
Chapter 9

Information Flow Control

Information flow policies specify whether or not the values in given sets of vari-
ables are allowed to affect the values in other sets of variables.1 If an adversary
somehow can observe that a program’s execution will not terminate, then an
information flow policy also might specify what set of variables are allowed to
affect program termination. Many confidentiality and integrity policies have
natural formulations as information flow policies. An information flow policy
that prohibits values in the set of secret variables from affecting values in the
set of public variables is specifying confidentiality; integrity would be analo-
gous, but with values read from the set of untrusted variables prohibited from
affecting the set of trusted variables.

With static enforcement, restrictions are packaged as a type system, and the
type-correctness of a program is checked by a compiler prior to executing that
program; with dynamic enforcement, restrictions are checked at runtime by a
reference monitor. Elements of static enforcement and dynamic enforcement are
combined in hybrid enforcement.

Information flow policies are end-to-end—they restrict uses of system inputs,
including uses of values derived from those inputs. The other authorization
policies discussed in this text have not restricted uses of values, so we must
trust that programs do not abuse values they read. A policy that is not end-to-
end, for example, cannot prohibit public outputs from being affected by secret
inputs during execution of a program that is authorized to read those secrets
from input channels and authorized to write to public output channels.

1Since input channels and output channels can be represented by sequence-valued variables,
using sets of variables is not really a restriction.

243

244 Chapter 9. Information Flow Control

9.1 Information Flow Policies

An information flow policy (i) associates each variable v with a label Γ(v) from
a finite set Λ, and (ii) defines a partial order2 ⊑ (and its complement /⊑) on
those labels. Variables having the same label λ form sets Vλ, and partial order
⊑ specifies whether one set of variables is allowed to affect another, as follows.

• λ′ ⊑ λ specifies that variables in Vλ′ are allowed to affect variables in Vλ.

• λ′ /⊑ λ specifies that variables in Vλ′ are not allowed to affect variables in
Vλ.

Taking into account the transitivity of ⊑, we get the following characterization
of what is required for compliance with an information flow policy.

Prohibited Information Flows. For all labels λ ∈ Λ, variables in set
V/⊑λ are not allowed to affect variables in set V⊑λ, where V/⊑λ and V⊑λ are
defined by:

V/⊑λ = ⋃
ι/⊑λ

Vι V⊑λ = ⋃
ι⊑λ

Vι

To see why Prohibited Information Flows is implied by the restrictions par-
tial order ⊑ specifies about whether one variable can affect another, we show
that these restrictions imply variables v ∈ V/⊑λ are prohibited from affecting vari-
ables w ∈ V⊑λ. For v ∈ V/⊑λ to hold, there must be a label λ′ such that λ′ /⊑ λ
and v ∈ Vλ′ hold. Similarly, for w ∈ V⊑λ to hold, there must exist a label λ′′

such that λ′′ ⊑ λ and w ∈ Vλ′′ hold. Variable v is prohibited by ⊑ from affecting
variable w if λ′ /⊑ λ′′ holds. So we prove that λ′ /⊑ λ′′ holds. The proof is by
contradiction—we assume that λ′ ⊑ λ′′ holds and prove this assumption implies
false given conditions λ′ /⊑ λ and λ′′ ⊑ λ that we know hold. From assumption
λ′ ⊑ λ′′, transitivity of ⊑ with λ′′ ⊑ λ derives λ′ ⊑ λ. But λ′ ⊑ λ and λ′ /⊑ λ
together imply false, completing the proof.

Information Flow Policy Example. An obvious application of Prohibited
Information Flows is for defining a confidentiality policy that prohibits leaks of
secrets. We use {L,H} for Λ. A variable storing secret information is given label
H (for High); a variable storing public information is given label L (for Low). To
specify that secrets should not be leaked, we give relation ⊑ and its complement

2 A relation ρ on a set Vals is a set of pairs {⟨a, b⟩ ∣ a, b ∈ Vals} and its complement /ρ is
the set of pairs {⟨a, b⟩ ∣ a, b ∈ Vals ∧ ⟨a, b⟩ /∈ ρ}. By convention, infix notation aρ b is used to
indicate that ⟨a, b⟩ ∈ ρ holds. A relation ρ on a set Vals is defined to be a partial order if it
satisfies the following.

Reflexive: a ρ a for all a ∈ Vals.

Antisymmetric: a ρ b and b ρ a implies a = b for all a, b ∈ Vals.

Transitive: a ρ b and b ρ c implies a ρ c for all a, b, c ∈ Vals.

A partial order ρ does not have to relate all pairs of elements a, b ∈ Vals, so if a /ρ b holds it
is possible that neither a ρ b nor b ρ a holds.

9.1. Information Flow Policies 245

⊑ L H

L ⊑ ⊑
H /⊑ ⊑

(a) Definition of ⊑

⊔ L H

L L H
H H H

(b) Definition of ⊔

Figure 9.1: Definitions for Λ = {H,L}

/⊑ using the table of Figure 9.1(a): L ⊑ L, L ⊑ H, H /⊑ L, and H ⊑ H. Because H /⊑ L
is specified, variables with label H are not allowed to affect variables with label
L. So the information flow policy prohibits the values in secret variables from
affecting the values in public variables, as desired.

This same information flow policy also works for specifying an integrity pol-
icy that asserts variables storing untrusted values are not allowed to contaminate
values in variables intended to store trusted values. Notice, the prohibitions on
untrusted values in this integrity policy are analogous to secret values in the
above confidentiality policy. So the prohibitions required by the integrity pol-
icy follow from H /⊑ L specified in the table of Figure 9.1(a) if variables storing
untrusted values are given label H and variables storing trusted values are given
label L.

For a more conversational characterization of the information flow policies
just described, think of an information flow from a variable with label L to a
variable with label H as information moving “up”, and think of an information
flow from label H to label L as information moving “down”. We consider a single
read or write action performed by a variable x to a variable y, and we define
λ ⊏ λ′ to be an abbreviation for λ ⊑ λ′ ∧ λ ≠ λ′. We have:

action by x ⊑ relation description

x reads y Γ(x) ⊏ Γ(y) x “reads up”
Γ(y) ⊏ Γ(x) x “reads down”

x writes y Γ(x) ⊏ Γ(y) x “writes up”
Γ(y) ⊏ Γ(x) x “writes down”

The information flow policy of Figure 9.1 specifies a single prohibition: H /⊑ L,
meaning a variable with label H is not allowed to affect a variable with label L.
In terms of read and write actions, that prohibition means

• a variable with label L is not allowed to read from a variable with label
H: “no read up”

• a variable with label H is not allowed to write to a variable with label L:
“no write down”

So the information flow policy of Figure 9.1 specifies: “no read up; no write
down”.

246 Chapter 9. Information Flow Control

When “no read up; no write down” is applied to confidentiality, “no read up”
says that public variables (label is L) cannot read from secret variables (label
is H); “no write down” says that secret variables (label is H) cannot be written
into public variables (label is L). When applied to integrity, “no read up” says
that trusted variables (label is L) cannot read from untrusted variables (label is
H); “no write down” says that untrusted variables (label is H) cannot be written
into trusted variables (label is L).

Why ⊑ is a partial order. A specious distinction is being made in any
information flow policy that employs different labels λ′ and λ′′ but λ′ ⊑ λ′′

and λ′′ ⊑ λ′ both hold. We avoid such specious distinctions by requiring that
if Γ(v) ≠ Γ(w) holds for variables v and w then the information flow policy
specifies that (i) variable v is allowed to affect different variables than variable
w is allowed to affect or (ii) variable v is allowed to be affected by different
variables than may affect w. So we prohibit information flow policies from
having pairs of labels λ′ and λ′′ that satisfy

(∀λ ∈ Λ∶ (λ′ ⊑ λ) = (λ′′ ⊑ λ) ∧ (λ ⊑ λ′) = (λ ⊑ λ′′)),

since ⊑ then would be creating specious distinctions between variables with label
λ′ and those with label λ′′. Furthermore, if a variable v is allowed to affect a
variable w and also w is allowed to affect v then we require that an information
flow policy assign the same label to both v and w.

If these requirements on when labels can be different and when they must
be the same are satisfied then relation ⊑ will satisfy two properties.

• ⊑ is reflexive: λ ⊑ λ for all λ ∈ Λ. This follows if a variable v is allowed
to affect any other variable w having the same label, since if Γ(v) = Γ(w)
holds then Γ(v) ⊑ Γ(w) will hold.

• ⊑ is antisymmetric: (λ ⊑ λ′ ∧ λ′ ⊑ λ) ⇒ λ = λ′. This follows if variables
v and w must have the same label when v is both allowed to affect w
(Γ(v) ⊑ Γ(w) holds) and also v is allowed to be affected by the other
(Γ(w) ⊑ Γ(v) holds).

In addition, because “cause and effect” could be transitive, it seems prudent for
relation ⊑ to be transitive.

• ⊑ is transitive: (λ ⊑ λ′ ∧ λ′ ⊑ λ′′) ⇒ λ ⊑ λ′′. If a variable v is allowed
to affect a variable w because Γ(v) ⊑ Γ(w) holds, and if w is allowed to
affect a variable x because Γ(w) ⊑ Γ(x) holds, then Γ(v) ⊑ Γ(x) should
hold so that variable v is allowed to affect variable x.

So there are good reasons for ⊑ to be reflexive, antisymmetric, and transitive.
That means we have justification for requiring that ⊑ be a partial order which,
by definition (see footnote 2 on page 244), must be reflexive, antisymmetric,
and transitive.

9.1. Information Flow Policies 247

Labels for Expressions. By associating a label Γ(E) with an expression E,
an information flow policy can specify what is allowed to be affected by E and
what E is allowed to affect. The information flow policy would specify that
λ ⊑ Γ(E) holds to indicate that a variable or expression with label λ is allowed
to affect the value of E; it would specify that Γ(E) ⊑ λ holds to indicate that
the value of E is allowed to affect the value of a variable or expression with label
λ.

Constructing labels for expressions is simplified if we ignore the semantics
of operators and functions.

Variables Affecting Expressions. The value of an expression E is
allowed to be affected by any and all of the variables E mentions.

This characterization means label Γ(E) must satisfy Γ(v) ⊑ Γ(E) for all vari-
ables v mentioned in E.

The variables referenced in an expression might not all have the same label.
For an expression E, the set ΛE of labels on variables mentioned in E might not
contain a label λE that satisfies λ ⊑ λE for all λ ∈ ΛE , as required by Variables
Affecting Expressions. So to construct Γ(E) we require that every subset Λ′ of
Λ have a corresponding least upper bound that is itself a label in Λ.3 This least
upper bound would be a label that is at least as large as any label in Λ′ but not
larger than necessary. Formally, for each subset Λ′ ⊆ Λ there would be a label
λlub(Λ′) where, by definition, (i) λi ⊑ λlub(Λ′) holds for all λi ∈ Λ′ and (ii) for any

label λ̂ satisfying λ̂ ⊑ λlub(Λ′) there would be some λi ∈ Λ′ where λi /⊑ λlub(Λ′)
holds. Property (i) that says λlub(Λ′) is at least as large as any label in subset
Λ′; property (ii) says that λlub(Λ′) is not larger than necessary.

We can construct a least upper bound by using a commutative and associa-
tive join operator ⊔ that evaluates to the least upper bound of its arguments
and, therefore, satisfies:

λ ⊔ λ = λ (9.1)

λi ⊑ (λ1 ⊔ λ2 ⊔⋯ ⊔ λn) for 1 ≤ i ≤ n (9.2)

¬(∃λ̂ ∈ Λ∶ λ̂ ⊏ (λ1 ⊔ λ2 ⊔⋯ ⊔ λn) ∧ (∀i∶ λi ⊑ λ̂)) (9.3)

3A partially ordered set that contains a least upper bound for every finite subset is called a
join-semilattice. A simple example of a join-semilattice is constructed by having the elements
of the join-semilattice be all subsets of a finite set. For subsets P and Q: P ⊑ Q is defined to
be P ⊆ Q, and least upper bound P ⊔Q of P and Q is defined to be P ∪Q.

A similar construction allows labels on variables to serve as the elements of a join-semilattice.
For labels λ and λ′, we define λ ⊑ λ′as follows.

λ ⊑ λ′∶ V⊑λ ⊆ V⊑λ′

We define least upper bound λlub(Λ′) for a subset Λ′ of the set Λ of labels to be the smallest
label λ′ ∈ Λ satisfying

(⋃
λ∈Λ′

V⊑λ) ⊆ V⊑λ′

248 Chapter 9. Information Flow Control

As an example, Figure 9.1(b) gives a table that defines the ⊔ operator for the in-
formation flow policy we have been discussing that uses labels {L,H} to prohibit
leaks of secrets.

Property (9.2) implies that Γ(v1)⊔Γ(v2)⊔⋯⊔Γ(vn) can serve as label Γ(E)
for an expression E that references variables v1, v2, ..., vn, since Γ(vi) ⊑ Γ(E)
holds for each vi as required for Variables Affecting Expressions. Property (9.3)
rules out choosing for Γ(E) a label that is more restrictive than needed for
satisfying (9.2). Together, they justify:

Construction of Γ(E). The label Γ(E) for an expression E written in
terms of variables v1, v2, ... , vn is: Γ(v1) ⊔ Γ(v2) ⊔ ⋯ ⊔ Γ(vn).

So, for example, the label Γ(x + y) for expression x + y would be Γ(x) ⊔ Γ(y).
Due to (9.2), this label satisfies Γ(x) ⊑ Γ(x)⊔Γ(y) and Γ(y) ⊑ Γ(x)⊔Γ(y). That
means this label specifies that x and y each is allowed to affect x+y, as Variables
Affecting Expressions prescribes. It also means that if x and y are assigned labels
from {H,L} then, according to Figure 9.1(b), Γ(x+y) = L holds if Γ(x) = Γ(y) = L
holds, but Γ(x + y) = H holds otherwise. This label assignment for expression
x+y should not be surprising—when secret information is combined with public
information the value that results could reveal secrets, so it is appropriate to
label that value with H.

Our label construction for expressions, however, also derives Γ(x) ⊔ Γ(y) as
the label for expression x + y − y. Expression x + y − y is not influenced by y,
which means our label construction produced an unnecessarily restrictive label.
The label is unnecessarily restrictive because label Γ(x)⊔Γ(y) prohibits values
of x + y − y from being used where values are not allowed to be influenced by
y—even though the value of x+y−y is not influenced by y. We conclude that our
label construction for expressions is conservative. Less conservative schemes are
possible by using the semantics of the operators and functions; the complexity
of these schemes can be formidable, though.

9.1.1 Termination Insensitive Noninterference (TINI)

To characterize whether a deterministic program or statement S complies with

an information flow policy, we define a relation4 V
S

/z→ti W that is satisfied if
and only if terminating executions of S that start in states differing only in the
values for the variables in V terminate in states where corresponding variables

in W have the same value. Thus, if Vλ′
S

/z→ti Vλ holds for all statements S of a
program then that program complies with the restrictions that λ′ ⊑ λ specifies,
because the values in variables Vλ′ do not affect the values in Vλ.

To give a formal defintion for relation V
S

/z→ti W , we describe executions of

4Subscript ti on
S

/z→ti abbreviates termination insensitive and conveys that nonterminating
executions are being ignored.

9.1. Information Flow Policies 249

S by using a function from initial states s:

[[S]](s)∶ { s
′ if executing S in state s terminates in state s′

⊥ if executing S in state s is nonterminating
(9.4)

We also employ some predicates on states. In these, Vars(S) denotes the set
of variables in S, V denotes Vars(S) − V for V ⊆ Vars(S), and s.v denotes the
value of a variable v ∈ Vars(S) in state s:

s =V s′∶ s.v = s′.v for all v ∈ V
s ≠V s′∶ s.v ≠ s′.v for some v ∈ V
s =

V
s′∶ s.v = s′.v for all v ∈ Vars(S) − V

s ≠
V
s′∶ s.v ≠ s′.v for some v ∈ Vars(S) − V

Relation V
S

/z→ti W is then formally defined by the following.

(∀s, s′∶ s =
V
s′ ∧ [[S]](s) ≠⊥ ∧ [[S]](s′) ≠⊥ ⇒ [[S]](s) =W [[S]](s′)) (9.5)

This formula is an assertion about all pairs of terminating executions from
initial states s and s′ satisfying s =

V
s′—initial states that may differ only in

the values of variables in V (since s =
V
s′ requires that the values of all other

variables are equal). The formula asserts that executions of S from these (pos-
sibly) different initial states produce final states [[S]](s) and [[S]](s′) satisfying
[[S]](s) =W [[S]](s′). So these final states agree on the values for variables in
W , which establishes that the values of variables in W are unaffected by the
differences in the initial states s and s′.

The following rule allows
S

/z→ti relations be combined. It generalizes two
observations: (i) if variables in neither V or V ′ are allowed to affect variables in
W then variables in V ∪ V ′ are not allowed to affect variables in W , and (ii) if
variables in V are not allowed to affect variables in W or in W ′ then variables
in V are not allowed to affect variables in W ∪W ′.

(∀i ∈ I, j ∈ J ∶ Vi
S

/z→ti Vj) ⇒ (⋃
i∈I
Vi)

S

/z→ti (⋃
j∈J

Vj)

Using this rule in conjunction with the definitions for V/⊑λ and V⊑λ in Prohibited
Information Flows (page 244), we derive for later use that for all λ ∈ Λ:

(∀λ′ /⊑ λ, λ′′ ⊑ λ∶ Vλ′
S

/z→ti Vλ′′) ⇒ V/⊑λ
S

/z→ti V⊑λ (9.6)

The complement of V
S

/z→ti W is a relation V
Sz→ti W defined by the negation

of formal definition (9.5) for V
S

/z→ti W .5

(∃s, s′∶ s =
V
s′ ∧ [[S]](s) ≠⊥ ∧ [[S]](s′) ≠⊥ ∧ [[S]](s) ≠W [[S]](s′)) (9.7)

5Recall from predicate logic: ¬(∀x∶ P) = (∃x∶ ¬P) and ¬(P ⇒ Q) = ¬(¬P ∨Q) = P ∧ ¬Q.

250 Chapter 9. Information Flow Control

V
Sz→ti W asserts the existence of a pair of terminating executions from initial

states s and s′ satisfying s =
V
s′—that is, a pair of executions from initial states

that may differ only in the values of variables in V . For (9.7) to hold, these
executions must produce final states [[S]](s) and [[S]](s′) satisfying [[S]](s)≠W
[[S]](s′). So the final states must differ in the values for some variables in W,
establishing that some differences in the initial values of variables of V did lead
to differences in the final values of variables in W .

In programs that comply with an information flow policy, there is a connec-

tion between /z→ti and ⊑. This connection can be formulated in two ways, one
the contrapositive of the other.6 The first asserts prohibited information flows
that /⊑ specifies are enforced. The second asserts λ′ ⊑ λ should hold if variables
labeled λ′ are going to affect variables labeled λ.

Label Invariant. For all statements S′ in S:

(a) λ′ /⊑ λ ⇒ Vλ′
S′

/z→ti Vλ

(b) Vλ′
S′z→ti Vλ ⇒ λ′ ⊑ λ

Repeated applications of Label Invariant (a) derives for every λ ∈ Λ

(∀λ′ /⊑ λ, λ′′ ⊑ λ∶ Vλ′
S

/z→ti Vλ′′), (9.8)

as follows. First, observe that λ′ /⊑ λ ∧ λ′′ ⊑ λ ⇒ λ′ /⊑ λ′′ holds. The proof
is by contradiction: λ′ /⊑ λ ∧ λ′′ ⊑ λ ∧ λ′ ⊑ λ′′ is equivalent to false, since (by
transitivity) it implies λ′ /⊑ λ ∧ λ′ ⊑ λ. Therefore if λ′ /⊑ λ ∧ λ′′ ⊑ λ holds, then

λ′ /⊑ λ′′ holds, which means, due to Label Invariant (a), that Vλ′
S

/z→ti Vλ′′ holds,
as required for proving (9.8). Moreover, having proved (9.8), we can conclude

from (9.6) that V/⊑λ
S

/z→ti V⊑λ holds. Generalizing to any label label λ ∈ Λ, we
get:

Termination Insensitive Noninterference (TINI). If a determin-
istic program S complies with an information flow policy defined by a
set Λ of labels with a partial order ⊑ then executions of S will satisfy:

(∀λ ∈ Λ∶ V/⊑λ
S

/z→ti V⊑λ).

As an illustration of TINI, we return to the information flow policy specified
by Λ = {L,H}, where L ⊑ H holds. TINI for a deterministic program S thus
specifies the following.

V/⊑L
S

/z→ti V⊑L ∧ V/⊑H
S

/z→ti V⊑H (9.9)

6The contrapositive of predicate logic formula P ⇒ Q is ¬Q⇒ ¬P . Each is equivalent to
¬P ∨Q, so contrapositives are equivalent.

9.1. Information Flow Policies 251

Γ(in) Γ(out) V⊑L V/⊑L V⊑H V/⊑H out ∶= in?

L L {in,out} ∅ {in,out} ∅ √

L H {in} {out} {in,out} {∅} √

H L {out} {in} {in,out} {∅} ×
H H ∅ {in,out} {in,out} ∅ √

Figure 9.2: Possible Information Flow Policies for out ∶= in

By using formal definition (9.5) to expand
S

/z→ti, we obtain the restrictions on
initial and final states of S that compliance with TINI requires:

(∀s, s′∶ s =V /⊑L s
′ ∧ [[S]](s) ≠⊥ ∧ [[S]](s′) ≠⊥

⇒ [[S]](s) =V⊑L [[S]](s′))

∧ (∀s, s′∶ s =V /⊑H s
′ ∧ [[S]](s) ≠⊥ ∧ ; [[S]](s′) ≠⊥

⇒ [[S]](s) =V⊑H [[S]](s′))

Simplification of this formula is possible, because the following hold

V /⊑L = VL V⊑L = VL V /⊑H = V⊑H V⊑H = VL ∪ VH

resulting in

(∀s, s′∶ s =VL
s′ ∧ [[S]](s) ≠⊥ ∧ [[S]](s′) ≠⊥

⇒ [[S]](s) =VL
[[S]](s′))

∧ (∀s, s′∶ s =VL∪VH
s′ ∧ [[S]](s) ≠⊥ ∧ [[S]](s′) ≠⊥

⇒ [[S]](s) =VL∪VH
[[S]](s′))

(9.10)

Since Λ is {L,H}, we have that VL ∪ VH = Vars(S) holds, which implies that
s =VL∪VH

s′ is equivalent to asserting s = s′ holds. That assertion means the
second quantified formula of (9.10) is satisfied due to the assumption that S is
deterministic, since terminating executions of S that start from the same initial
states then will produce the same final states. Thus, that second part of (9.10)
is equivalent to true, and we conclude that enforcing TINI for the case where
Λ = {L,H} and L ⊑ H holds is equivalent to:

(∀s, s′∶ s =VL
s′ ∧ [[S]](s) ≠⊥ ∧ [[S]](s′) ≠⊥ ⇒ [[S]](s) =VL

[[S]](s′))

Since states satisfying s =VL
s′ differ only in the values of variables in VH and

agree on the values of variables in VL, TINI is specifying that variables in VH have
no affect on variables in VL—the values of variables with label H are prohibited
from affecting the values of variables with label L. So if TINI is enforced we can
use variables with label H to store “secret” information that we do not want
leaked to variables with label L.

252 Chapter 9. Information Flow Control

As a concrete application, consider a program comprising the single assign-
ment statement out ∶= in. It is deterministic, it always terminates, and its execu-
tion causes the value of variable in to affect the value of variable out . Figure 9.2
summarizes compliance with TINI for all possible labelings of variables in and
out . The one row with an × in the final column corresponds to the sole labeling
(Γ(in) = H and Γ(out) = L) where compliance with TINI prohibits execution
of out ∶= in. That prohibition should not be surprising—it prohibits executions
where a variable having label H affects a variable having label L. Formally,
when Γ(in) = H and Γ(out) = L hold, instantiating TINI specification (9.9) for
out ∶= in gets:

V/⊑L
out ∶= in

/z→ti V⊑L ∧ V/⊑H
out ∶= in

/z→ti V⊑H

= substitution for V/⊑L, V⊑L, V/⊑H, V⊑H according to Figure 9.2

{in}
out ∶= in

/z→ti {out} ∧ ∅
out ∶= in

/z→ti {in,out}

= expand
S

/z→ti according to formalization (9.5)

false ∧ true

The first conjunct equals false, because executing out ∶= in in initial states hav-
ing equal values for the variables in {in} means executing out ∶= in in initial
states where out is the same but in varies. Different values will be stored into
out by those executions, as required for the first conjunct. The second con-
junct, however, equals true since initial states must be the same, so execution
of out ∶= in produces final states that have the same value for out .

Some possibly surprising aspects of TINI are illustrated by other programs
that use the information flow policy defined earlier: Λ = {L,H} and H /⊑ L
hold. Two variables xL and xH with Γ(xL) = L and Γ(xH) = H suffice. This
first program shows that TINI might be violated in programs where assignment
statements only change variables labeled L.

if xH = 0 then xL ∶=1 else xL ∶=2

However, assignment statements to variables labeled L appearing in the scope
of a guard G labeled H does not guarantee that TINI will be violated. The
following program illustrates that possibility.

if xH = 0 then xL ∶=1 else xL ∶=1

A second example illustrates that TINI is not always violated in programs
where assignment statements store into variables labeled L from variables la-
beled H. All executions of the following program are nonterminating, and TINI
imposes no restrictions on nonterminating executions.

while true do xL ∶=xH end

9.1. Information Flow Policies 253

9.1.2 Termination Sensitive Noninterference

In theory, it is impossible to observe that a program’s execution will be nontermi-
nating—we can only observe that an execution has not yet terminated. In
practice, however, if we measure the execution time consumed and compare
that value with a prediction derived from knowledge of the code and inputs
then we might be able to deduce that the execution will never terminate.

Deducing that an execution is nonterminating can convey information about
the initial values of some set of variables. For example, deducing nontermination
for an execution of

while x = 0 do skip end

reveals that x = 0 holds in the initial state, because the loop terminates imme-
diately if the initial state satisfies x ≠ 0 and the loop is nonterminating in other
initial states.

TINI only concerns terminating executions. So compliance with TINI does
not prevent attackers from learning about the values of variables by deducing
that an execution is nonterminating. That is a reason to consider information
flow policies that extend TINI and specify the set V of variables that is allowed
to affect nontermination.

Define relation7 V
S

/z→ts ⊥ to hold if and only if differences in the initial
values of variables from set V never affect whether or not the resulting exe-
cution of S is nonterminating. To formalize this definition, recall from (9.4)
that [[S]](s) =⊥ holds if execution of S from initial state s is nonterminating.
Therefore, predicate

s =S↓ s′∶ ([[S]](s) =⊥) = ([[S]](s′) =⊥)

is satisfied by initial states s and s′ if both cause nonterminating executions or

both cause terminating executions. The formal definitions for V
S

/z→ts ⊥ is:

(∀s, s′∶ s =V s
′ ⇒ s =S↓ s′)

TINI uses labels to restrict which sets of variables are allowed to affect other
sets of variables. We extend TINI to specify sets of variables that are allowed
to affect nontermination by defining a label Γ(⊥): λ ⊑ Γ(⊥) holds if and only if
variables in Vλ are allowed to affect whether or not the program terminates. So
variables in V⊑Γ(⊥) are allowed to affect whether or not the program terminates,

and variables in V ⊑Γ(⊥) (equivalently V/⊑Γ(⊥)) are not allowed to affect whether
the program terminates or not. The resulting information flow policy prohibition
for nontermination is:

V/⊑Γ(⊥)
S

/z→ts ⊥

We can now TINI to prohibit the values in variables of V⊑Γ(⊥) from affecting
nontermination as follows.

7Subscript ts abbreviates termination sensitive.

254 Chapter 9. Information Flow Control

Termination Sensitive Information Flow (TSNI). If a determin-
istic program S complies with an information flow policy defined by a
set Λ of labels with a partial order ⊑ then executions of S will satisfy:

(∀λ ∈ Λ∶ V/⊑λ
S

/z→ti V⊑λ) ∧ V/⊑Γ(⊥)
S

/z→ts ⊥

Typically Γ(⊥) is a label that dominates no other, so Γ(⊥) ⊑ λ holds for all
λ ∈ Λ, representing the view that nontermination is visible to an observer if any
variable is visible to that observer.

