
Chapter 11

Reference Monitors

Isolation may block system access by attackers, but it also blocks access by
legitimate users. So it makes sense to consider less-draconian defenses. A ref-
erence monitor is one such defense. It intercepts invocations of certain actions,
blocking any invocation that, if allowed to proceed, would violate the security
policy being enforced. Reference monitors originally were conceived as mech-
anisms for ensuring that accesses to some class of objects would comply with
a given authorization policy. But reference monitors can be used to enforce a
much broader class of security policies, which are defined using predicates to
characterize sets of states from which an operation should be allowed to proceed.

11.1 Reference Monitor Requirements

A reference monitor is invoked with each monitored access attempted by an un-
trusted principal whose compliance with a given security policy is sought. The
untrusted principals might correspond to user sessions, processes, or specific
programs. When a monitored access causes a reference monitor to be invoked,
code we call the monitor response is executed to determine whether allowing
that monitored access to proceed would comply with the security policy being
enforced. If performing the monitored access would not comply, then execution
of the invoker is blocked; otherwise, execution of the invoker is allowed to con-
tinue. To block execution, a monitor response often will terminate execution of
the untrusted principal that is attempting the access.

When a reference monitor is used for validating accesses to memory or to
files, the untrusted principals are processes and the monitored accesses are read,
write, and execute operations. The monitor response allows an invoking process
to continue executing only if that process is executing for a user holding the ap-
propriate privileges for the requested access. An operating system that supports
access control lists or capabilities is implementing such a reference monitor, as
is a processor that supports virtual memory having segment descriptors that
specify whether read, write, or execute access is permitted.

337

November 2023 Copyright Fred B. Schneider All rights reserved.

338 Chapter 11. Reference Monitors

Reference monitors can be used to enforce a wide variety of other security
policies if monitor responses (i) update some monitor state as part of a monitor
response and (ii) block further execution by the invoker of a monitored access
whenever the arguments to that monitored access in conjunction with the cur-
rent monitor state do not satisfy some given predicate. So the security policy
being enforced is based on an arbitrary predicate rather than being limited to
checking privileges held by the invoking untrusted principal.

For a reference monitor to be trustworthy, we must have assurance that it
will satisfy our expectations about which executions it allows. We facilitate
that trustworthiness if a reference monitor and the environment in which it is
deployed satisfy the following requirements.

Complete Mediation. The reference monitor is invoked whenever a moni-
tored access is attempted.

Tamperproof. Other execution cannot interfere with monitor responses or
alter the monitor state.

Assurance. The code that implements a monitor’s responses and imple-
ments the mechanisms for invoking that code when any monitored access
is attempted is small and simple. Therefore, testing and/or analysis can
provide assurance that the Complete Mediation and Tamperproof require-
ments hold.

For purposes of satisfying these requirements, reference monitor implementa-
tions traditionally have considered untrusted principals to be opaque. So sup-
port for a reference monitor typically does alter the untrusted principals or use
knowledge about their internals.1

11.2 Classical Implementation

All execution is performed by interpreters that are implemented in hardware
and/or in software. Such interpreters include the CPU, a hypervisor, the op-
erating system, middleware, and various runtime libraries. Complete media-
tion for a reference monitor thus can be seen as implementing extensions to an
interpreter. All principals executed by the interpreter become the untrusted
principals for the reference monitor that the interpreter extensions are imple-
menting. Notice, no changes are being made to those untrusted principals and
no information is required about their internals.

An interpreter that supports extensions will have a set EInt of events, where
the occurence of an event in EInt immediately causes the interpreter to begin
executing a handler that has been provided for that event. Low-overhead imple-
mentations of complete mediation for a reference monitor then become possible
if each monitored access corresponds to an element of EInt. The handlers pro-
vided for events in EInt would either serve as the monitor responses or transfer

1A reference monitor implementation that does analyze and modify the untrusted principals
is discussed in §12.4.

November 2023 Copyright Fred B. Schneider All rights reserved.

11.2. Classical Implementation 339

control to other code that implements the monitor responses. For an even lower-
overhead implementation, a monitored access that should be allowed to proceed
and does not update monitored state would not be associated with elements in
EInt and, thus, its execution would not be interrupted.

Interpreters implemented by hardware CPUs instantiate this architecture
when they transfer control to an associated trap handler in response to the
following traps.

• Execution of a system call instruction.

• Access to a virtual memory segment where the segment descriptor indi-
cates that the segment is not present or the segment does not permit the
kind of access (read, write, or execute) being attempted.

Given such an instance of this architecture, we implement a reference monitor
using these traps as the monitored accesses. It is no accident that these traps are
ideal for implementing a reference monitor to prevent abuses of operating system
abstractions and services—processes request operating system services either
by making sytem calls or by performing memory-mapped I/O. Also, notice that
changes to the segment table can be used to avoid the occurence (and overhead)
of traps for those monitored accesses that (i) should be permitted to proceed
and (ii) do not need to update monitor state.

Interpreters implemented in software can be designed to invoke a specified
handler whenever the interpreter state starts satisfying some given predicate.
The code for monitoring such a predicate might be added when the interpreter
is being written, as a patch after the interpreter has been deployed, or using
an interface that allows executing clients to add predicates for monitoring. Of
course, monitoring the value of a predicate slows an interpreter if the predicate
must be evaluated frequently, if evaluating the predicate is expensive due to
the computation involved, or if a large amount of state needs to be read for
evaluating the predicate.

A reference monitor is often made tamperproof by placing it in an operating
system kernel, so the isolation mechanism that is protecting the kernel also iso-
lates the execution of monitor responses and protects the monitor state. Being
part of a kernel also gives monitor responses ready access to the operations that
a kernel typically will support to block further execution of a process. The as-
surance requirement for a reference monitor becomes difficult to satisfy, though,
when a kernel is large and complicated. That is why a security kernel is, by
definition, small and simple, yet provides the functionality needed to satisfy the
tamperproof and complete mediation requirements for implementing a reference
monitor.2

2Security kernels are described on page 306 in §10.2.3 about kernel functionality.

November 2023 Copyright Fred B. Schneider All rights reserved.

340 Chapter 11. Reference Monitors

11.3 *Enforceable Policies and EM

To characterize the class of security policies that can be enforced using reference
monitors, define ΣS to be the set of execution traces corresponding to possible
executions for a program S, and define EnfR(ΣS) to be the set of execution
traces for executions of S when reference monitor R is present. For security
policies specified using predicates P(⋅) on sets of execution traces, a reference
monitorR enforces security policy P(⋅) if P(EnfR(ΣS)) holds for every program
S.

The analysis given below assumes that monitor responses implement com-
putable functions, but it ignores the execution time for monitor responses, the
size of the monitor’s state, and the overhead for implementing complete media-
tion. The resulting characterization of security policies enforceable using refer-
ence monitors is thus independent of algorithm design, the choice of program-
ming language, and the run-time environment. So when the characterization
says that a security policy P(⋅) cannot be enforced by any reference monitor,
then some other type of enforcement mechanism must be used to enforce P(⋅).
Because our analysis is ignoring overheads, though, the characterization might
say that a reference monitor can enforce a given security policy even if the
resulting performance would be unacceptable.

To derive our characterization of what security policies can be enforced by
reference monitors, we proceed as follows.

(a) We define the class EM (for Execution Monitoring) of reference monitors.

(b) We show that for every reference monitor R, there is a corresponding refer-
ence monitor R̂ that is in EM and that enforces the same security policies
as R does.

(c) We give a formal definition for the set EnfR̂(ΣS) of execution traces for a

program S that is executed in the presence of an EM reference monitor R̂.

(d) We derive a characterization for security policies that reference monitors in
EM can enforce and discuss why certain policies cannot be enforced.

The conclusion of step (b), implies that the characterization for EM-enforceable
policies obtained in step (d) is also a characterization of policies enforceable by
reference monitors not in EM.

Definition of EM. All reference monitors in class EM follow a template that
facilitates characterizing the policies those reference monitors enforce.

EM Template. Let R̂ be a reference monitor implemented as extensions
to an interpreter I that is executing a program S for some untrusted
principal. R̂ is in class EM if it is defined in terms of

– a variable histR̂ that stores a finite sequence of interpreter states,

– a predicate pR̂(histR̂) that is deterministic, computable, and satisfies
pR̂(ε) = true, and

November 2023 Copyright Fred B. Schneider All rights reserved.

11.3. *Enforceable Policies and EM 341

– a monitor response R̂ that, for each monitored access, proceeds as
follows:

(i) R̂ appends to histR̂ the current state s of interpreter I (which
by construction would include the state of S) and then

(ii) R̂ blocks further execution of S if ¬pR̂(histR̂) holds; otherwise,
execution of S is allowed to continue.

So every EM reference monitor R̂ is maintaining in histR̂ a subsequence3 of
the interpreter states. That subsequence in histR̂ is the list containing the
interpreter state that existed each time a monitored access was triggered by S.

Construction of R̂ from R. A reference monitor R in a real system is
unlikely to follow the EM Template.

• Instead of using a single variable histR that grows without bound, the
monitor response for R would store the monitor state in a collection of
bounded-size monitor variables. Updates to monitor variables would be
calculated from (i) their current values, and (ii) the current interpreter
state (including the state of program S).

• Instead of using a single predicate pR(histR) to determine whether fur-
ther execution by S should be blocked, the monitor response for R might
use multiple predicates, checking the different predicates under different
circumstances, such as different operation attempts by S.

We now show how to transform such a reference monitor R into an EM reference
monitor R̂ that enforces the same policies.

The first step is to restructure R—perhaps by adding monitor variables—so
that the decision to block further execution of S is made by checking a single
predicate pR(⋅) once and at the end of the monitor response.4 The restructured
monitor response would have the following form, where v̄ denotes the list of
monitor variables, fR(v̄, s) evaluates to a list of the new values to store in the
monitor variables, and s is the state of the interpreter (and, thus includes the
state of S) when the monitored access was attempted.

v̄ ∶= fR(v̄, s); if ¬pR(v̄) then block further execution of S (11.1)

Function fR(⋅, ⋅) is guaranteed to exist because we assumed that (i) a monitor
response implements a computable function of the values it reads, and (ii) mon-
itor variables and interpreter state are the only values that a monitor response
reads.

For the next step of the transformation, we eliminate the use of monitor
variables. Values stored by the monitor variables v̄ just before (11.1) checks

3Recall, σ is considered a subsequence of a sequence τ if σ can be obtained by deleting
some of the elements in τ .

4A detailed account of the transformation would be specific to the programming language
used to code the monitor response. We omit the account here, because there is little to learn
from seeing the transformations.

November 2023 Copyright Fred B. Schneider All rights reserved.

342 Chapter 11. Reference Monitors

predicate ¬pR(v̄) are computable from initial values v̄0 of v̄, the current inter-
preter state, and the interpreter states read during previously executed monitor
responses. Since histR̂ is a sequence containing the state of the interpreter at
the start of each previously executed monitor response, we have that

• final state last(histR̂) of histR̂ is the interpreter’s state when the current
monitor response started executing, and

• prefix histR̂[1..∣histR̂∣−1] containing all but the final state of histR̂ is what
determined the value of v̄ at the start of the current monitor response.

So a (recursive) function FR̂(v̄0,histR̂) for computing that value of v̄ can be
constructed from fR(⋅, ⋅) as follows.

FR̂(v̄0,histR̂)∶ {
fR(v̄0, last(histR̂)) if ∣histR̂∣ = 1

fR(FR̂(v̄0,histR̂[1..∣histR̂∣ − 1]), last(histR̂)) if ∣histR̂∣ > 1

By replacing v̄ in ¬pR(v̄) of (11.1) with FR̂(v̄0,histR̂), we obtain a monitor

response for a reference monitor R̂ that enforces the same policies as reference
monitor R but follows the EM Template. Specifically, we define pR̂(histR̂)
to be pR(FR̂(v̄0,histR̂)) to get the following instance of the EM Template for

reference monitor R̂.

histR̂ ∶= histR̂ ⋅ s;
if ¬pR̂(histR̂) then block further execution of S

(11.2)

11.3.1 EM-Enforceable Policies

A security policy P(⋅) is defined to be EM-enforceable when there is an EM
reference monitor R̂ that causes P(EnfR̂(ΣS)) to hold for all programs S. Each
execution trace σ ∈ ΣS is a (possibly infinite) sequence s0 s1 s2 . . . of states,
where every state in the sequence contains all of the information needed to
generate the next state in the sequence. So if the interpreter is a hardware
CPU, then the state would include a program counter that identifies which
atomic action produces the next state. The state also includes the current time.

When a reference monitor R is present, certain states will cause a monitored
access followed by execution of a monitor response. For an execution trace σ,
we write maR(σ) to denote the subsequence of σ comprised of those states
that caused monitored accesses. So an execution trace σ corresponding to an
execution of S when a reference monitor R̂ described by (11.2) is present can
be described as follows.

(i) R̂ checks whether ¬pR̂(histR̂) holds when each of the successively longer
prefixes of maR̂(σ) is stored in histR̂.

(ii) If R̂ ever observes a prefix ω of maR(σ) where ¬pR̂(ω) holds, then R̂
blocks further execution of S.

November 2023 Copyright Fred B. Schneider All rights reserved.

11.3. *Enforceable Policies and EM 343

EnfR̂(ΣS) thus can be formalized as the union of a set NormR̂(ΣS) of execution
traces for normal executions and a set TermR̂(ΣS) of the execution traces for

executions blocked by R̂.

EnfR̂(Σ)∶ NormR̂(Σ) ∪ TermR̂(Σ) (11.3)

NormR̂(ΣS) is the subset of ΣS corresponding to executions of S that were

not blocked by R̂. So if σ ∈ NormR̂(ΣS) holds then σ ∈ ΣS holds and pR̂(histR̂)
holds each time a monitor response is invoked. Those values of histR̂ are the
prefixes of maR̂(σ). Writing α ⪯ β to denote that α is a prefix of β, instances of

pR̂(histR̂) that R̂ evaluates are together equivalent to p∗R̂(histR̂) defined by:

p∗R̂(σ)∶ (∀ω ⪯ maR̂(σ)∶ pR̂(ω)) (11.4)

Thus, we get the following definition for NormR̂(ΣS):

NormR̂(ΣS)∶ {σ ∣ σ ∈ ΣS ∧ p∗R̂(σ)} (11.5)

TermR̂(ΣS) adds to EnfR̂(Σ) execution traces for executions that R̂ blocked.
If σ ∈ ΣS and ¬p∗R̂(σ) hold then σ /∈ NormR̂(ΣS) holds and TermR̂(ΣS) contains

the longest prefix τ of σ that satisfies p∗R̂(τ). The following formal definition

for TermR̂(ΣS) uses notation β[−i] to denote the prefix obtained by deleting
the last i states from finite sequence β.

TermR̂(ΣS)∶ {τ ∣ σ ∈ ΣS ∧
(∃β ⪯ σ∶ ¬pR̂(maR̂(β)) ∧ p∗R̂(β[−1]) ∧ τ = β[−1])} (11.6)

The security policy enforced by an EM reference monitor R̂ is specified by a
predicate PR̂(Σ) that is true if and only if no execution trace in Σ corresponds

to an execution that is blocked by R̂:

PR̂(Σ)∶ Σ = NormR̂(Σ) (11.7)

We argue that definition (11.7) for PR̂(⋅) is sensible by proving (11.7) satisfies
two properties that we expect to hold for a definition of PR̂(⋅).

The first property is that an EM reference monitor R̂ does not block any
execution corresponding to an execution trace from a set Σ where PR̂(Σ) holds,

since having PR̂(Σ) hold should imply that Σ satisfies the policy R̂ is enforcing.
That is formalized as

PR̂(Σ) ⇒ (Σ = EnfR̂(Σ)),

and it is proved by using the observation that the existential forming the second
conjunct in definition (11.6) is false when execution trace σ ∈ Σ satisfies p∗R̂(σ),

November 2023 Copyright Fred B. Schneider All rights reserved.

344 Chapter 11. Reference Monitors

so TermR̂(Σ) = ∅ holds when all elements σ ∈ Σ satisfy p∗R̂(σ):

PR̂(Σ)
⇒ (11.7)

NormR̂(Σ) = Σ

⇒ definition (11.3) of EnfR̂(Σ) and TermR̂(Σ) = ∅
EnfR̂(Σ) = Σ

The second property is that PR̂(EnfR̂(Σ)) holds, indicating that PR̂(⋅) is
satisfied by the set of execution traces corresponding to execution when EM ref-
erence monitor R̂ is present. The proof hinges on the definitions of NormR̂(Σ)
and TermR̂(Σ)—specifically, that if σ ∈ NormR̂(Σ) or σ ∈ TermR̂(Σ) holds then
p∗R̂(σ) holds. According to definition (11.7) of PR̂(⋅), a proof of PR̂(EnfR̂(Σ))
requires proving:

EnfR̂(Σ) = NormR̂(EnfR̂(Σ)).

Here is a sketch of that proof.

EnfR̂(Σ)
= definition (11.3) of EnfR̂(Σ)

NormR̂(Σ) ∪ TermR̂(Σ)
= definition (11.6) of TermR̂(Σ): σ ∈ TermR̂(Σ) ⇒ p∗R̂(σ)

NormR̂(Σ) ∪ {σ ∣ σ ∈ TermR̂(Σ) ∧ p∗R̂(σ)}
= definition (11.5) of NormR̂(Σ): σ ∈ NormR̂(Σ) ⇒ p∗R̂(σ)
{σ ∣ σ ∈ NormR̂(Σ) ∧ p∗R̂(σ)} ∪ {σ ∣ σ ∈ TermR̂(Σ) ∧ p∗R̂(σ)}
= set theory
{σ ∣ σ ∈ NormR̂(Σ) ∪TermR̂(Σ) ∧ p∗R̂(σ)}
= definition (11.3) of EnfR̂(Σ)
{σ ∣ σ ∈ EnfR̂(Σ) ∧ p∗R̂(σ)}

= definition (11.5) of NormR̂(Σ)
NormR̂(EnfR̂(Σ))

11.3.2 Policies that Reference Monitors Cannot Enforce

Definition (11.3) of EnfR̂(⋅) is a predicate that will be satisfied by the set of

execution traces corresponding to executions that an EM reference monitor R̂
allows. The formulation of that predicate gives insights into characteristics
of EM-enforceable security policies. Moreover, since every reference monitors
enforces the same security policy as some EM reference monitor, the insights
about EM-enforceable security policies also apply to the security policies that
any other reference monitor enforces. The text below explores limitations that
are implied by those properties.

November 2023 Copyright Fred B. Schneider All rights reserved.

11.3. *Enforceable Policies and EM 345

Limitation: Executions Checked in Isolation. Expanding definition (11.3)
for EnfR̂(⋅) reveals that whether σ ∈ EnfR̂(Σ) holds for execution trace σ de-
pends only on σ and not on other execution traces in Σ. This conclusion should
not be surprising, since a reference monitor blocks an execution based only on
the states that reference monitor observes during that execution.

So for a security policy P(⋅) to be EM-enforceable, there will exist a predicate
p(⋅) on execution traces, where p(σ) holds when execution trace σ corresponds
to an execution that complies with P(⋅) and p(⋅) does not depend on other
execution traces. Thus, a security policy P(⋅) is not EM-enforceable unless it is
equivalent to

P(Σ)∶ (∀σ ∈ Σ∶ p(σ)) (11.8)

for some predicate p(⋅) on execution traces.

The requirement that a predicate P(⋅) specifying an EM-enforceable secu-
rity policy be expressible in canonical form (11.8) limits what policies are EM-
enforceable. For some sets Σ, the membership of each element is determined by
the presence or attributes of other members in that same set. Predicates having
form (11.8) cannot characterize such sets, because p(⋅) has a single argument
and, thus, cannot depend on the other elements of Σ. So there will be security
policies that cannot be specified using a predicate having form (11.8). Those
security policies will not be EM-enforceable.

Expressiveness limits arising from the form of (11.8) matter only if there are
inexpressible policies that we might want to enforce by using a reference monitor.
Unfortunately, there could be. An example is the security policy requiring that
the initial value of a secret variable x has no effect on the final value of a public
variable y in a deterministic system. A predicate to specify this5 security policy
would be satisfied by any set of execution traces Σ in which the final states
in each pair of execution traces has the same value for variable y whenever the
initial states in the pair differ only in the value of variable x. Define init(x,σ, σ′)
to be a predicate that is satisfied if the initial states of execution traces σ and
σ′ differ only in the value of variable x, and define fin(y, σ, σ′) to be a predicate
that is satisfied if final states of execution traces σ and σ′ agree on the value
for variable y. Then a predicate NE(⋅) (for no effect) to restrict the value of x
from having an effect on y can be specified as follows.

NE(Σ)∶ (∀σ,σ′ ∈ Σ∶ init(x,σ, σ′) ⇒ fin(y, σ, σ′))

To put NE(Σ) into the same form as (11.8) would require defining a predicate
p(⋅). Only a predicate that depends on Σ could determine whether an execution
trace σ is satisfying NE(Σ). But having Σ be an argument to p(⋅) is not
permitted by the form of (11.8). So an EM reference monitor cannot be used
to enforce NE(⋅), which means no reference monitor can be used to enforce this
security policy.

5Chapter 9 has a detailed discussion of information flow security policies.

November 2023 Copyright Fred B. Schneider All rights reserved.

346 Chapter 11. Reference Monitors

Limitation: Violations are Prefixes. R̂ excludes from EnfR̂(Σ) any exe-
cution trace having a finite prefix ω where ¬pR̂(maR̂(ω)) holds. Thus, to be
EM-enforceable, a security policy P(⋅) must be excluding those execution traces
σ having a finite prefix where some predicate (say) viol

P
(⋅) holds. That means

predicate p(⋅) in (11.8) must satisfy

p(σ) ⇒ ¬(∃ω ⪯ σ∶ viol
P
(ω)).

The requirement that violations are prefixes means that an EM reference
monitor cannot enforce a security policy that requires one or more actions in
the indefinite future. As an example, consider a security policy that specifies
availability: every request is eventually serviced. A predicate pR̂(⋅) defined on
prefixes of execution traces cannot detect the security violation being proscribed
by this security policy, because any prefix containing an unserviced request still
might be extended to a prefix where that request has been serviced. So an EM
reference monitor would have no basis to block non-compliant executions; the
security policy is not EM-enforceable.

Limitation: Granularity of Monitored Accesses. The frequency of moni-
tored accesses limits the information R̂ has for deciding whether to block further
execution, in turn limiting the policies that can be enforced by an EM reference
monitor. In particular, the predicate pR̂(⋅) used by an EM reference monitor R̂
(11.2) to decide that further execution should be blocked must satisfy

violP(ω) ⇒ ¬pR̂(maR̂(ω)) (11.9)

for all prefixes ω of execution traces, since R̂ blocks further execution of S only
if a prefix ω is reached that satisfies ¬pR̂(maR̂(ω)). Notice, if the prefix ω that
first makes violP(ω) become true does not end with a monitored access then

(11.9) requires ¬pR̂(maR̂(ω[−i])) to hold for some i where 0 < i, enabling the
reference monitor to anticipate violP(⋅) first becoming true.

Predicates that anticipate violations can lead to unpleasantly conservative
enforcement, though. For example, ω[−i] discussed above might be a prefix both
of an execution trace that has a violation and an execution trace that does not
have a violation. In that case, a reference monitor that uses ¬pR̂(maR̂(ω[−i]))
would block some executions unnecessarily. A different choice of predicate for
pR̂(⋅) might be less conservative, but there is no guarantee that such a predicate
exists.

As a concrete example, consider a security policy to require that an invoca-
tion of ι1 be immediately followed by an invocation of ι2. Suppose invocations
of ι1 cause monitored accesses but invocations of ι2 do not. A reference monitor
could enforce the desired security policy conservatively by blocking all execu-
tions that attempt to invoke ι1. But that reference monitor would block some
executions unnecessarily. To be less conservative, a reference monitor that re-
ceives control at an ι1 invocation would need to use a predicate for pR̂(⋅) that
predicts whether an execution of ι2 will immediately follow. Such a predicate

November 2023 Copyright Fred B. Schneider All rights reserved.

Notes and Reading 347

cannot exist, however, if either outcome is possible from the system state that
exists when ι1 is invoked.

Limitation: Blocking as a Mitigation. When an EM reference monitor blocks
execution of S, it is to forestall an imminent violation of a security policy that
is being enforced. Therefore, a security policy is not EM-enforceable if it pro-
scribes violations that cannot be prevented by blocking further execution of S.
Consider, for example, a security policy PT (⋅) that requires S to undertake a
given state transition within T seconds of some specified event. If that event
has occurred but S has not yet performed the required state transition then
blocking S can only make matters worse, since there is no way that an EM
reference monitor can stop the advance of time. So an EM reference monitor
cannot be used to enforce PT (⋅). Other activities that continue despite blocking
the execution of S include remote program executions and any external physical
processes that S is controlling. Generalizing, we conclude that an EM reference
monitor R̂ cannot enforce a security policy that proscribes events R̂ cannot
prevent.

Security policy PT (⋅) also exposes an implicit assumption in formal definition
(11.6) of TermR̂(⋅), which causes PT (EnfR̂(Σ)) to hold even though PT (⋅) is not
EM-enforceable. In formalization (11.6), τ is a finite prefix because the state
remains unchanged after R̂ blocks S. That is not accurate if other on-going
activities (such as the advance of time) continue changing the state (because
time is part of the state) after R̂ blocks S. The finite sequences in TermR̂(Σ)
ought to be extended by appending further state transitions caused by activities
that blocking S does not stop. If we make that change to TermR̂(⋅) then
PT (EnfR̂(Σ)) will no longer hold, correctly indicating that PT (⋅) would not be
enforced by blocking S.

Notes and Reading

The first mention of the term “reference monitor” appears in the final report [1]
of a committee6 that the U.S. Air Force (USAF) convened to study how classi-
fied information in a computer system could be kept secure against attacks by
malicious users. That report gives the three requirements a reference validation
mechanism must satisfy to implement a reference monitor: tamperproof, always
invoked, and small enough for assurance. The term “complete mediation” used
in this chapter and elsewhere for the second requirement was introduced later
in Saltzer and Schroeder [8].

In an oral history interview [9, page 63], Roger Schell, who was project
manager for the USAF study, takes credit for suggesting the name “reference
monitor”. Schell explains in the interview that his extensive discussions with

6The members of the committee were: E.L. Glaser (chair), J.P. Anderson (deputy chair),
Melvin Conway, Daniel J. Edwards, Hilda Faust, Steven Lipner, Eldred Nelson, Bruce Peters,
Charles Rose, and Clark Weissman. Anderson’s is the only name on the report cover—he
drafted the report—so the report is today known as the Anderson Report.

November 2023 Copyright Fred B. Schneider All rights reserved.

348 BIBLIOGRAPHY

Anderson refined the concept, which Schell admits was a version of the mediation
mechanism implicit in Lampson’s work [5] on the access matrix model. Schell
was not the only researcher at that time exploring such mediation mechanisms.
Some months before the Anderson report appeared, Graham and Denning pub-
lished a paper [4] where a similar term “monitor” describes an operating system
component that would be invoked with each access to objects of a given class.
Denning reflects on this work in his oral history interview [2, page 38]:

It seemed to me that we were just recording common wisdom. Maybe
we were the first to put a name on it. Process managers, virtual
memory managers, and file managers in operating systems all worked
this way. Lampson assumed that the system implementing an ac-
cess matrix worked this way. Graham and I did not think of refer-
ence monitor as the main contribution of the paper; at the time, we
thought we had a good solution to the problem of mutually suspi-
cious subsystems interacting with each other.

Although reference monitors were originally developed for mediating access
to objects, the abstract idea is quite general: use state predicates to medi-
ate state transitions attempted by monitored accesses. Schneider [10] defined
EM-enforceability in order to characterize that class of security policies, intro-
ducing security automata as models for reference monitors. The original goal of
Schneider [10] was to understand what security policies could not be enforced
with some form of reference monitor, but the paper also prompted people to
think about using reference monitors for controlling arbitrary state transitions.
The analysis of §11.3 extends Schneider’s characterization [10] by deriving lim-
itations that arise if only certain system state transitions can be monitored
accesses.

Subsequent research has extended the security automata model and the EM-
enforceability results in Schneider [10]. Space does not permit a complete survey,
but key contributions include the following. Viswanathan and Kim [11] discuss
the computability requirements for reference monitors. To characterize security
policies that can be enforced using reference monitors that perform remedial
actions, Ligatti et al. [6] introduce edit automata, which Ligatti and Reddy [7]
later generalize to obtain the more realistic family of models that they call
mandatory results automata. Fong’s [3] shallow history automata initiated in-
vestigations into classes of security policies that could be enforced by reference
monitors where the monitor state is limited in size.

Bibliography

[1] James P. Anderson. Computer security technology planning study. Techni-
cal Report ESD-TR-73-51, Electronic Systems Division (AFSC), Hanscom
Field, Bedford, MA, October 1972.

November 2023 Copyright Fred B. Schneider All rights reserved.

BIBLIOGRAPHY 349

[2] Peter J Denning. Oral history interview with Peter J. Denning. Charles
Babbage Institute. Retrieved from the University of Minnesota Digital Con-
servancy, April 2013.

[3] Philip W. L. Fong. Access control by tracking shallow execution history.
In 2004 IEEE Symposium on Security and Privacy, pages 43–55. IEEE
Computer Society, May 2004.

[4] Scott G. Graham and Peter J. Denning. Protection: Principles and prac-
tice. In Proceedings of the Spring Joint Computer Conference, AFIPS ’72
(Spring), pages 417–429, New York, NY, USA, May 1972. ACM.

[5] Butler W. Lampson. Protection. In Proceedings 5th Princeton Conference
on Information Sciences and Systems, page 437, 1971. Reprinted in ACM
Operating Systems Review 8, 1 (January 1974), page 18.

[6] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement
mechanisms for run-time security policies. Internatonal Journal of Infor-
mation Security, 4(1–2):2–16, February 2005.

[7] Jay Ligatti and Srikar Reddy. A theory of runtime enforcement, with
results. In Dimitris Gritzali, Bart Preneel, and Marianthi Theoharidou,
editors, Computer Security – ESORICS 2010, volume 6345 of Lecture Notes
in Computer Science, pages 87–100, Berlin, Heidelberg, September 2010.
Springer-Verlag.

[8] Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE, 63(9):1278–1308, March
1975.

[9] Roger R Schell. Oral history interview with Roger R. Schell. Charles Bab-
bage Institute. Retrieved from the University of Minnesota Digital Conser-
vancy, May 2012.

[10] Fred B. Schneider. Enforceable security policies. ACM Transactions on
Information System Security, 3(1):30–50, February 2000.

[11] Mahesh Viswanathan and Moonzoo Kim. Foundations for the run-time
monitoring of reactive systems – Fundamentals of the MaC language. In
Zhiming Liu and Keijiro Araki, editors, Theoretical Aspects of Computing
– ICTAC 2004, pages 543–556, Berlin, Heidelberg, 2005. Springer.

November 2023 Copyright Fred B. Schneider All rights reserved.

