Auth to hold
for any given initial value of Auth and principal P ; if it is not decidable,
then give a proof.

September 2013 Copyright Fred B. Schneider All rights reserved.

180 Chapter 7. Discretionary Access Control

(b) If additional privileges may not be introduced, then are there commands
that can be added to the system and have the answer to (a) change? If
so, then describe those command(s); if not, then explain why.

(c) If additional privileges may be introduced, then are there commands that
can be added to the system and have the answer to (a) change? If so,
then describe those privileges and command(s); if not, then explain why.

7.10 An access control list

⟨P1,Privs1⟩ ⟨P2,Privs2⟩ . . . ⟨PL,PrivsL⟩

is defined to have length L provided i ≠ j implies Pi ≠ Pj . Consider the possible
access control lists for an object that appears in a system with n principals,
where there are m different kinds of privileges.

(a) If the system does not include support for groups, then what is the longest
possible access control list?

(b) Suppose n >m holds and the system includes support for groups compris-
ing subsets of the original n principals. Then (i) what is the longest access
control list possible and (ii) is it ever necessary to construct that list if our
concern is with access authorization but not with review of privileges or
with changes to group compositions or to the privileges granted to each
principal?

(c) Suppose n < m holds and the system includes support for groups com-
prising subsets of the original n principals. Then (i) what is the longest
access control list possible and (ii) is it ever necessary to construct that
list if our only concern is with access authorization but not with review
of privileges or with changes to group compositions or to the privileges
granted to each principal?

7.11 A regexp access control list is a sequence of pairs

⟨RE 1,Privs1⟩ ⟨RE 2,Privs2⟩ . . . ⟨REn,Privsn⟩

where (i) each regular expression RE i characterizes a set L(RE i) of principals29

and (ii) Privsi is the non-empty set of privileges being granted to principals in
L(RE i). What are the advantages and disadvantages of this scheme over access
control list syntax (7.3) described in §7.2.

7.12 Instead of storing ACL-entries ⟨Pi,Privsi⟩ in a list, we might employ a
data structure that supports having principal names be retrieval keys. What
are the advantages and disadvantages of the following candidates.

29Recall, regular expressions provide a terse way to characterize sets of finite sequences. For
example, regular expression “(a + b)∗” denotes finite sequences that contains 0 or more a’s
and b’s interleaved in any order, whereas regular expression “(fb+eg)s” denotes set {fbs, egs}.

September 2013 Copyright Fred B. Schneider All rights reserved.

Exercises for Chapter 7 181

(a) Hash table.

(b) Binary search tree.

7.13 Capabilities could be described as an authorization mechanism that is
based on “something you have”. How might we analogously describe the fol-
lowing mechanisms for controlling access to confidential information?

(a) Access control lists.

(b) Encryption.

7.14 Figure 7.7 depicts a 2-word format for a memory segment capability.
Segments are typically multiples of the system’s page size, but ordinary variables
are typically much smaller than that. So if access control to individual variables
is desired then the Principle of Separation of Privilege would lead to partially-
filled pages, hence wasted memory. Discuss the advantages and disadvantages of
supporting a capability format for much small-sized regions of memory—single
bytes, words, or double-words.

7.15 The capability format discussed in §7.3.1 spans 2 words starting at an
even address. Memory usage can be improved by (i) allowing a capability to
start at any address rather than only at an even address, and (ii) adopting a
variable-length format for capabilities.

(a) Explain why embracing (i) and (ii) might lead to better memory usage.

(b) What disadvantages come with embracing (i) and (ii).

(c) Is it sensible to adopt (i) without (ii)? Explain.

(d) Is it sensible to adopt (ii) without (i)? Explain.

7.16 Many operating system kernels provide a separate memory segment to
each user-mode process. Only the associated process is permitted read, write,
and/or execute access to that segment. Suppose such a kernel does not support
capabilities but does support message-passing for communication between pro-
cesses. Moreover, suppose the receiver of a message always learns the sender’s
identity in addition to learning a message body. Describe how to implement sup-
port for capabilities to user-space objects by using a single user-mode process
(but not modifying the kernel).

7.17 We are given a k-signed bit string k-S(cap) that represents a capability
cap. According to the properties of a digital signature scheme, knowledge of
private key k is needed for computing representation k-S(cap′) for a capability
that amplifies or attenuates privileges conveyed by k-S(cap). We might, how-
ever, contemplate representing cap using a set, where each member is a k-signed
bit string that conveys only one of the privileges that k-S(cap) did. Discuss the
functionality and practicality of this new approach.

September 2013 Copyright Fred B. Schneider All rights reserved.

182 Chapter 7. Discretionary Access Control

7.18 A large, sparse space for object names can be used in place of digital
signatures for implementing capability authenticity. We represent a capability
for Obj by using a pair ⟨Nme(Obj), Privs⟩, where Nme(Obj) is a random 128
bit string and Privs is the set of privileges conferred by the capability. The
function Nme(⋅), if it exists at all, is kept secret. What functionality expected
for capabilities does this alternative support and where (if at all) does it fall
short?

7.19 Suppose that all operations on files are implemented by a file service FS .
FS returns a capability capF when a file F is created. That capability must be
provided to FS with any subsequent requests for operations involving F . Can
shared key cryptography be used to implement capability authenticity for these
capabilities even if these capabilities can be forwarded from one client to another
but no other services use them for authorization? If so, outline a scheme that
uses the minimum number of keys.

7.20 Define cap′ and cap to be split capabilities for a privilege p if:

(i) Together, cap and cap′ authorize privilege p.

(ii) Neither cap nor cap′ alone suffices to authorize privilege p.

Explain how to support this functionality in systems providing cryptographically-
protected capabilities.

7.21 A dlg privilege might be defined in connection with capabilities, as fol-
lows. The holder of a capability ⟨O,Privs⟩ is permitted to delegate that capabil-
ity to some other principal only if dlg ∈ Privs holds. Explain how to support this
functionality by modifying Authenticity from Pedigree (page 156) for restricted
delegation of cryptographically-protected capabilities.

7.22 Suppose that an invocation statement can appear as (part of) the expres-
sion in the right-hand side of an assignment statement, as illustrated in

x ∶= op(v1, ...vi, ...vn).

Thus, the syntax of operation declarations is extended to specify a type Tret for
the value when operation op is performed.

op∶operation(p1 ∶T1, . . . , pi ∶Ti, . . . , pN ∶TN) ∶ Tret
bodyop

end

(a) Describe any extensions necessary to Type-Safe Assignment (page 158)
for supporting this new functionality.

(b) Describe any extensions necessary to Type-Safe Invocation (page 159) for
supporting this new functionality.

7.23 A claim is made in §7.3.5 that capability chains support richer forms of
selective revocation than revocation tags.

September 2013 Copyright Fred B. Schneider All rights reserved.

Exercises for Chapter 7 183

(a) Give a capability chain that permits selective revocation and argue why
revocation tags cannot be used to achieve that same effect.

(b) Explain how a capability chain can be constructed to achieve the same
effect as any given sets of revocation tags.

7.24 With an eye toward supporting additional forms of selective revocation,
we adopt the following generalization of revocation tags.

(i) Revocation tags are n-tuples ⟨v1, v2, . . . , vn⟩ of integers. These n-
tuples are ordered by relation ⪯, where

⟨v1, v2, . . . , vn⟩ ⪯ ⟨w1,w2, . . . ,wn⟩

holds if and only if vi ≤ wi for 1 ≤ i ≤ n.

(ii) Access attempted through a capability ⟨O,Privs, revTag⟩ is denied if
revTag ⪯ τ holds for some τ ∈ RevTagsO.

Compare the expressive power of this scheme for selective revocation against
what can be achieved using ordinary revocation tags or using capability chains.

7.25 Consider a system that supports public-key cryptography and also pro-
vides a scheme to revoke private keys. Due to this key-revocation scheme, any
and all attempts to use a public key K will fail after corresponding private key
k has been revoked.

(a) Discuss how the key-revocation scheme can be used to support revoca-
tion of capabilities ⟨O,Privs⟩ implemented as ordinary k-signed bit strings
kO-S(O,Privs). Assume that KO is a well known public key for checking
authenticity of capabilities for object O.

(b) Compare the flexibility of your proposal in part (a) with what could be
achieved using revocation tags and with what could be achieved with
capability chains.

(c) Discuss how the key-revocation scheme can be used to support revocation
of capabilities ⟨O,Privs⟩ implemented as signed bit strings according to
(7.5).

(d) Compare the flexibility of your proposal in part (c) with what could be
achieved using revocation tags and with what could be achieved with
capability chains.

7.26 Construct an authorization relation Auth that models the semantics of
access control lists in Unix. Explain how your construction supports the pro-
tection domain changes possible in Unix. For simplicity, assume that each user
is a member of exactly one group (as was the case for the very first version of
Unix).

September 2013 Copyright Fred B. Schneider All rights reserved.

184 Chapter 7. Discretionary Access Control

7.27 A process having euid as its effective user id and egid as its effective group
id is authorized to perform an operation requiring a privilege p provided (7.9)
holds. What are the consequences of replacing (7.9) with the following.

(p ∈ PrivsF .owner ∧ euid = ownerF)
∨ (p ∈ PrivsF .group ∧ egid = groupF)
∨ (p ∈ PrivsF .other)

7.28 Give examples of situations where the following combinations of Unix
privileges could be particularly useful.

(a) an ordinary file with w but not r.

(b) a directory with x but not r or w.

7.29 The text (page 168) draws a parallel between Unix file descriptors and
capabilities. What are the similarities and differences?

7.30 Consider a Unix file /dir/foo that is the only file in a directory /dir.
Some user has read access to the file. Enumerate settings of the protection
bits that would block all accesses by users who are not the owner of /dir or
/dir/foo.

7.31 Various schemes for associating privileges with code units are mentioned
in §7.5.2. Consider the following approach:

Each code unit CU includes a preamble that explicitly enumerates the
privileges FPrivs(CU) to be associated with that code unit.

This scheme seemingly gives programmers latitude to stage attacks—the ill-
intentioned programmer of CU incorporates a preamble that is too liberal in
what privileges it associates with CU .

(a) Discuss whether this fear is well founded by comparing the risks for this
scheme with the risks present when privileges for each code unit are stored
in a single centrally-controlled database.

(b) If the scheme is in use, what steps can an honest developer take when
writing a code unit CU , so that no code unit invoked by CU is allowed
to perform certain pre-specified actions.

7.32 The information depicted in Figure 7.14 is a set of triples, each specifying
a code unit, an object, and a set of privileges. Despite any resemblance, the
set of such triples mean something different than an authorization relation.
Explain the differences and discuss what would be involved in constructing an
authorization relation Auth from a table like that of Figure 7.14

September 2013 Copyright Fred B. Schneider All rights reserved.

Exercises for Chapter 7 185

7.33 NDP(rts) below is an alternative definition for the set of privileges asso-
ciated with the protection domain for a run-time stack rts.

NDP(rts)∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FPrivs(top(rts)) if empty(pop(rts))
NDP(pop(rts)) ∩ FPrivs(top(rts)) if ¬empty(pop(rts))

∧ ¬IsPriv(top(rts))
NDP(pop(rts)) ∪ FPrivs(top(rts)) if ¬empty(pop(rts))

∧ IsPriv(top(rts))

NDP(⋅) and DomPrivs(⋅) differ in how stack frames marked privileged are han-
dled.

(a) Can NDP(rts) = DomPrivs(rts) hold for some snapshot of some run-
time stack rts? If so, give example code units, associated declarations of
privileges, and indicate the call sequence for the snapshot. If not, explain
why.

(b) Can NDP(rts) ⊂ DomPrivs(rts) hold for some snapshot of some run-
time stack rts? If so, give example code units, associated declarations of
privileges, and indicate the call sequence for the snapshot. If not, explain
why.

(c) Can NDP(rts) ⊃ DomPrivs(rts) hold for some snapshot of some run-time
stack rts) in a system of code units? If so, sketch the code units and
associated declarations.

(d) Discuss why DomPrivs(rts) is a more sensible definition for protection
domains than NDP(rts) is.

7.34 Using definition (7.10) of DomPrivs(rts), prove that (as asserted in foot-
note 27) no additional privilege amplification is ever achieved by nesting priv-
ileged do statements.

7.35 Consider a social network, comprising individuals linked to each other
according to a relation BFF. In particular, access to postings is based on BFF ,
as follows: If ⟨I, I ′⟩ ∈ BFF holds then individual I is authorized to read postings
by individual I ′. Goals that might constrain BFF as it applies to a given
individual I could include

(i) restrict which individuals can read postings by I, and

(ii) restrict which individuals’ postings I can read.

(a) Give a plausible situation where goal (i) is useful.

(b) Give a plausible situation where goal (ii) is useful.

(c) To what extent do (i) and/or (ii) become more difficult to preserve if the
BFF relation is symmetric and/or it is transitive.

September 2013 Copyright Fred B. Schneider All rights reserved.

186 Chapter 7. Discretionary Access Control

Notes and Reading

The term “discretionary access control” (DAC) was popularized by the Trusted
Computer System Evaluation Criteria (TCSEC) [13], later known as the Or-
ange Book from the color of its cover. TCSEC characterized security features
and levels of assurance for computing systems operated by the U.S. Depart-
ment of Defense. However, as early as 1973 in LaPadula and Bell [2, page 9],
authorization policies are categorized as being “either required or discretionary”
where the later class is subsequently formalized by these same authors [3] as the
ds-property (presumably for discretionary security). The DAC premise—that
the owner of an object O is the authority about which principals could have
access to O—considerably predates work in computer security. It instantiates
a defining characteristics of private property, with origins in political and legal
philosophy of Blackston, Bastiat, and others starting in 1760. So it was a natu-
ral choice in the 1960’s for builders of early time-shared computer systems, who
saw an analogy between digital content and physical objects.

In parallel with the development of time-sharing, Computer Science was ma-
turing into a full-fledged academic discipline. That required establishing agree-
ment about the content for a set of courses. Several curriculum-design task
forces were supported by the COSINE Committee of the National Academy of
Engineering, including one [14] for an undergraduate elective course on operat-
ing system principles. Lampson was a member, and he suggested that access
control be presented in terms of a mathematical function. Lampson’s access
function mapped two inputs—a (protection) domain30 [sic] and an object—
to a set of privileges. The task force hesitated, fearing that functions were
too mathematical for the intended audience. So Lampson switched to using
a 2-dimensional matrix [33].31 This now-familiar access matrix preserved his
pedagogical insight that access control lists and capabilities were different real-
izations of the same mathematical abstraction.

Lampson’s presentation [33] gives a few rules for changing an access matrix
to support of privilege propagation; Graham and Denning [23] goes considerably
further. That paper gives a set of basic operations for manipulating an access
control matrix and uses these to form rules that are structured like the com-
mands of §7.1. The way was now paved for the Harrison, Ruzzo and Ullman [25]
proofs that privilege propagation is undecidable in general but decidable in so-
called mono-operational protection systems (see exercise 7.8(d)). These com-
putability results, despite having limited practical significance, alerted the re-
search community to potential benefits of having a theoretical foundation for
access control. Other researchers then explored alternative models (e.g., [36]),
hoping to characterize real access control mechanisms yet have privilege propa-
gation be decidable.

From the outset, however, research in computer security was driven largely

30The term domain had been previously introduced by Lampson [32] as an alternative to
the more verbose “spheres of protection” used earlier by Dennis and van Horn [15].

31Access functions were not completely abandoned in the prose by Lampson [33, page 439]:
“ ... and an access matrix or access function which we will call A.”

September 2013 Copyright Fred B. Schneider All rights reserved.

Notes and Reading 187

by implementation efforts. The utility of a proposed principle or mechanism
would be evaluated by designing and building a new time-sharing system. For
example, Lampson’s description [32] of the (never completed) BCC Model I
time-sharing system makes the case for small protection domains. And the
Hydra operating system kernel [48] showed that Amplification of Privilege was
crucial for capabilities to objects having user-defined types.32 Prior to the work
on Hydra, Attenuation of Privilege was the widely-accepted basis for privilege
propagation across protection-domain transitions (with amplification the rare
exception for highly-trustworthy components).

Access control lists and capabilities both were developed at about the same
time at MIT. The term “access control list” is first used in a December 1965
paper [12] by Daley and Neumann describing a Multics file system. However,
the Compatible33 Time Sharing System (CTSS) which was developed at MIT
before Multics, did have a feature that foreshadowed access control lists. Daley,
also developer of the CTSS file system, had employed a per-user file to specify
when each user could link to files owned by others; CTSS permit and revoke
commands [9, §AH.3.05] updated that file. The Multics file system replaced that
single CTSS system file with per-file data structures, obtaining access control
lists.

Dennis and van Horn [15] coined34 the term “capability” and outlined an op-
erating system supervisor to support this approach to access control; an imple-
mentation of that supervisor was running on a Digital Equipment Corporation
PDP-1 mini-computer by October 1967 [1]. Fabry [20] later argued for using
capabilities as the sole means to address and control access to all system ob-
jects: memory, processes, files, devices, etc. And over a decade later, Hardy [24]
described the confused deputy problem, strengthening that case.

Various research groups have explored the utility, limitations, as well as
software and hardware-assisted implementations of capabilities. See Levy [34]
for an authoritative account of systems prior to 1984 that supported capabilities.
A summary of that material would not do it justice; the discussion here about
capabilities is limited to summarizing origins of material covered in §7.3.

Hardware-implemented tags had been in use since 1961 in the Burroughs
B5000 system [5]. The IBM System/38 [4][34, chptr 8], general purpose com-
puter, not only implemented capabilities in hardware but was commercially
quite successful. System/38 was intended as the successor to the then-popular
IBM System 360 architecture. But IBM came to realize that existing System
360 customers might be lost to competitors if forced to rehost software on a new

32The term amplification is not actually used by Hydra researchers until Jones and Wulf [29].
33“Compatible” because CTSS allowed programs compiled for its predecessor—Fortran

Monitor System (FMS)—to be executed unchanged.
34Iliffe [27] points out that the Rice University computer [28] codeword mechanism and

the Burroughs B-5000 [5] descriptor elements both embody the concept of a capability and
preceded Dennis and van Horn [15] by at least 5 years. Dennis and van Horn [15], in fact,
does acknowledge the B5000 as an inspiration. But Dennis and van Horn [15] was the first to
introduce the term capability and to discuss a role for capabilities in managing processes and
other operating system abstractions. So Dennis and van Horn [15] is considered the defining
paper for capabilities.

September 2013 Copyright Fred B. Schneider All rights reserved.

188 Chapter 7. Discretionary Access Control

architecture. That led IBM to develop System 370 as a System 360 successor,
adding virtual memory and multi-processor support to the System 360 architec-
ture. System/38, however, was quite successful for hosting small and mid-range
businesses that were first computerizing their operations and, thus, not already
invested in System 360.

The c-lists of §7.3.2 were originally suggested by Dennis and van Horn [15],
and the approach is still widely used today for implementing capabilities in
operating systems. Plessey 250 [19][34, chptr 4], introduced the idea of storing
capabilities in a separate segment, the alternative to c-lists we describe in §7.3.2.
Plessey 250 was also the first operational capability system to be sold commer-
cially. It was intended for telephone-switching applications, where reliability is
crucial—the Plessey 250 designers believed that a strong protection mechanism
would prevent bugs in one process from crashing another.

Encryption was suggested in Chaum and Fabry [6] as a means of implement-
ing capability authenticity. An operating system developed for the Octopus net-
work at Lawrence Livermore National Laboratory [16] appears to be the first
use of digital signatures for capability authenticity. Developers of the Amoeba
distributed operating system [41] subsequently explored other cryptographic
approaches, concentrating on lighter-weight one-way functions and hardware
support; that work inspired exercise 7.18, although using a large sparse name
space is suggested by Chaum and Fabry [6]. van Renesse [39], one of Amoeba’s
designers, suggested the approach to restricted delegation in §7.3.3.

Jones and Liskov [31] in spring 1976 shows how type safety could implement
capability authenticity; the scheme outlined in §7.3.4 is essentially that work.
It combines two separate threads of research from the preceding decade: ab-
stract data types from programming languages and capabilities from operating
systems.

• The programming languages thread starts with Simula 67 [11], which
supported a type class. This new type enabled programmers to de-
fine abstract data types and thus facilitated an object-oriented approach
to structuring programs and systems.35 Abstract data types subsequently
became the focus of much research in languages and methodology. Among
the most visible efforts was one led by Liskov, starting in 1973, to develop
the CLU programming language [37].

• Operating systems researchers at CMU in the early 1970’s were developing
the Hydra kernel [48] to explore program structures that exhibited a clear
separation between policy and mechanism. And objects seemed like an
ideal structuring mechanism for that purpose.36 Jones had participated in

35A predecessor language, Simula I, intended for programming discrete-event simulations
had also been developed by Dahl and Nygaard; it was running on univac 1107 machines
by December 1964 [26]. Probably more influential was chapter 3 by Dahl and Hoare in a
collection [10] of three monographs. That entire volume is still worth reading.

36An object’s policy was the expectations its clients could have about effects of invoking
the object’s operations; its mechanism was how those operations were implemented.

September 2013 Copyright Fred B. Schneider All rights reserved.

Notes and Reading 189

the design of Hydra, and her 1973 Ph.D. dissertation [30] focused on de-
veloping Hydra capabilities for enforcing access control in object-oriented
systems.

Jones and Liskov together, then, were well positioned to incorporate capabilities
into an object-oriented programming language. Their success further reinforced
the view that Hydra was demonstrating and that others [35] had embraced—
that capabilities were ideal for object-oriented systems.

Almost a decade elapsed after capabilities were first proposed before alter-
natives emerged to brute-force approaches for revocation. Intermediaries were
used for revocation in the first version of Hydra [29] but, by 1975, Hydra [8]
employed a scheme derived from Redell’s Ph.D. dissertation [38]; that scheme
was not unlike capability chains. The revocation tags approach described in
§7.3.5 is a special case of conditional capabilities from Ekandadham’s Ph.D.
dissertation [17], work that became widely available [18] too late to have real
impact. Gligor [21] is a good source about the rationale and requirements for
capability revocation and review in centralized systems.

The designers of today’s widely-used commercial operating systems have
largely eschewed capabilities. A natural question is: Why? Is it inertia from
design decisions made for early time-sharing systems or do compelling reasons
still exist for avoiding capabilities? Early time-sharing systems were designed
to serve the needs of their users, given the characteristics of available hardware.
Security was rarely a high priority for those users, few programmed in object-
oriented languages, and capabilities seemed expensive to implement. So there
are could be many reasons why few commercially-successful early time-shared
systems were capability-based.

But commercial operating systems today are deployed in a rather differ-
ent setting—security is higher priority for users and operators, object-oriented
languages are widely used, and implementation of capabilities is practical on
commodity hardware. Inertia nevertheless seems to have prevailed, which sug-
gests industry believes that building next-generation operating systems based
on capabilities would be too expensive, too risky, or unlikely to be embraced by
the market. That last rationale seems the most likely. First, companies that
have large investments in software and expertise for one architecture are under-
standably hesitant about transition costs that accompany a new one. Second,
inherent in access control lists is a centralized point of control for each resource,
whereas capabilities can be propagated in ways that a resource owner has neither
control nor knowledge. Limitations in control and visibility are uncomfortable
for people—especially management and especially in networked settings.

We selected Unix for a case study because it introduced ideas—for access
control and elsewhere—that many have adopted. Unix development started as
a rogue project at AT&T Bell Laboratories on a discarded PDP-7 computer in
the summer of 1969. Management had just decided to withdraw from a collab-
oration with GE, IBM, and Project MAC to develop the Multics37 time-sharing

37Originally designed to support only a single user, the first version of Unix was
named Unics (Un-multiplexed Information and Computing Service), an allusion to Multics

September 2013 Copyright Fred B. Schneider All rights reserved.

190 BIBLIOGRAPHY

system at MIT—intended to support 1000 users, Multics was far behind schedule
and at the time could only handle around 30 users [44]. A quirky development
path (see, for example, the history [42]) ultimately led to a version of Unix
in 1970 that supported text processing applications on a PDP-11. Widespread
interest and the first external adoptions of the system followed from a public
presentation at the Fourth ACM Symposium on Operating Systems (in 1973);
the classic paper [40] by Richie and Thomson is based on that presentation. See
Chen et al. [7] for an in-depth discussion of suid and proposed safer semantics
for supporting domain change in Unix.

Stack inspection is the best known (and perhaps only) general-purpose DAC
authorization mechanism where access decisions reference execution history.
The idea was developed during summer 1996 at Netscape by Wallach [45],
working as an intern in collaboration with Roskind and Tenneti; it was then
documented in a paper [46] Wallach coauthored with his thesis adviser and
Roskind.

Sun Microsystems had released the HotJava browser in May 1995, introduc-
ing the possibility for local execution of downloaded content (dubbed applets).
Applets would be written in the then little-known Java programming language,
which Sun had developed for use in consumer electronics. A binary authoriza-
tion policy was initially adopted—browsers granted no privileges to applets but
granted full privileges to code downloaded from the local disk (where installed
browser extensions were stored). That policy was implemented in Netscape’s
browser by counting stack frames to predict whether the currently executing
routine would be an applet. This implementation was ad hoc, and stack depth
measures had to be rechecked whenever browser software was re-engineered.

A binary authorization policy was too restrictive for applets to implement
interesting functionality. So the next step was an authorization policy for grant-
ing additional privileges to applets that were digitally signed by trusted sources.
Netscape’s stack inspection was developed to implement that by generalizing
from stack frame counting. That same scheme was ultimately incorporated
by Sun into JDK 1.2 (later called Java 2), the new, more-secure version of
Java [22].38 Various implementation of stack inspection have since been ex-
plored [47, 43], and stack inspection is supported in Microsoft’s C# as well as
other contemporary programming languages intended for the Internet.

Bibliography

[1] William B.Ackerman and William W. Plummer. An implementation of a
multiprocessing computer system. In Proceedings of the First ACM sym-

(Multiplexed Information and Computing Service).
38Sun’s aspirations for Java to be a general programming language led to some small dif-

ferences between Sun’s definition of stack inspection and Netscape’s. Neither company nor
the growth of the World Wide Web would have been well served by having both alternatives
in the market. Unable to resolve the dispute themselves, their managements invited IBM to
perform binding arbitration. IBM sided with Sun, and that was adopted by all [22].

September 2013 Copyright Fred B. Schneider All rights reserved.

BIBLIOGRAPHY 191

posium on Operating System Principles, SOSP ’67, pages 5.1–5.10, New
York, NY, USA, 1967. ACM.

[2] D. Elliott Bell and Leonard J. La Padula. Secure computer systems: A
mathematical model. Technical Report ESD-TR-73-278, Volume II, Elec-
tronic Systems Division (AFSC), Hanscom Field, Bedford, MA, November
1973.

[3] D. Elliott Bell and Leonard J. La Padula. Secure computer systems: Unified
exposition and MULTICS interpretation. Technical Report EDS-TR-75-
306, Electronic Systems Division (AFSC), March 1976.

[4] Viktors Berstis. Security and protection of data in the IBM System/38. In
ISCA ’80: Proceedings of the 7th Annual Symposium on Computer Archi-
tecture, ISCA ’80, pages 245–252, New York, NY, USA, 1980. ACM.

[5] Burroughs Corporation. The Descriptor—A Definition of the B5000 Infor-
mation Processing System, 1961. Michigan.

[6] D. L. Chaum and R. S. Fabry. Implementing capability-based protection
using encryption. Technical Report UCB/ERL M78/46, University of Cal-
ifornia at Berkeley, July 1978.

[7] Hao Chen, David Wagner, and Drew Dean. Setuid demystified. In Pro-
ceedings of the 11th USENIX Security Symposium, pages 171–190, Berkeley,
CA, USA, 2002. USENIX Association.

[8] Ellis Cohen and David Jefferson. Protection in the Hydra operating sys-
tem. In Proceedings of the Fifth ACM symposium on Operating Systems
Principles, SOSP ’75, pages 141–160, New York, NY, USA, 1975. ACM.

[9] P. A. Crisman, (editor). The Compatible Time-Sharing Sstem.
A Programmers Guide. The M.I.T. Computation Center, 1965.
http://www.bitsavers.org/pdf/mit/ctss/CTSS ProgrammersGuide Dec69.pdf.

[10] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, editors. Structured Pro-
gramming. Academic Press Ltd., London, UK, UK, 1972.

[11] Ole-Johan Dahl. SIMULA 67 Common Base Language. Norwegian Com-
puting Center Publication, 1968.

[12] R. C. Daley and P. G. Neumann. A general-purpose file system for sec-
ondary storage. In Proceedings of the Fall Joint Computer Conference,
AFIPS ’65 (Fall, Part I), pages 213–229, New York, NY, USA, 1965. ACM.

[13] Department of Defense. Department of Defense Trusted Computer Sys-
tem Evaluation Criteria. DoD 5200.28-STD, Supercedes CSC-STD-001-83
dated 15 August 1984, Library Number S225,711.

September 2013 Copyright Fred B. Schneider All rights reserved.

192 BIBLIOGRAPHY

[14] Peter J. Denning, Jack B. Dennis, Butler Lampson, A. Nico Haberman,
Richard R. Muntz, and Dennis Tsichritzis. An undergraduate course on
operating systems principles. Computer, pages 40–58, January/February
1972.

[15] Jack B. Dennis and Earl C. Van Horn. Programming semantics for mul-
tiprogrammed computations. Communications of the ACM, 9:143–155,
March 1966.

[16] James E. (Jed) Donnelley. Managing domains in a network operating sys-
tem. In Proceedings of Local Networks and Distributed Office Systems Con-
ference, pages 345–361, May 1981.

[17] Kattamuri Ekanadham. Context Approach to Protection. PhD thesis, State
University of New York at Stony Brook, 1976.

[18] Kattamuri Ekanadham and Arthur J. Bernstein. Conditional capabilities.
IEEE Transactions on Software Engineering, SE-5(5):458–464, September
1979.

[19] D. M. England. Operating system of System 250. In Proceedings of Inter-
national Switching Symposium, June 1972.

[20] R. S. Fabry. Capability-based addressing. Communications of the ACM,
17:403–412, July 1974.

[21] Virgil D. Gligor. Review and revocation of access privileges distributed
through capabilities. IEEE Transactions on Software Engineering, SE-
5(6):575–586, November 1979.

[22] Li Gong. Java security architecture revisited. Communications of the ACM,
54:48–52, November 2011.

[23] Scott G. Graham and Peter J. Denning. Protection: Principles and prac-
tice. In Proceedings of the Spring Joint Computer Conference, AFIPS ’72
(Spring), pages 417–429, New York, NY, USA, May 1972. ACM.

[24] Norm Hardy. The confused deputy: (or why capabilities might have been
invented). SIGOPS Operating Systems Review, 22:36–38, October 1988.

[25] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection
in operating systems. Communications of the ACM, 19:461–471, August
1976.

[26] Jan Rune Holmevik. Compiling SIMULA: A historical study of technologi-
cal genesis. IEEE Annals of the History of Computing, 16:25–37, December
1994.

[27] J. K. Iliffe. Surveyor’s forum: An error recovery. ACM Computing Surveys,
9:253–254, September 1977.

September 2013 Copyright Fred B. Schneider All rights reserved.

BIBLIOGRAPHY 193

[28] J. K. Iliffe and J. G. Jodeit. A dynamic storage allocation scheme. The
Computer Journal, 5(3):200–209, November 1962.

[29] A. K. Jones and W. A. Wulf. Towards the design of secure systems. Soft-
ware: Practice and Experience, 5(4):321–336, October 1975.

[30] Anita K. Jones. Protection in Programmed Systems. PhD thesis, Carnegie-
Mellon University, 1973.

[31] Anita K. Jones and Barbara Liskov. A language extension for controlling
access to shared data. IEEE Transactions on Software Engineering, SE-
2(4):277–285, December 1976.

[32] B. W. Lampson. Dynamic protection structures. In Proceedings of the Fall
Joint Computer Conference, AFIPS ’69 (Fall), pages 27–38, New York, NY,
USA, November 1969. ACM.

[33] Butler W. Lampson. Protection. In Proceedings 5th Princeton Conference
on Information Sciences and Systems, page 437, 1971. Reprinted in ACM
Operating Systems Review 8, 1 (January 1974), page 18.

[34] Henry M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984. Available at
http://www.cs.washington.edu/homes/levy/capabook/.

[35] Theodore A. Linden. Operating system structures to support security and
reliable software. ACM Computing Surveys, 8:409–445, December 1976.

[36] R. J. Lipton and L. Snyder. A linear time algorithm for deciding subject
security. Journal of the ACM, 24:455–464, July 1977.

[37] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. Ab-
straction mechanisms in CLU. Communications of the ACM, 20:564–576,
August 1977.

[38] David D. Redell. Naming and Protection in Extendible Operating Systems.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA,
1974.

[39] Robbert van Renesse. Personal communication.

[40] Dennis M. Ritchie and Ken Thompson. The Unix time-sharing system.
Communications of the ACM, 17:365–375, July 1974.

[41] A.S. Tanenbaum, S.J. Mullender, and R. van Renesse. Using sparse ca-
pabilities in a distributed operating system. In 6th International Confer-
ence on Distributed Computing Systems, pages 558–563, Cambridge, Mas-
sachusetts, May 1986.

[42] Warren Toomey. The strange birth and long live of Unix. IEEE Spectrum,
48(12):34–37, December 2011.

September 2013 Copyright Fred B. Schneider All rights reserved.

194 BIBLIOGRAPHY

[43] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack
inspection. In Proceedings of the 2000 IEEE Symposium on Security and
Privacy, pages 246–255. IEEE Computer Society Press, May 2000.

[44] Tom Van Vleck. Personal communication.

[45] Dan Wallach. Personal communication.

[46] Dan S. Wallach, Jim A. Roskind, and Edward W. Felten. Flexible, ex-
tensible Java security using digital signatures. In R. N. Wright and P. G.
Neumann, editors, Network Threats, volume 38 of DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, pages 59–74, New
Brunswick, New Jersey, December 1996. American Mathematical Society.

[47] D.S. Wallach and E. W. Felten. Understanding Java stack inspection. In
Proceedings of the 1998 IEEE Symposium on Security and Privacy, pages
52–63. IEEE Computer Society Press, May 1998.

[48] W. Wulf, E. Cohen, W. Corwin., A. Jones, R. Levin, C. Pierson, and
F. Pollack. Hydra: The kernel of a multiprocessor operating system. Com-
munications of the ACM, 17:337–345, June 1974.

September 2013 Copyright Fred B. Schneider All rights reserved.

