
Kerberos: An Authentication
Sewice for Computer Networks
When using authentication based on cryptography, an attacker
listening to the network gains no information that would enable it
to falsely claim another’s identity. Kerberos is the most commonly
used example of this type of authentication technology.

B. Clifford Neuman and Theodore Ts‘o

CLIFFORD NEUMAN is a
scient& at the Information
Sciences Institute of the Uni-
versity of Southem California.

THEODORE TS’O leads the
Kerberos V5 development
effort at the Massachusetts
Institute of Technology.

odern computer systems provide
service to multiple users and
require the ability to accurate-
ly identify the user making a
request. In traditional systems,
the user’s identity is verified by

checking a password typed during login; the sys-
tem records the identity and uses it to determine
what operations may be performed. The process
of verifying the user’s identity is called authenti-
cation. Password-based authentication is not suitable
for use on computer networks. Passwords sent across
the network can be intercepted and subsequently
used by eavesdroppers to impersonate the user. While
thisvulnerability has been long known, itwas recent-
ly demonstrated on a major scale with the discov-
ery of planted password collecting programs at critical
points on the Internet [4].

Authentication, Integrity,
Confidentiality, and
Authorization

uthentication is the verification of the identity A of a party who generated some data, and of the
integrity of the data. A principal is the party whose
identity is verified. The verifier is the party who
demands assurance of the principal’s identity.
Dataintegrityis the assurance that the data received
is the same as generated. Authentication mecha-
nisms differ in the assurances they provide: some
indicate that data was generated by the principal
at some point in the past, a few indicate that the prin-
cipal was present when the data was sent, and
others indicate that the data received was freshly
generated by the principal. Mechanisms also dif-
fer in the number of verifiers: some support a sin-
gle verifier per message, while otherssupport multiple
verifiers. A third difference is whether the mecha-
nism supports non-repudiation, the ability of the ver-
ifier to prove to a third party that the message
originated with the principal.

Because these differences affect perfor-
mance, it is important to understand the require-
ments of an application when choosing a method.

For example, authentication for electronic mail
may require support for multiple recipients and
non-repudiation, but can tolerate greater latency.
In contrast, poor performance would cause prob-
lems for authentication to a server responding to
frequent queries.

Other security services include confidentiality
and authorization. Confidentiality is the protec-
tion of information from disclosure to those not
intended to receive it. Most strong authentication
methods optionally provide confidentiality.
Authorization is the process by which one deter-
mines whether a principal is allowed to perform
an operation. Authorization is usually performed
after the principal has been authenticated, and
may be based on information local to the verifier,
or based on authenticated statements by others.

The remainder of this article will concentrate
on authentication for real-time, interactive ser-
vices that are offered on computer networks. We use
the term real-time loosely to mean that a client
process is waiting for a response to a query o r
command so that it can display the results to the user,
or otherwise continue performing its intended func-
tion. This class of services includes remote login, file
system reads and writes, and information retrieval
for applications like Mosaic.

Why Kerberos
he introduction discussed the problems asso- T ciated with password-based authentication and,

in particular, how passwords can be collected by
eavesdropping. In addition to the security con-
cem, password based authentication is inconvenient;
users do notwant to enter a password each time they
access a network service. This has led to the use
of even weaker authentication on computer net-
works: authentication by assertion.

While more convenient for the user, authenti-
cation by assertion hardly qualifies as authentication
at all. Examples include the Berkeley R-command
suite and the IDENT protocol. With authentica-
tion by assertion, applications assert the identity
of the user and the server believes it. Such authen-
tication is easily thwarted by modifying the applica-

IEEE Communications Magazine September 1994 0163-6804/94/$04.00 1994 0 IEEE 33

Authorized licensed use limited to: Cornell University Library. Downloaded on September 17,2022 at 22:13:29 UTC from IEEE Xplore. Restrictions apply.

-
The Kerberos
Authentica -
tion System
uses a series
of encrypted
messages to
prove to a
verifier that
a client is
running on
behalfof a
particular
usez

tion. This may require privileged access to the
system, which is easily obtained on PCs and per-
sonal workstations. While most uses of authenti-
cation by assertion require that a connection originate
from a “trusted”network address, on many networks,
addresses are themselves simply assertions.

Stronger authentication methods based oncryp-
tography are required. When using authentica-
tion based on crytography, an attacker listening
to thenetworkgainsnoinformation thatwould enable
it to falsely claim another’s identity. Kerberos is
the most commonly used example of this type of
authentication technology. Unfortunately, strong
authentication technologies are not used as often
as they should be, although the situation is gradually
improving.

The Kerberos Authentication
Service

erberos is a distributed authentication ser- K vice that allows a process (a client), running on
behalf of a principal (a user), to prove its identity
to a verifier (an application server, or just server)
without sending data across the network that might
allowanattacker or theverifiertosubsequentlyimper-
sonate the principal. Kerberos optionally provides
integrity and confidentiality for data sent between
the client and server. Kerberos was developed in
the mid-’t(Os as part of MIT’s Project Athena 121.
As use of Kerberos spread to other environments,
changes were needed to support new policies and
patterns of use. To address these needs, design
of Version S of Kerberos (V5) began in 1989 1111.
Though V4 still runs at many sites, VS is consid-
ered to be standard Kerberos [lo].

Limitations of Kerberos
Limitations of Kerberos have been described in the
literature 111. Though most are a matter of pref-
erence or apply to V4 and early drafts of V5, a few
are fundamental and are discussed here. In par-
ticular, Kerberos is not effective against password
guessing attacks; if a user chooses a poor pass-
word, then an attacker guessing that password
can impersonate the user. Similarly, Kerberos
requires a trusted path through which passwords
are entered. If the user enters a password to a
program that has already been modified by an
attacker (a Trojan horse), or if the path between
the user and the initial authentication program
can be monitored, then an attacker may obtain
sufflcient information to impersonate theuser. Ker-
beros can be combined with other techniques, as
described later, to address these limitations.

To be useful, Kerberos must be integrated
with other parts of the system. It does not protect
all messages sent between two computers; it only
protects the messages from software that has
been written or modified to use it. While it may
be used to exchange encryption keys when estab-
lishing link encryption and network level security
services, this would require changes to the net-
work software of the hosts involved.

Kerberos does not itself provide authorization,
but V5 Kerberos passes authorization information
generated by other services. In this manner, Ker-
beros can be used as a base for building separate
distributed authorization services [141.

How Kerberos Works

The Kerberos Authentication System [181 uses a
series of encrypted messages to prove to a verifier
that a client is running on behalf of a particular user.
The Kerberos protocol is based in part on the
Needham and Schroeder authentication protocol
[13], but with changes to support the needs of the
environment for which it was developed. Among
these changes are the use of timestamps to reduce
the number of messages needed for basic authen-
tication [6], the addition of a “ticket-granting”
service to support subsequent authentication
without re-entry of a principal’s password, and a
different approach to cross-realm authentication
(authentication of a principal registered with a
different authentication server than the verifier).

The remainder of this section describes the Ker-
beros protocol. The description is simplified for
clarity; additional fields are present in the actual
protocol. Readers should consult RFC 1510 1101
for a more thorough description of the Kerberos
protocol.

Kerberos Encryption - Though conceptually,
Kerberos authentication proves that a client is
running on behalf of a particular user, a more
precise statement is that the client has knowl-
edge of an encryption key that is known by only
the user and the authentication server. In Ker-
beros, the user’s encryption key is derived from
and should be thought of as a password; w e will
refer to it as such in this article. Similarly, each
application server shares an encryption key with
the authentication server; we will call this key the
server key.

Encryption in the present implementation of
Kerberos uses the da t a encryption s tandard
(DES). It is a property of DES that if ciphertext
(encrypted data) is decrypted with the same key
used to encrypt it, the plaintext (original data)
appears. If different encryption keys are used for
encryption and decryption, or if the ciphertext is
modified, the result will be unintelligible, and
the checksum in the Kerberos message will not
match the data. This combination of encryption
and the checksum provides integrity and confi-
dentiality for encrypted Kerberos messages.

The Kerberos Ticket - The client and server do
not initially share an encryption key. Whenever a
client authenticates itself to a new verifier it relies
on the authentication server to generate a new encryp
tion key and distribute it securely to both parties.
This new encryption key is called a session key
and the Kerberos ticket is used to to distribute it
to the verifier.

The Kerberos ticket is a certificate issued by
an authentication server, encrypted using the
server key. Among other information, the ticket
contains the random session key that will be used
for authentication of the principal to the verifier,
the name of the principal to whom the session
key was issued, and an expiration t ime af ter
which the session key is no longer valid. The ticket
is not sent directly to the verifier, but is instead
sent to the client who forwards it to the verifier as
part of the application request. Because the tick-
et is encrypted in the server key, known only by
the authentication server and intended verifier, it

34 IEEE Communications Magazine September 1994

Authorized licensed use limited to: Cornell University Library. Downloaded on September 17,2022 at 22:13:29 UTC from IEEE Xplore. Restrictions apply.

isnot possible fortheclient tomodify the ticketwith-
out detection.

Application Request and Response - Messages
3 and 4 in Fig. 1 show the application request and
response, the most basic exchange in the Ker-
beros protocol.’ It is through this exchange that a
client proves to a verifier that it knows the session
key embedded in a Kerberos ticket. There are
two par ts t o the application request, a ticket
(described above) and an authenticator. The authen-
ticator includes, among other fields: the current time,
a checksum, and an optional encryption key. all
encrypted with the session key from the accompa-
nying ticket.

Upon receipt of the application request, the
verifier decrypts the ticket, extracts the session
key, and uses the session key to decrypt the
authenticator. If the same key was used to encrypt
the authenticator as used to decrypt it, the checksum
will match and the verifier can assume the authen-
ticator was generated by the principal named in
the ticket and to whom the session key was issued.
This isnot by itself sufficient for authenticationsince
an attacker can intercept an authenticator and replay
it later to impersonate the user. For this reason
the verifier additionally checks the timestamp to
makesure that the authenticator is fresh. If the times-
tamp is within a specified window (typically five
minutes) centered around the current time on
the verifier, and if the timestamp has not been
seen on other requests within that window, the
verifier accepts the request as authentic. A dis-
cussion of the benefits and drawbacks to the use
of timestamps in authentication protocols can be
found in [15].

At this point the identity of the client has been
verified by the server. For some applications the
client also wants to be sure of the server‘s identity.
If such mutual authentication is required, the
server generates an application response by extract-
ing the client’s time from the authenticator, and
returns it to the client together with other infor-
mation, all encrypted using the session key.

Authentication Request and Response - The
client requires a separate ticket and session key
for each verifier with which it communicates. When
a client wishes to create an association with a partic-
ular verifier, the client uses the authentication request
and response, messages 1 and 2 from Fig. 1, to
obtain a ticket and session key from the authenti-
cation server. In the request, the client sends the
authentication server its claimed identity, the
name of the verifier, a requested expiration time
for the ticket, and a random number that will be
used to match the authentication response with
the request.

In its response, the authentication serverreturns
the session key, the assigned expiration time, the
random number from the request, the name of
the verifier, and other information from the tick-
et, all encrypted with the user’s password regis-
tered with the authentication server, together
with a ticket containingsimilar information, andwhich
is to be forwarded to the verifier as part of the
application rcquest. Together, the authentication
request and response and the application request
and response comprise the basic Kerberos authen-
tication protc~col.

0 Figure 1 . Basic Kerberos authentication protocol (simplified).

Obtaining Additional Tickets - The basic Ker-
beros authentication protocol allows a client with
knowledge of the user’s password to obtain a tick-
et and session key for and to prove its identity to
any verifier registered with the authentication
server. The user’s password must be presented
each time the user performs authentication with a
new verifier. This can be cumbersome; instead, a
system should support single sign-on, where the user
logs in to the system once, providing the pass-
word at that time, and with subsequent authenti-
cation occurring automatically. The obvious way
to support this, caching the user’s password on
the workstation, is dangerous. Though a Ker-
beros ticket and the key associated with it are
valid for only a short time, the user’s password
can be used to obtain tickets, and to impersonate the
user until the password is changed. A better approach,
and that used by Kerberos, is to cache only tickets
and encryption keys (collectively called credentials)
that will work for a limited period.

The ticket granting exchange of the Kerberos
protocol allows a user to obta in tickets and
encryption keys using such short-lived creden-
tials, without re-entry of the user’s password.
When the user first logs in, an authentication
request is issued and a ticket and session key for
the ticket granting service is returned by the
authentication server. This ticket, called a ticket
granting ticket, has a relativeiy short life (typically
on the order of eight hours). The response is
decrypted. the ticket and session key saved, and
the user’s password forgotten.

Subsequently, when the user wishes to prove
its identity to a new verifier, a new ticket is request-
ed from the authentication server using the ticket
granting exchange. The ticket granting exchange
is identical to the authentication exchange except
that the ticket granting request has embedded
within it an application request, authenticating
the client to the authentication server, and the
ticket granting response is encrypted using the
session key from the ticket granting ticket, rather
than the user’s password.

’Messages I and 2are
described in thesection on
authentication request
and response.

IEEE Communications Magazine September 1994 3s

Authorized licensed use limited to: Cornell University Library. Downloaded on September 17,2022 at 22:13:29 UTC from IEEE Xplore. Restrictions apply.

-
Clientlsewer
applications
must be
modified to
use Kerberos
for authenti-
cation; such
Kerberos-
aware
applications
are said to be
Kerberized.

Figure 2 shows the complete Kerberos authen-
tication protocol. Messages 1 and 2 are used only
when the user first logs in to the system, messages
3 and 4 whenever a user authenticates to a new
verifier, and message 5 is used each time the user
authenticates itself. Message 6 is optional and
used only when the user requires mutual-authen-
tication by the verifier.

Protecting Application Data - As described so
far, Kerberos provides only authentication: assur-
ance that the authenticated principal is an active
participant in an exchange. A by-product of the
Kerberos authentication protocol is the exchange
of the session key between the client and the serv-
er. The session key may subsequently be used by
the application to protect the integrity and priva-
cy of communications. T h e Kerberos system
defines two message types, the safe message and
the private message to encapsulate data that must
be protected, but the application is free to use a
method better suited to the particular data that is
transmitted.

Additional Features - The description of Ker-
beros just presented was greatly simplified. Addi-
tional fields are present in the ticket, authenticator,
and messages, to support bookkeeping and addi-
tional functionality. Some of the features present
in Version5 include renewable and fonvardable tick-
ets, support for higher level authorization mecha-
nisms, and support for multi-hop cross-realm
authentication (described in the following sec-
tion). Amore rigorous presentation of the Kerberos
protocol, and a description of each field is found
in RFC 1510 [lo].

Kerberos Infrastructure and
Cross- Realm Authentication

n a system that crosses organizational boundaries, I it is not appropriate for all users to be regis-
tered with a single authentication server. Instead,
multiple authentication servers will exist, each
responsible for a subset of the users or servers in
the system. The subset of the users and servers
registered with a particular authentication server
is called a realm (if a realm is replicated, users
will be registered with more than one authentication
server). Cross-realm authentication allows a prin-
cipal to prove its identity to a server registered in
a different realm.

To prove its identity to a server in a remote
realm, a Kerberos principal obtains a ticket grant-
ing ticket for the remote realm from its local
authentication server. This requires the princi-
pals’s local authentication server to share a cross-
realm key with the verifier’s authentication
server. The principal next uses the ticket granting
exchange to request a ticket for the verifier from
the verifier’s authentication server, which detects
that the ticket granting ticket was issued in a for-
eign realm, looksup the cross-realm key,verifies the
validity of ticket granting ticket, and issues a tick-
et and session key to the client.The name ofthe client,
embedded in the ticket, includes the name of the
realm in which the client was registered.

With Version 4, it was necessary for an authen-
tication server to register with every other realm

with which cross-realm authentication was required.
This was not scalable; complete interconnection
required the exchange of rzz keys where n was the
number of realms.

In contrast, Version 5 supports multi-hop cross-
realm authentication, allowing keys to be shared
hierarchically. With V5, each realm shares a key
with its children and parent, i.e. the IS1 . EDU realm
shares a key with the EDU realm, which also shares
keyswithMIT.EDU,USC. EDU,andWASHINGTON. EDU.
If no key is shared directly by ISI. EDU and
M I T . EDU, authenticationoftheclientbcn@IsI. EDU
to a server registered with the MIT. EDU realm
proceeds by obtaininga ticket grantingticket for EDU
from the ISI. EDU authentication server, using
that ticket granting ticket to obtain a ticket grant-
ing ticket for theMIT. EDUrealm from the ~ a u t h e n -
tication server, and finally obtaining a ticket for the
verifier from the MIT. EDU authentication server.

The list of realms that a re transited during
multi-hop cross-realm authentication is recorded in
the ticket and the verifier accepting the authenti-
cation makes the final determination about
whether the path that was followed should be
trusted. Shortcuts through the hierarchy are sup-
ported and can improve both the trust in and the per-
formance of the authentication process.

This hierarchical organization of realms is sim-
ilar to the hierarchical organization of certifica-
tion authorities and certificate servers for public-key
cryptography [3]. Aswith the public key certification
hierarchy, the utility of the authentication infra-
structure supporting authentication between parties
not previously known to one another depends in part
on the availabilityofauthentication serversfor realms
near the top of the hierarchy. Unfortunately,
political and legal ambiguity has the potential toslow
the establishment of these realms. In the mean time,
pairwise relationships between regions of the
hierarchy (shortcuts) are important. A discussion of
the tradeoffs available when establishing realms
for large organizations can be found in [5].

0 b ta in in g an d Usin g Kerb e ros
ource code releases for V4 and Beta V5 Kerberos S are freely available from MIT, however, MIT

does not officially support these releases. Several
companies have taken reference implementations
from MIT and provide commercially supported prod-
ucts. Information on the free releases and the
supported versions can be obtained by reading
the “Kerberos Frequently Asked Questions” doc-
ument [8] periodically posted t o the Usenet
newsgroup comp .protocols. kerberos, or by
sending a message to info-kerberos@mit . edu.

Setting up the Authentication Server
Since the Kerberos authentication server maintains
adatabaseofpasswords (encryption keys) for all the
users at a site, i t is extremely important that it be
installed on acarefully protectedand physically secure
machine. If possible, the machine should be ded-
icated to running the authentication server and the
number of users with access should be limited.

Initial passwords for a site’s users must be regktered
with the authentication server. If the number of users
is small, initial registration is best achieved in person
in front of an accounts administrator who can check
adriver’slicense, passport,orotherphysicaldocument.

36 IEEE Communications Magazine September 1994

Authorized licensed use limited to: Cornell University Library. Downloaded on September 17,2022 at 22:13:29 UTC from IEEE Xplore. Restrictions apply.

At sites with a large number of users and lim-
ited staff devoted to system administration, less
cumbersome and less secure procedures for initial
registration may present an acceptable tradeoff. For
example, if users regularly log on to a trusted sys-
tem, the login program can be modified to register
the passwords ofnon-registered users afterverifying
that the password isvalid. While simpler than in-per-
son registration, such bootstrapping techniques must
be used with caution since they rely initially on
the security of a weaker authentication system.

Kerberos Utilities
Several utility programs must be installed on the
workstation to allow users to obtain Kerberos
credentials (kini t) , destroy credentials (kdestroy),
list credentials (k l i s t) , and change their Ker-
beros password (kpasswd). Some sites choose to
integrate the Kerberos login tool k i n i t with the
workstation login program so that users do not need
to type their password twice. This makes the use
of Kerberos nearly transparent; users may not
even be aware they are using Kerberos.

Using “Kerberized” Applications
Clientiserver applications must be modified to
use Kerberos for authentication; such Kerberos-
aware applications are said to be Kerberized.
Kerberizing an application is the most difficult
part of installing Kerberos. Fortunately, the MIT
reference implementation includes versions of
popular applications (the Berkeley R-commands,
telnet, and POP)with support for Kerberos already
added. Other applications have been Kerberized
by vendors and are included in their supported prod-
ucts. The availability of Kerberos-aware applications
has improved with time, and is expected to
improve further. However, a site would have to
arrange itself to add Kerberos support to any
application developed in-house.

It is generally necessary to modify the client/
server protocol when Kerberizing an application
unless the protocol designer has already made
provisionsfor an authenticationexchange. The appli-
cation program must generate and send a Ker-
beros application request t o the application
server during the protocol initialization phase,
and the server must verify the Kerberos authenti-
cation information. The request must be trans-
mitted within the clientisewer protocol. The Kerberos
library provides routines that generate and verify
these messages.

More recent implementations of Kerberos pro-
vide a Generic Security Services Application Pro-
grammer Interface (GSSAPI)[121. The GSSAPI
provides a standard programming interface which
is authentication mechanism independent. This
allows the application programmer to design an
application and application protocol whichcan use
a1 ternative authentication technologics, including
Kerberos. The use of the GSSAPI in application pro-
grams is recommended wherevcr possible.

Because i t is a generic authentication inter-
face, the GSSAPI does not support all of the
functionality provided by Kerberos. For example,
Kerberos’s notion of user-to-user authentication
is not currently supported. Hence, an application
programmer will not always be able to use the
GSSAPI in all cases, and may have to use the
Kerberos API in order to use some features.

Figure 2. Complete Kerberos authentication protocol (simp[@ed).

Other Approaches for
Improving Security

erberos is not a complete solution to network K security problems. Several limitations have been
mentioned in this article. Other tools can also provide
partial solutions to network security problems, and
when combined with Kerberos, stronger security can
be attained. Among these other tools are one-
time passcodes and public-key cryptography.

One-Time Passcodes
Aone-time passcode authentication mechanism uses
a different passcode each time authentication is
required. Kerberos does not protect against the theft
of apassword through aTrojan horse login program
on the user’s workstation, but if the user’s pass-
word were to change each time it wasentered, a pass-
word stolen in this manner would be useless to an
attacker. One-t ime passcode authentication
methods typically use a credit card sized device
that e i ther displays a time varying password
(called a passcode), or returns a passcode when a
challenge is entered on a small keypad. Some
methods use a printed list of passcodes that can
be used one after another. When a user logs in
using one of these devices, the user is prompted
for the passcode. Depending on the style, the prompt
may include thechallenge that is to be typed into the
device. The user enters the passcode from the device
in much the same way as a normal password.

One-time passcode devices are not by themselves
sufficient for securing distributed systems because
the information needed toverify the passcode might
not be present on all servers with which the client
interacts during a session, and because it is not
practical t o require entry of the passcode on
every server access. However, one-time passcode
methods can be combined with Kerberos so that
knowledge of both the passcode and a password-
based encryption key are required to successfully
complete the initial authentication exchange.
Commercial products that combine one-time
passcodes with Kerberos are available.

IEEE Communications Magazine September 1994 37

Authorized licensed use limited to: Cornell University Library. Downloaded on September 17,2022 at 22:13:29 UTC from IEEE Xplore. Restrictions apply.

-
Work is
underway to
add public-
key support
to Kerberos,
where it can
be confined
to the initial
request for
U ticket
granting
ticket.

Public-Key Cryptography

In public-key cryptography, encryption and
decryption are performed using a pair of keys
such that knowledge of one key does not provide
knowledge of the other key in the pair [7]. One
key is published and is called the public key, and
theotherkey is keptprivate. Thissecond key iscalled
the private key, not to be confused with a secret
key, which is shared by the parties to communica-
tion in a conventional cryptosystem (it takes two
to share a secret, but once you tell something to
anyone else it is no longer private). Public-key
cryptography has several advantages over conven-
tional cryptography when used for authentica-
tion. These include more natural support for
authentication to multiple recipients, support for
non-repudiation (since the verifier does not know
the private key, it can't generate a message that
purports to be from the authenticated principal),
and the elimination of secret encryption keys
from the central authentication server.

While public-key encryption iswell suitedfor use
in authentication by store and forward applica-
tions such as electronic mail [9], and it is required
by applicationswhere a signature isverified by many
readers [17], performance is a problem for servers
that perform many authentication operations. With
the RSA [161 algorithm, the most accepted algorithm
for public key cryptography, the private key oper-
ation (signingordecrypting amessage) isexpensive.

Work is underway to add public-key support
to Kerberos, where it can be confined to the ini-
tial request for a ticket granting ticket, allowing users
with registered public keys (perhaps for privacy-
enhanced mail) to obtain Kerberos tickets for appli-
cation servers supporting Kerberos authentication.
Subsequent exchanges, especially the application
request, would use conventional cryptography for
better performance. Public-key encryption may also
be used by authentication servers to exchange
conventional cross realm keys on-demand between
authentication servers, with the cost amortized over
many requests.

Summary
uthentication is critical for the security of com- A puter systems. Without knowledge of the iden-

tity of a principal requesting an operation, it is
difficult to decide whether the operation should
be allowed. Traditional authentication methods are
not suitable for use in computer networks where
attackers monitor network trafflc to intercept pass-
words. The use of strong authentication methods
that do not disclose passwords is imperative. The
Kerberos authentication system is well suited for
authentication of users in such environments.

Acknowledgments
The design of Version 4 of Kerberos was the work
of Steve Miller and Clifford Neuman, with contri-
butions from Jerome Saltzer, and Jeffrey Schiller.
Version 5 was designed by John Kohl and Clifford
Neuman. The Kerberos development effort was led
by Steve Miller, Clifford Neuman, Jennifer Steiner,
John Kohl, and Theodore Ts'o. Many members of
Project Athena and the Internet community con-

tributed to the design and implementation of Ker-
beros. Celeste Anderson, Ravi Ganesan, Virgil Glig-
or, Sridhar Gullapalli, Charlie Lai, Gennady
Medvinsky, Stuart Stubblebine, and Peter Will com-
mented on drafts of this paper.

The major sponsors of Project Athena were
Digital Equipment Corporation and IBM. Neu-
man's security efforts are funded in part by the
Advance Research Projects Agency under NASA
Cooperative Agreement NCC-2-539 and other
awards, and by CyberSAFE Corporation (former-
ly Open Computing Security Group). The views
and conclusions contained in this paper are those
of the authors and should not be interpreted as
representing the official policies, either expressed
or implied, of any of the funding organizations.
Figures and descriptions in this articlewere provided
by the authors and are used with permission.

References
[l] 5. M. BellovinandM. Merritt, Limitationsofthekerberosauthenication

system, ComputerCommun. Rev., vol. 20, no. 5, pp. 1 19-1 32, Oct. 1990.
I21 G. A. Champine, D. E. Geer, Jr.. and William N. Ruh. Project Athena

as a distributed computer system, IEEE Computer, vol. 23, no. 9,
pp. 40-51, Sept. 1990.

[3] S. Chokhani. Toward a national public key infrastructure. IEEE
Commun. Mag.in this issue.

[4] Computer Emergency Response Team, Ongoing network monitor-
ing attacks, CERT Advisory CA-94:01, Feb. 3, 1994.

[5] CyberSAFE Corporation. Deploying Kerberos for large organizations.
Technical Report 94-47. CyberSAFE Corporation, 2443 152nd
Avenue NE, Redmond WA 98052 USA; tr-request@ocsg.com.

[6l D. E. Denning and G. M. Sacco, Timestamps in key distribution proto-
cols, Commun. of the ACM. vol. 24, no. 8. pp. 533-536, Aug. 1981.

(71 W Diffleand M. E. Hellman. Newdirectionsincryptography.l€€€Trans.
on Info. Theory, vol. 22, no. 6, pp. 644-654, Nov. 1976.

[SI B. Jarpan, Kerberos users'frequentlyasked questions, periodically post-
ed to Usenet newsgroup comp.protoco1s.kerberos. April 1994.

191 S. T. Kent, Internet privacy enhanced mail, Commun. of the ACM.
vol 36, no. 8. pp. 48-60, Aug. 1993.

1101 J T. Kohl and B. C. Neuman. The Kerberos network authentication
service. Internet RFC 1510, September 1993.

111 11. T. Kohl, B. C. Neuman, and T Y. T'so. The evolution of the Ker-
beros authentication system, Distributed Open Systems, (IEEE
Computer Society Press, 1994). pp. 78-94.

11 21 J. Linn, Generic security service application program interfaceJnter-
net RFC 1508, Sept 1993.

1131 R. M. Needham and M . D. Schroeder, Using encrypt ion fo r
authentication in large networks of computers, Commun. of the ACM.
vol. 21, no. 12, pp 993-999. Dec. 1978.

[141 B. C. Neuman, Proxy-based authorization and accounting for dis-
tributed systems, Proc. 13th Int'l Conf. on Distributed Computing
Systems, pp. 283-291, May 1993.

11 51 B C. Neuman and 5. G. Stubblebine, A note o n the use of times-
tamps as nonces, Operating Sys. Rev., vol. 27, no. 2, pp. 10-14.
April 1993.

[16l R. L. Rivest, A. Shamir. and L. Adleman. A method for obtaining
digital signatures and public key cryptosystems, Commun. of the
ACM. vol. 21, no. 2, pp. 120-126, Feb. 1978.

[17] R. K. Smart, The X.509 extended file system, Proc. ISOC Symp. on
Network and Distributed System Security, Feb. 1994.

[181 1. G. Steiner. B. C. Neuman. and 1 . I. Schiller. Kerberos: An
authentication service fo r open network systems, Proc. Winter
1988 Usenix Conference, pp. 191-201. Feb. 1988.

Biographies
CLIFFORD NEUMAN [M '851 is a Scientist at the Information Sciences Insti-
tute of the University of Southern California (USC). Marina Del Rey,
California. After receiving an 5.6. f rom MIT i n 1985 he spent a year
working for Project Athena. where he was one of the principal design-
ers of the Kerberos authentication system. He received M.S. and Ph.D
degrees from the University of Washington, where he designed the
Prosper0 Directory Service which iswidely used to locate information from
Internet archive sites His recent work in the security area includes the
development of a security infrastructure supporting authorization. account-
ing, and electronic payment services. His e-mail address is: bcn@isi.edu.

THEODORE TS'O presently leads the Kerberos V5 development effort at
MIT, Cambridge, Massachusetts. He began workon distributed computing
and computer security a t Project Athena i n 1987, where he was a
member of the team that disassembled and analyzed the 1988 Inter-
net virus. After receiving a S.B. degree from MIT in 1990, he continued
work o n Kerberos. He i s a member o f t h e Security Area Advisory
Group of the Internet Engineering Task Force, and participates in the
Privacy Enhanced Mail, Telnet, and Common Authentication Technolo-
gy working groups His e-mail address is: tytso@mit.edu.

38 IEEE Communications Magazine September 1994

Authorized licensed use limited to: Cornell University Library. Downloaded on September 17,2022 at 22:13:29 UTC from IEEE Xplore. Restrictions apply.

mailto:tr-request@ocsg.com
mailto:bcn@isi.edu
mailto:tytso@mit.edu

