
Chapter 13

Run-time Assumptions

under Attack

For a piece of software to operate as expected, the hardware and lower-level soft-
ware that define its run-time environment must operate as had been assumed.
Assumptions are potential vulnerabilities, and assumptions about a system’s
run-time environment are no exception. This chapter discusses some of those
assumptions, along with attacks to invalidate these assumptions. Where viable
defenses are know, we discuss those too. As always, whether a given vulnera-
bility should be concerning will depend on the threat. Not all threats have the
motivation, equipment, access, and/or expertise needed for a specific attack.

13.1 Unexpected Communications Channels

A channel exists whenenver some medium is modulated by a sender and moni-
tored by a receiver. The modulation might or might not be intentional, and it
might or might not be expected by users or even by programmers of a system.
Our concern here is with modulation arising from program execution. Electrical
voltage, RF, light, sound, power consumption, state (disk, memory, registers,
or cache), or event timing each could be modulated as execution proceeds.

When the receiver monitors a channel by executing a program, then it can
be useful to distinguish between two ways that modulation could be presented:

• Storage Channel. The monitor is a↵ected by state that the sender varies.

• Timing Channel. The monitor detects event orderings, occurence times,
or intervals that the sender varies.

Shared memory, shared files, and message-passing implement storage channels;
timeouts to signal a lost message would be a timing channel.

Knowledge of all channels going from a system to its environment is neces-
sary for enforcing the confidentiality of secrets that system stores. Some of those

345

July 2022 Copyright Fred B. Schneider All rights reserved



346 Chapter 13. Run-time Assumptions under Attack

channels will be obvious. Hardware communicates by using network adapters
(including radios for WIFI), displays, and external storage devices. Software
communicates by invoking operations, including hardware instructions and pro-
cedures exported by lower-level software interfaces. But other channels are likely
to be present, too. To ignore an unexpected channels is equivalent to making
an assumption: that unexpected channel cannot be used to leak secrets.

Whether making this assumption creates a vulnerability will depend on the
unexpected channel’s bandwidth, what information the channel conveys, and
whether the channel can be monitored by the threats of concern. A high-
bandwidth channel would be needed for rapidly leaking images, video, sound,
or databases; a low bandwidth channel su�ces for transmitting a cryptographic
key or password. To focus only on higher-bandwidth channels can be a flawed
strategy, because obtaining a key or password can allow an attacker to imper-
sonate a trusted principal.

We might hope to discover unexpected communications channels by man-
ually or automatically analyzing a system’s source code or other descriptions.
However, certain channels are unlikely to be discovered using this approach.

• Source code and other system descriptions deliberately omit details about
the lower layers, such as the run-time environment, the computer hard-
ware, the underlying physics of the hardware, and/or the properties of
materials. Yet, as we shall see, all of these elements can create channels.

• Some channels are created by combining functionality from multiple layers
of the system. These channels cannot be discovered by consulting separate,
independent descriptions for the various di↵erent system layers.

Therefore, human analysts who have an in-depth knowledge of the literature
are indispensable. These analysts would study documentation of a system, its
run-time environment, and the underlying hardware. The analysts also would
perform experiments to validate what the documentation says and to learn
about aspects of system operation that are not mentioned in the documentation.

13.1.1 Covert Channels

A covert channel is created when an attacker repurposes functionality and causes
information disclosures that violate the system’s security policy. A key char-
acteristic is that a covert channel causes information transmission outside the
scope of system authorization mechanisms.1 The attacker would monitor the
covert channel as well as provide a program that gets executed to modulate the
covert channel. Many covert channels have low capacity. Some covert channels
are also noisy, but an attacker can compensate for noise by using error correcting
codes (with some reduction in channel capacity) when modulating the covert
channel.

1This characteristic is consistent with the meaning “not openly acknowledged or displayed”
that “covert” has in non-technical usage. But in contrast to its non-technical usage, the
definition of a covert channel used in computer security does not require hiding what is being
communicated and does not require hiding whether communication is occurring.

July 2022 Copyright Fred B. Schneider All rights reserved



13.1. Unexpected Communications Channels 347

Modulation enabled by time multiplexing. If time multiplexing is used
to give each of multiple principals the appearance of exclusive access to some
resource then an operation requested by one principal can be delayed because
operations were requested by other principals. The length of such a delay can
be determined in many ways, and this length can be modulated by varying the
requests that are made. So time multiplexing can create covert timing channels.

A classic example involves attacker-controlled principals T (for transmitter)
and R (for receiver) that are sharing a time-multiplexed processor where, to
achieve higher utilization, the system ends the current time slice whenever the
executing principal invokes an operation to await completion of an I/O oper-
ation. T leaks the value of a secret bit b to R, as follows. T either runs a
compute-intensive task if b = 1 holds or T runs an input/output intensive task
if b = 0 holds. And R measures the time that elapses for the execution of a fixed
sequence of instructions requiring multiple time slices. If a longer elapsed time
is measured by R then T has executed for full time slices, which implies T is
not executing the input/output intensive task and, thus, b = 1 holds.

We bound the bandwidth of a covert timing channel that is created by time
multiplexing if we limit how well principals can control and/or sense variation
in delays associated with access to resources.

Bandwidth Bounds on Timing Channels.

(i) Adhere to a schedule that is una↵ected by access requests made by
principals. Examples include:

– a schedule that specifies in advance the disjoint intervals when
each principal may access the resource,

– a schedule where the disjoint intervals when each principal may
access the resource start at random times and have unpredictable
durations.

(ii) Prevent a principal from measuring the actual starting and ending
times of a periods when it may access the resource.

Defense (i) prevents modulation; defense (ii) prevents monitoring. One su�ces.
Defense (ii) can be implemented by intercepting operations that can be used

to measure timing. Those interceptions are easily achieved for user-mode code
running on processors where system-mode instructions provide the only access
to clocks and provide the only way to instigate activity (e.g., an input/output
operation) that delivers an interrupt at some fixed, later time.

• System-mode software would provide the only system calls that principals
can invoke to obtain timing information. These system calls could return

– fuzzy time, which is timing information that has degraded resolution
and/or has been randomly perturbed, or

– virtual time, where the value returned to a principal P is determined
only by the number of instructions P has executed.

July 2022 Copyright Fred B. Schneider All rights reserved



348 Chapter 13. Run-time Assumptions under Attack

• Unpredictable delays would be added to the delivery of interrupts and
system services to user-mode software.

The two defenses described above in Bandwidth Bounds on Timing Channels
have limitations, though. First, defense (i) can result in lower resource utiliza-
tion. This is because these schedules cause principals requesting operations to
be unnecessarily delayed while the resource is allocated to a principal not need-
ing it. Second, attackers can defeat the random variations used in defense (ii)
by running multiple experiments and computing an average over those.

Modulation enabled by state. Any part of the system state could support
a covert channel if this part of the state can be modulated and monitored by
actions that attackers instigate. Often, modulation and monitoring will be side
e↵ects of operations intended for other purposes. Here are some examples.

• create/delete named instances of objects. Information can be transmit-
ted through the choice of name that an attacker gives to an object in-
stance. Monitoring can be performed if operations are available to indicate
whether an object having a given name exists.

• allocate/deallocate from resource pools. Information can be transmitted
by the quantity being allocated or deallocated to a process the attacker
controls. Monitoring can be performed if operations are available to report
currently allocated or available capacity.

• acquire/release locks. Information can be transmitted by the choice of
which exclusive locks are held by a process the attacker controls. Moni-
toring can be performed by an attacker-controlled process that attempts to
acquire a given lock, thereby learning whether some other process already
holds that lock.

• append information to a log. Information can be transmitted by using a log
that records indications of actions undertaken by an attacker-controlled
process. Monitoring can be performed if operations are available to re-
trieve the log contents or to initiate execution that is a↵ected by the log
contents.

• accesses to memory. Information can be transmitted by the attacker’s
choice of which address to access. With virtual memory, completion of
an access ensures that some page frame will contain the contents of the
page containing that address; with a main-memory cache, completion of
the access ensures that the cache block for that address will be present
in a main-memory cache. In both cases, monitoring can be performed by
measuring access delays for a subsequent memory access to that address.

Some covert channels transmit information only between principals execut-
ing on the same computer; other covert channels can be used to reach more

July 2022 Copyright Fred B. Schneider All rights reserved



13.1. Unexpected Communications Channels 349

distant principals. For example, an operation to create files in a local file sys-
tem creates a covert channel between principals running on the same computer;
with a network file server, file creation would support communication between
principals running on any client of that file server; and an operation to add a
new DNS name to the Internet’s Domain Name Server can function as a covert
channel between any principals on any computer connected to the Internet.

State and messages that principals are using to communicate with each other
can be exploited to create covert channels. Here are some examples:

• State and messages are considered equivalent by a system if they di↵er
only in the values of “unused” fields. Therefore, a covert channel can be
created if an unused field is modulated and read by by an attacker.

• Most systems ignore formatting and spellings in documents they store,
send, or print. So, an attacker can transmit information through the
choice of formatting and/or spelling used in documents.

• Audio files containing samples that di↵ers only in their least-significant
bits will sound the same to human listeners. An attacker could change
those low-order bits to represent information for transmission.2 Monitors
would be able to recover this transmitted information by inspecting the
file contents. The same covert channel construction works for image files.

Modulation from Speculative Execution. A processors instruction set archi-
tecture (ISA) is a document that describes (i) the instructions that processor
can execute, (ii) the state—called the processor’s architectural state—that those
instructions read and write, and (iii) the changes to architectural state caused
by executing sequences of instructions. Implementations of an ISA also might
include additional microarchitectural state in order to facilitate improved per-
formance. The program counter, general-purpose registers, and main memory
are architectural state; a main-memory cache, if present, is microarchitectural
state.

An ISA typically will instruct programmers of a processor3 to assume that
instructions are executed sequentially, indivisibly, and at an unknown rate.
However, to avoid idle periods due to high memory-access times, ISA imple-
mentations often employ speculative execution. Speculative execution predicts
what values will be fetched from memory, with the e↵ects of this and subsequent
execution then reversed if the memory fetches provide di↵erent values than what
was predicted. A conditional branch, for example, might be taken because that
branch almost always has been taken, thus avoiding delays to retrieve from mem-
ory values appearing in the branch condition. If predictions are correct often
enough then reversal of execution will be infrequent and speculative execution
leads to higher throughput.

2Such schemes are used in steganography, which is the art and science of concealing secret
information within non secret data.

3We are using the term “processor” to indicate a single-core uniprocessor.

July 2022 Copyright Fred B. Schneider All rights reserved



350 Chapter 13. Run-time Assumptions under Attack

Speculative Execution. Execution of an instruction ◆ is started be-
fore completing execution of all instructions ◆′ that will write the values
needed for executing ◆. Early execution of ◆ is made possible by having
the processor predict the values that each ◆′ will write. If any of the ◆′
subsequently writes a di↵erent value than was predicted, then all writes by
◆ to architectural state are undone, and execution of ◆ is repeated (using
the correct values). In addition, writes are reordered, if necessary, so that
all of the writes by the ◆′ reach memory before the writes by ◆.

Implementation of speculative execution requires mechanisms for predicting the
e↵ects of instruction execution and requires mechanisms for undoing updates to
architectural state. The mechanisms to predict branch outcomes and targets,
values and addresses to be loaded, and return addresses, use information about
past program behavior; that information is kept in microarchitectural state. The
mechanisms for undoing updates by an instruction ◆ use other microarchitectural
state to store a copy of the old value for any architectural state that execution
of ◆ updated.

An execution of instruction ◆ is deemed to have been transient if the writes
it performed to architectural state had to be undone because values used in
the execution of ◆ were based on a misprediction. The goal with speculative
execution of a program P is to produce the same architectural state as a strictly
sequential execution of P would produce. That goal is trivially satisfied if the
insertion of transient instruction executions into a strictly sequential execution
of P does not a↵ect the architectural state that P produces. Such programs are
the expected workload for a processor that employs speculative execution.

Programs that are sensitive to transient instruction executions remain possi-
ble, though. With these programs, variation in microarchitectural state is being
translated into variation in architectural state. This allows covert channels that
compromise address space isolation to be created by attackers:

• To transmit the value stored in location L in some address space A, the
attacker instigates execution of a modulator MA. MA changes the mi-
croarchitectural state according to the value stored by L.

• To receive a value, the attacker executes a detector D that is sensitive to
changes in microarchitectural state caused by executions of MA. D might
be executed within address space A or within some other address space.

To create a modulator within an address space A, the attacker finds a set of bit
strings, where

(i) each bit string would be interpreted as an instruction sequence,

(ii) executing these instruction sequences in the correct order modulates the
microarchitectural state according to the value stored in location L of
address space A, and

(iii) the attacker can cause the instruction sequences to execute in that correct
order.

July 2022 Copyright Fred B. Schneider All rights reserved



13.1. Unexpected Communications Channels 351

Speculative execution facilitates the creation of such modulators. First, tran-
sient execution is not limited to code contained in A. The instructions could
be bit strings in any address space4 and that span existing instructions, appear
as parts of existing instructions, or are within the value a variables is storing.
Second, transient execution of an instruction can occur in a state that would
not arise during normal execution of the code contained in A.

To make this concrete, we show how an attacker might create a modulator
using a segment of code written in a programming language (like C) where suc-
cessive array elements are stored at successive addresses5 and explicit bounds-
checks on array references must be provided by the programmer. If variable
a1Size stores the number of elements in array a1 then condition x < a1Size in

if x < a1Size then y ∶=a2[a1[x] ∗ 4096]
ensures that the assignment to y is performed only in states where expression
a1[x] refers to an element of a1. However, as we show below, speculative exe-
cution allows an attacker to learn the value of any variable stored in memory
at an address after a1[0].

First, assume speculative execution does not occur. The above assign-
ment to y terminates with x, a1[x], and a2[a1[x] ∗ 4096] residing in the main-
memory cache. Therefore, an attacker can derive possible values that vari-
able a1[x] stores by detecting6 whether a memory location corresponding to
a2[a1[x] ∗ 4096] has become present in the cache. So an attacker who con-
trols the value in x and instigates execution of the above if statement learns
information about possible values stored in a1[x] for 0 ≤ x < a1Size.

In systems that implement speculative execution, an attacker can learn even
more. The attacker would begin by repeatedly instigating evaluation of the
condition x < a1Size in states where that condition holds. This execution trains
the branch predictor to start executing the assignment to y before completing
evaluation of the condition x < a1Size in the if . The assignment to y would
later be reversed if x < a1Size is then found to be false, but changes to the
main-memory cache by the transient execution to evaluate a2[a1[x] ∗ 4096]
would not be reversed and could be detected by the attacker. Therefore, if (as
before) the value in x is attacker controlled then speculative execution of the
assignment to y can now reveal possible values of a1[x] for any value of x—not
just for values that satisfy 0 ≤ x < a1Size. That means speculative execution
has enabled the attacker to learn values of any variable stored in memory at
an address that appears in memory after7 the address of a1[0]. So the covert
channel allows memory isolation to be violated.

4Permissions may not be checked before a speculative execution.
5For a single-dimension array a having n elements, if the address of a[i] and the value of

i are known to an attacker then the attacker can calculate the address of a[j] from the value
of j as well as calculating the value of j from the address of a[j].

6The attacker measures execution times for an instruction that loads a2[i ∗ 4096] for 0 ≤
i ≤ 255—those timings su�ce to guess the value of a1[x] that brought a2[i ∗ 4096] into the
cache. See page 357 for a detailed discussion of how to perform such an attack.

7On some processors, add will wrap-around in response to an overflow. Those processors
would allow the attacker to learn any value in memory.

July 2022 Copyright Fred B. Schneider All rights reserved



352 Chapter 13. Run-time Assumptions under Attack

Note, a main-memory cache is not the only microarchitectural state that can
be used to implement a covert channel. To use some other part of the micro-
architectural state, an attacker finds a way to cause variations in that state
(modulation) and to expose those variations as variations in the architectural
state (monitoring). For example, a processor’s microarchitectural state often
maintains measurements of temperature, power consumption, and other phys-
ical properties that are a↵ected by computing load and that cause changes to
execution speed in order to extend battery life or avoid running chips in high
temperatures. So modulation can be performed by varying the computation
load and monitoring can be performed by measuring execution speed.

Moreover, the unprogrammed transfers of control that speculative execu-
tion can cause often su�ce as an implementation of monitoring. With return-
oriented programming (ROP), for example, a code segment serving as a gadget
transfers control to the next gadget by using a return instruction to load the
program counter with a value on the run-time stack. Speculative execution gives
attackers an additional vehicle for implementing a transfer of control between
gadgets. By training a predictor for return addresses, transient execution can
be leveraged to invoke the next gadget even if the address of that gadget does
not appear on run-time stack. However, changes to architectural state do not
persist when those changes are made by gadgets invoked in this way; changes
to microarchitectural state do persist, though.

13.1.2 Side Channels

A side channel is modulated by normal operation of a system, where that modu-
lation discloses unexpected information about the current system state, actions
currently being performed, past systems states, and/or actions previously per-
formed.

• With physical side-channels, receivers monitor physical phenomena that
hardware exhibits while operating.

• With internal side-channels, receivers run programs to monitor artifacts
produced by the execution of a local or remote system.

A typical computer’s power consumption, as well as emissions of RF, light, or
sound can create physical side-channels; its main-memory cache, translation
lookaside bu↵er (TLB), branch predictor, instruction cache (I-cache), and con-
tention for other shared resources can create internal side-channels.

A side channel need not transmit a value in order to leak that value. In-
formation about instructions executed or memory accessed can su�ce, if that
information is correlated with the value being leaked. We see this with an en-
cryption or decryption routine that (like many) proceeds in rounds. Round i
inspects bit bi of a secret key b1 b2 . . . bn and, depending on that bit’s value,
accesses a di↵erent cell in some table or executes a di↵erent sequence of instruc-
tions. Thus, an attacker can reconstruct the value of the key by monitoring a
side channel that conveys the sequence of table cells accessed or that conveys

July 2022 Copyright Fred B. Schneider All rights reserved



13.1. Unexpected Communications Channels 353

the sequence of instructions executed over the n rounds. And, as we shall see,
such side channels are not unusual.

On some processors, some side channels can be eliminated with constant-
time programming, which is a set of restrictions to ensure that variation in
secret values does not cause variation in memory addresses accessed, instructions
executed, or execution times.

Constant-time Programming Restrictions.
(i) Memory addresses read and/or stored during execution may not de-

pend on secret values, so variations in secrets do not cause variations
in cache contents.

(ii) Evaluation of any expression controlling a conditional statement or a
loop may not depend on the values of secrets, so variations in secret
values do not a↵ect what statements are executed.

(iii) Variable-latency instructions (e.g., integer division) may not have
secret values as operands, so execution times of statements are unaf-
fected by variations in secret values.

Not all functions of secret inputs can be programmed in a way that satisfies
these restrictions, but most of the important cryptographic algorithms have
been (sometimes incurring a performance penalty over implementations that do
not satisfy the restrictions). Also, program analyzers exist for certifying that
all executions by some source code will comply with the restrictions.

Constant-time Programming Restrictions prevents leaks over a given side
channel only if certain assumptions are satisfied by the underlying processor.
The assumptions would depend on the processor and the side channel—they
surface in proving that Constant-time Programming Restrictions attenuates the
side channel of concern. In general, the assumptions would rule out processors
whose operation exhibits certain forms of variation, where the problematic vari-
ation arises from implementation details not typically discussed in an ISA. One
example of such an assumption is that memory must not be compressed or use
schemes to eliminate duplicate values—otherwise, the size of what is stored re-
veals information about what is being stored. A second example is that the
processor not skip instructions that, because of the values being manipulated,
would have no e↵ect—otherwise, execution time reveals information about in-
puts to certain instructions. Finally, there might be assumptions related to the
side channels of concern. For example, if power consumption can be monitored
by attackers then we might have to require that the inputs to an instruction
have no e↵ect on the power used during execution of that instruction.

13.1.2.1 Physical Side-Channels

A change to the voltage levels at the inputs and outputs to components in
a digital circuit will cause detectable and distinctive changes to that circuit’s
power consumption. If the change is made abruptly then a distinctive RF signal
will be produced, too. Since a digital circuit represents binary values 0 and 1 by

July 2022 Copyright Fred B. Schneider All rights reserved



354 Chapter 13. Run-time Assumptions under Attack

di↵erent voltage levels, program execution that changes a value also causes an
abrupt voltage change. So a processor modulates both its power consumption
and its RF emissions in ways that are correlated with the instructions it executes
and the values it manipulates. Information about program execution is thus
conveyed over these physical side channels. Moreover, even though existing
circuit simulators do model this, it is impractical for designers to anticipate and
eliminate these side channels because it is di�cult to determine when useable
information is being revealed about program execution.

Di↵erent physical processes are involved, but CRT and flat-panel output de-
vices emit both light and RF that is modulated according to what is being dis-
played on the screen. Such an RF side channel has been monitored at distances
over 1 kilometer by using specialized receivers. And the optical side-channel
for a CRT does not require direct observation of the screen: the sequence of
pixels being illuminated during each raster scan can be recovered by noting the
timings for changes in overall luminosity reflected from walls. Finally, LED
indicators that monitor the operation of data communications equipment will
often indicate the sequence of values being transferred to/from the device. If
those changes in luminosity can be monitored then that optical side channel
allows recovery of transmitted and received data.

Acoustic side channels are created too during system operation—not only
by the mechanical devices used for input and output but also by vibrations of
digital electronic components. Di↵erent keys on a mechanical keyboard each
will make slightly di↵erent sounds when pressed, and inter-keystroke timing for
human typists depends (in part) on where the keys are located on the keyboard.
So keyboard use modulates an acoustic side-channel that conveys what is typed.
Dot matrix printers and impact printers emit di↵ering sounds according to what
character is being printed, creating an acoustic side-channel that reveals what is
being printed. Capacitors and coils in a regulated power supply vibrate at fre-
quencies that depend on the level of activity in the digital circuit being powered.
With some hardware, this relatively low-bandwidth acoustic side channel can
be su�cient to allow recovery of an RSA cryptographic key from the acoustic
emanations produced by decrypting some adaptively chosen ciphertexts.

Learning Secrets from Physical Side-Channels. To exploit any physical side-
channel, the attacker must have a way to receive the signal being modulated.
Specialized equipment—e.g., a radio receiver, a power monitor, a microphone,
or a photosensor—often is required. Radiated signals that are stronger are less
likely to be confused with other signals in the environment. So attackers benefit
from closer proximity to the system performing the modulation. Attackers also
benefit when the receiver they use to monitor a side channel exhibits higher
sensitivity and higher selectivity. Finally, by collecting the signals produced by
many runs of a given operation (e.g., many encryptions with a given key), an
attacker can use averaging to eliminate various forms of noise.

Virtually all physical side-channel signals combine the indications that pro-
vide the information an attacker is seeking with other things. An attacker must

July 2022 Copyright Fred B. Schneider All rights reserved



13.1. Unexpected Communications Channels 355

be able to extract those indications from the rest of side-channel signal. To per-
form that extraction, an attacker might compare side-channel signals generated
during multiple executions di↵ering in controlled ways, or the attacker might
train a machine learning system to identify events of interest. Both approaches
require side-channel signals for specific inputs. Attackers sometimes can obtain
those needed signals directly from a targeted system that is connected to a pub-
lic network. When such access is not available, then an attacker might build or
procure a similar system and perform the experiments using this second system.

Mitigations for Physical Side-Channels. The monitor an attacker is us-
ing for a physical side-channel would be controlled by that attacker and likely
inaccessible to those in charge of defending the system. So mitigations for phys-
ical side-channels must focus on preventing useful information from reaching a
monitor.

Attenuation. One way to prevent information conveyed by a physical side-
channel signal from reaching an attacker is with attenuation, so monitors will
find the signal indistinguishable from noise. RF, sound, and light are forms of
electromagnetic radiation. Therefore, the propagation of these signals follows
the laws of physics, which o↵er two ways to cause attenuation.

• Shielding. Surround the modulator with shielding. A metal enclosure
(solid or fine-gauge screen) that is grounded will attenuate RF, an enclo-
sure made of soft material will absorb sound, and an opaque enclosure will
block light. Complete attenuation is, however, di�cult to achieve in prac-
tice. Enclosures leak some signal due to holes, seams, and construction
imperfections.

• Proximity. Require monitors to be distant from the modulator. The
strength of a radiated signal follows an inverse-square law, so a signal
with strength S at the modulator has strength S�d2 at a monitor located
distance d away. However, by collecting and averaging signals produced
by many runs of the same operation, attackers often can recover content
from extremely weak signals.

So, for example, to use shielding in order to attenuate an RF side-channel signal
generated by a digital electronics, we (i) enclose its circuitry in a grounded
metal case and (ii) wrap a grounded metal foil or wire braid around each cable
connected to the system. And to use proximity, we might locate the system in
the middle of a large campus but force attackers to remain outside that campus
(using gates and guards to prevent campus entry by untrusted individuals).

With some devices—keyboards and displays, for example—direct human ac-
cess is essential. To avoid obstructing that access, yet still benefit from shielding,
we might incorporate shielding into the walls, windows, and doors of the room
or building in which the device is located.8 Shielding that encloses a room,

8In the United States, highly-classified information is suppose to be viewed and discussed

July 2022 Copyright Fred B. Schneider All rights reserved



356 Chapter 13. Run-time Assumptions under Attack

however, will not prevent monitoring by devices that are located within that
room but connected outside using a network. Access controls can be used to
defend against those attacks. Locks (a physical access control) on the doors can
help ensure that only trusted individuals enter the room. In addition, devices in
the room that could perform monitoring (e.g., because like most laptops today
they include a radio, microphone, or video camera) should run access control
software that blocks network connections. Devices inside the room now cannot
be used for monitoring, either by attackers inside the room or by attackers at
remote locations who receive signals relayed over networks.

Jamming. Corrupting the signal being carried by physical side-channel of-
fers yet another way to thwart attacks. With some physical side-channels, mon-
itors detect only the strongest signal. A defender here could transmit strong
signals that convey noise. With other physical side-channels, monitors deliver
a single, combined signal that sums all signals having certain characteristics.
Again, transmitting additional jamming signals can defeat attackers, although
some sophistication may be required in order to prevent attackers from using
averaging or more advanced signal-processing techniques in order to identify
and remove the jamming.

13.1.2.2 Internal Side-Channels

Invoking an operation may change the system’s state, return values, and/or
instigate system actions. If any of these e↵ects has been influenced by a prior
invocation then information is flowing from one operation invocation (and its in-
voker) to a subsequent operation invocation (and its invoker). That information
flow is revealing parts or properties of an earlier system state.

An implementation of an interface satisfies our definition of a side channel
if operation invocations result in information flows that are unexpected. Since
the specification for an interface describes the e↵ects that clients should expect,
an unexpected information flow occurs if there are e↵ects from invoking an
operation that

(i) are not described by the interface specification,

(ii) are detectable to the client performing the invocation, and

(iii) vary in ways that reveal information about past invocations.

Notice, weaker specifications—preferred by implementors, because fewer con-
straints are imposed on the e↵ects of an operation—o↵er greater opportunities
for e↵ects that satisfy (i) – (iii). Therefore, weaker specifications o↵er greater
opportunities for unexpected information flows.

Most interface specifications do not constrain execution times for operations
(condition (i)). That flexibility allows an implementation to reduce execution

only within a SCIF (sensitive compartmented information facility), which is a windowless room
or building with sound-proofed doors and with walls that include grounded metal shielding
to suppress RF emissions.

July 2022 Copyright Fred B. Schneider All rights reserved



13.1. Unexpected Communications Channels 357

times for future operation invocations by storing and reusing results from past
operation invocations. Reuse of prior results, however, can create information
flows if the execution time for an operation invocation is detectable (condition
(ii)) and execution time depends on previous invocations of operations (condi-
tion (iii)) because it depends on what prior results are available for reuse. So
the three conditions for an unexpected information flow are satisfied.

As an example, a processor’s ISA is the specification for an interface whose
operations are that processor’s instructions. An ISA typically imposes no con-
straints on execution times for instructions so that hardware designers can hide
memory latency by incorporating various mechanisms into the processor’s mi-
croarchitecture: a main-memory cache, a translation lookaside bu↵er, an in-
struction cache, and branch predictors. Each of these mechanisms stores in-
formation for possible reuse, and reuse of that information reduces the time
to execute an instruction. But that means the execution time for an instruc-
tion reveals information about previously executed instructions. So an internal
side-channel has been created. Moreover, usual implementations of isolation for
virtual machines, processes, and containers do not virtualize the processor mi-
croarchitecture. With memory-latency hiding mechanisms in the microarchitec-
ture being shared, an internal side-channel conveys information about execution
by each virtual machine to all the others, by each process to all the others, and
by each container to all others.

The absence of constraints on execution times for operation invocations also
allows interfaces to be implemented with fewer instances of limited-capacity
resources. For an ISA realization, hardware-assisted multithreading and mul-
tiprocessing can be supported with less chip real estate; for the designer of a
higher-level interface, a copy of each resource need not be maintained for each
client. However, with resource sharing comes execution delays whenever an
attempt is made to access a resource while it is in use. The result is an inter-
nal side-channel, since an increased execution time for one thread of execution
reveals information about the execution of another thread.

Main-Memory Caches as Internal Side-Channels. Mitigations to elim-
inate internal side-channels often depend on specifics of an interface or its im-
plementation. Below, we explore one example: main-memory caches. These
internal side-channels are particularly important because they have been suc-
cessfully exploited to leak cryptographic keys. Moreover, defenses that work
here often can be used for internal side-channels that arise with other kinds of
caches—whether the caches are in hardware (e.g., for address translation) or in
software (e.g., storing file blocks to anticipate reads).

Main-Memory Cache Exploitation. A main-memory cache typically com-
prises a set of cache lines. Each cache line stores the contents and starting
address of a cache block. Cache blocks are small and fixed size (e.g., 64 bytes)
main-memory regions, with each b-byte cache block starting at a b-byte bound-
ary. When a main memory address m is sent to the cache, the cache returns the

July 2022 Copyright Fred B. Schneider All rights reserved



358 Chapter 13. Run-time Assumptions under Attack

Prime+Probe. Memory references that cause cache misses for the at-
tacker in step (iii) identify cache blocks that victim P accessed while
executing during step (ii).

(i) Attacker accesses a sequence m1, m2, . . . , mN of memory addresses
that fills the entire cache with attacker’s cache blocks.

(ii) Attacker suspends while victim P executes the routine of interest.

(iii) Attacker again accesses m1, m2, . . . , mN , and notes cache misses.

Evict+Time. If victim P ’s execution time is not increased in step (iii)
over that measured for step (i) then the attacker learns that P did not
reference specified memory address m.

(i) Attacker measures execution time for some short routine by victim
P after the cache has filled by P ’s previous execution.

(ii) Attacker accesses cache block(s) that would occupy the same cache
line(s) as the cache block containing victim P ’s memory m.

(iii) Attacker measures execution time of the routine by victim P in order
to determine if an additional cache miss has occurred.

Figure 13.1: Cache Exploitation to Spy on Principal P

value at address m in main memory if the cache block containing that address
is currently present in some cache line. This is called a cache hit. If that cache
block is not currently being stored in some cache line—a cache miss—then the
appropriate cache block is fetched from main memory, copied into some cache
line, and the value at address m is returned to the requestor. Because caches
have finite size, a cache miss can require evicting the current contents of some
cache line in order to make space for the new cache block that is being loaded.

Di↵erent cache designs impose di↵erent restrictions on which cache lines
may store the cache block with a given starting address. Typically, the size
of a cache will be much smaller than the size of main memory, the memory a
given principal can access is stored in the same cache lines that hold memory
other principals (and attackers) access, and attackers know the algorithm for
assigning cache blocks to cache lines. So by accessing main memory, an attacker
can use execution timings to learn something about other principals’ recent
main-memory accesses. Notice, the attacker is learning about accesses to main-
memory regions that the attacker might not itself be authorized or able to
access.

Figure 13.1 sketches two kinds of attacks for transforming a main-memory
cache into an internal side-channel.9 To perform either of these attacks re-

9The following characterization is sometimes used in connection with information flows
from caches. A trace driven attack learns from individual cache hits/misses; a time driven
attack learns from the e↵ects of cache hits/misses on the aggregate execution time of some
code. So Prime+Probe is an example of a trace driven attack, and Evict+Time is an example

July 2022 Copyright Fred B. Schneider All rights reserved



13.1. Unexpected Communications Channels 359

quires refining the sketch given in the figure, and that refinement will depend
on system specifics. For example, some understanding of the scheduling al-
gorithm that dispatches and suspends execution would be required to imple-
ment the synchronization implied for starting step (ii) of Prime+Probe and for
step (ii) of Evict+Time. Those details depend on whether there is hardware
multi-threading versus multiple cores accessing a single cache in parallel versus
a single core where the attacker and its target execute in alternation. Vari-
ous mechanisms could be used to detect the cache misses required for step (iii)
of Prime+Probe: a high-resolution real-time clock, performance counters that
count cache misses, and memory that is being repeatedly incremented by some
process. Access to a high-resolution real-time clock is useful to implement the
run-time measurements in steps (i) and (iii) of Evict+Time.

Prevention of Main-Memory Cache Exploitation. One way to prevent a
main-memory cache from leaking secret values is to prevent variations in those
secret values from causing variations in the cache blocks present in the main-
memory cache.

Suppressing Variation in Cache Contents. On processors where
there is a static and fixed mapping from memory addresses to cache blocks,
variation in the values of secrets will not cause variation in the sequence of
cache blocks accessed during execution if a program satisfies the following
restrictions.

(i) Which cache blocks are read and/or stored during execution of each
instruction does not depend on secret values.

(ii) The expressions controlling a conditional statement or a loop do not
depend on the values of secrets.

Note the connection to Constant-time Programming Restrictions (page 353) and
the explicit assumption about how the cache is implemented.

Di↵erences in what cache blocks are present in a main-memory cache can-
not leak secret values if one principal’s e↵ects on the cache cannot a↵ect the
execution of other principals. Various schemes could be used to create that
isolation.

Isolation of Cache Contents for Separate Principals. Memory ref-
erences made by one principal will have no e↵ect on the cache lines that
are visible to any other principal provided:

– Cache Reset. All cache lines are reset to a fixed, known value as part
of any context switch that changes which principal is executing.

– Name Mapping. Each principal uses a disjoint subset of the cache
lines. Accesses made by a principal load and use only those cache
lines.

of a time driven attack.

July 2022 Copyright Fred B. Schneider All rights reserved



360 Chapter 13. Run-time Assumptions under Attack

– Time Multiplexing. At each context switch, a copy is made of the
current cache contents; when execution of a principal is restarted,
the cache is restored from that copy.

To implement Cache Reset, most processors provide a flush instruction that
clears all main-memory cache lines. Executing flush, however, does cause
higher latency for main-memory accesses until the cache lines have been re-
filled, resulting in degraded system performance. Name Mapping and Time
Multiplexing are likely to have an even higher performance cost, though. With
Name Mapping, only a fraction of the cache is available for the principal that is
executing; with Time Multiplexing, the cost of a context switch becomes high.
Due to these performance costs, hardware support for Name Mapping and Time
Multiplexing is rarely present on modern processors.

The final set of defenses we discuss are designed to prevent monitoring. Two
tasks must be performed by an attacker in order to infer secret values from a
main-memory cache.

• Synchronization. Execute code soon after some target principal P has
executed.

• Cache Probing. Ascertain whether a specific address that some target
principal P can access is currently being stored in a cache line.

Therefore, mechanisms that prevent an attacker from performing one or the
other of these tasks would prevent cache exploitation attacks.

An attacker’s actions cannot alter which principal will run next if the pro-
cessor’s scheduler chooses nondeterministically from a large set of principals.
This defense does have a cost, though. Running the wrong principal next can
degrade system performance by causing input/output devices to remain idle
and/or by disrupting the temporal locality required for cache e↵ectiveness. Sys-
tem designers are reluctant to sacrifice performance for security, so they tend
to favor other defenses.

Cache Probing is feasible for attackers because the following properties are
expected to hold for any main-memory cache.

(i) Longer memory-access latencies are exhibited for addresses not present in
the cache.

(ii) Any address that a principal P can access will be stored in the same cache
line as some set of addresses that the attacker knows and can access.

Property (i), in conjunction with a way to compare elapsed times, allows an
attacker to detect whether an address it accesses resides in some cache line.
That means an attacker can learn about cache contents by making memory
accesses. Due to property (ii), an attacker can access one location in order to
learn whether the cache is storing some other location. Therefore, an attacker
can ascertain whether some target principal P has not accessed an address ↵
by measuring the response time to access an address ↵′ known to be assigned
to the same cache line as the cache block containing ↵.

July 2022 Copyright Fred B. Schneider All rights reserved



13.2. Hardware Integrity 361

But if principals do not have sources of timing information then property (i)
cannot be used for determining whether a memory access causes a cache hit
or a cache miss. Moreover, as discussed for defense (ii) of Bandwidth Bounds
on Timing Channels (page 347), blocking access to timing information on some
processors is easily achieved for user-mode code.

Turning now to property (ii) above, observe that attackers benefit when
each cache block only ever occupies a unique predetermined cache line. Even
here, though, detection of a cache miss by the attacker cannot establish whether
a given cache block has been recently referenced by some target principal P ,
because more than one cache block that P might access would each occupy the
same cache line. Use of an n-way set-associative cache would raise yet further
doubts, because a given cache block now might be stored by any of a given set
of n di↵erent cache lines. That suggests attackers have more di�culty if the
main-memory cache is n-way set-associative.

A second way to interfere with property (ii) is to keep attackers ignorant
of what addresses they should probe for learning about memory accesses made
by some target principal. We can achieve that e↵ect with the system software
responsible for compiling and loading each principal’s variables and code. It
su�ces if, each time the system is restarted, this system software creates a new,
random, mapping of instruction sequences and variables to the various cache
blocks within a memory region. To ascertain which addresses to access for
cache probing, attackers must now run a set of experiments after each system
restart.

13.2 Hardware Integrity

Physical access to a computer’s internals permits attacks that can circumvent
authorization checks implemented by software or by hardware. The obvious de-
fense is to prevent attackers from having that physical access. Some defenses, in
addition, generate ineradicable indications of attempted attacks. Such indica-
tions are useful, because confidentiality compromises are not always detectable.

13.2.1 Leveraging Location

Walls and locked doors are one way to ensure that a computer is inaccessible to
attackers. You might place the computer in a locked machine room, in a (locked
when unoccupied) o�ce, or at somebody’s home. For portable devices, carrying
the device in your pocket or keeping it in your briefcase impedes access by
depending on social norms about personal distance and who can access personal
property.

When physical access to a computer cannot be blocked, we can deter attack-
ers if they know that evidence is being created to attribute accesses they make.
Surveillance could be implemented by video cameras, or surveillance could be
performed in person by employees or law enforcement. Surveillance is partic-
ularly e↵ective for deterring insiders, where walls and locked doors would not

July 2022 Copyright Fred B. Schneider All rights reserved



362 Chapter 13. Run-time Assumptions under Attack

otherwise impede an attacker’s actions.
Walls together with video surveillance have been used to create a private

cloud within a cloud data center. The private cloud comprises computer racks
enclosed by a cage, where the cage door remains locked while the enclosed com-
puters are running and for an additional period after those computers have been
powered-o↵. Video surveillance of the metal cage deters people from unlocking
and entering a cage while the processors or memories it encloses might hold (un-
encrypted) confidential data. After power-o↵, the delay period prior to allowing
entry ensures that remnants of confidential data in volatile memory will decay
before that memory can be read by somebody who has entered the cage.

Large-scale clouds also can hinder attackers from getting physical access
to the computers serving a given customer by keeping secret which computers
(from the large number in a data center) are running that customer’s compu-
tations at any time. Here, secrecy is replacing the walls and locked doors as
the impediment to access. By periodically migrating a customer’s computation
from one set of hardware processors to another, a moving-target defense would
also be created.

13.2.2 Enclosure and Construction

The location of a device is not always under our control, and surveillance is
not always feasible. A set-top cable box, e-book reader, gaming console, or
other consumer electronics for providing access to proprietary digital content
usually will be physically accessible to its users, and some of those users could
be attackers. Credit-card sized artifacts carried in wallets and used to control
access to funds or locks on doors are other examples of devices that could come
into the possession of attackers. For these situations, a device’s construction is
the first line of defense against attacks involving physical access.

Packaging. Packaging can protect a device by making it di�cult for an at-
tacker to study the internals or to operate the system while monitoring and/or
injecting signals. The starting point for implementing such tamper resistance
often will be a physical enclosure that is di�cult to breach without a physical
key or special tool. Since theft of information is not visible, an enclosure might
also be designed to make evident that an attack has been attempted. One way
to create hardware that is tamper evident is by using a frangible or highly fin-
ished (e.g., polished or crazed) material for the outer shell of the enclosure, so
that attempting a penetration causes irreversible and visible changes to the en-
closure’s appearance. Unforgeable seals, made with multi-layer paints or tapes,
are another way to ensure there will be evidence that an attack has been at-
tempted. Finally, a packaging might be tamper responding and activate circuits
that erase memory (deleting cryptographic keys or other secrets) or that disable
the device (perhaps even detonating a small explosive charge). But if physical
access to internals could be needed for maintenance, then some means of access
must be available for trusted individuals. The device, however, now becomes
vulnerable to abuse by an untrustworthy insider who exploits that access.

July 2022 Copyright Fred B. Schneider All rights reserved



13.2. Hardware Integrity 363

Sensors. Sensors are the obvious starting point for creating a packaging
that is tamper-responding. Penetration of an enclosure can be detected by
putting photocells inside to sense the increased level of light from the outside.
Another way to detect penetrations of an enclosure is to line it with a mem-
brane that has been printed with a pattern of conductive ink, so the electrical
properties of the membrane change when the membrane is punctured. Radi-
ation sensors and temperature sensors will detect attacks aimed at increasing
memory remanence (see §13.3.1) in order to facilitate theft of secrets after a
system is powered down. Voltage sensors are useful for detecting attacks that
could corrupt operation of the electronic circuitry. And attempts to transport
the device elsewhere can be detected by having motion sensors. Sensors do bring
challenges, however. First, they require a source of power. Second, there is a
risk of false-triggering, so a system must be designed to recover from that.

Potting. An attacker will have a harder time finding and physically access-
ing specific electronic components and interconnecting wires if that circuitry
has been embedded in a block of opaque epoxy potting. Moreover, an attacker
seeking to operate a system after modifying its components or connections will
be hampered if the required physical access to those components or wires is pos-
sible only by first destroying other components that (by design) were positioned
to be in the way.

A net of fine wires or other conductive material that surrounds the electronic
circuitry before the epoxy potting is added can serve as a further barrier to
attackers, if breaking, shorting, or altering any of those paths triggers circuits
to erase secrets or otherwise disable the device. In addition, attackers who
attempt access to interior components by using chemicals or a laser to dissolve
portions of the epoxy potting will be detected if the chemical composition of the
epoxy potting is more resistant to solvents and if it expands faster when heated
than the material used for the embedded wires.

Means of Physical Attack. Whether a device’s construction will succeed as
a defense depends on the attacker’s access, capabilities, and goals. Unsupervised
access enables attackers to operate, disassemble, and/or alter a device. This is
not necessarily changed by requiring that access be supervised by guards—
guards are unlikely to intercede when an attacker is dressed to resemble a bona
fide maintenance technician. When access is supervised, though, the length of
time available for performing an attack could constrain an attacker.

If an attacker can move a device to a remote site then specialized tools can
be employed.10

• Machining. Access by the attacker to a device’s internals is enabled by

10These tools are developed for the semiconductor industry to use in analyzing chips. The
tools typically are quite expensive to purchase when new, but often can be rented on an hourly
basis with no questions asked. In addition, the improved capabilities required for each new
generation of chips results in decreased demand for older tools. The older tools then become
a↵ordable by attackers.

July 2022 Copyright Fred B. Schneider All rights reserved



364 Chapter 13. Run-time Assumptions under Attack

cutting through a shell or by removing potting material that permeates the
insides. The cutting might be performed with (fixed or moving) blades,
abrasives, high-velocity streams of water, lasers, sandblasting, or shaped
(low power) explosive charges. Chemicals also might be used to dissolve
potting material.

• Probing. Probes provide a means to inject and/or monitor signals be-
ing carried within in the device. A probe might be implemented by a
narrow gauge tungsten wire, an ion beam, an electron beam, or a laser.
Ion beams, in addition, can reconnect fuse links or make other modifica-
tions to a chip’s circuitry. Electron beams from a conventional scanning
electron microscope can read/write bits in EPROM, EEPROM and RAM
memory chips if the chip’s surface has been exposed (say, by chemical
machining). Because silicon is transparent at infrared frequencies (IR), it
is not necessary to expose the chip’s surface for an IR laser to read/write
that storage.

The goal of a physical attack is an important factor when developing a
defense. Some physical attacks are undertaken to extract secrets that a device
is storing. A defense here could be to incorporate sensors and logic that causes
stored secrets to be erased when the start of an attack is detected. The goal
of other physical attacks is reverse-engineering—for cloning a system or for
discovering its vulnerabilities. As discussed above, packaging plays the critical
role in defending against such attacks.

For some devices, an attack would be deemed a failure if it leaves a system
inoperable. An attack that that renders a nuclear weapon inoperable will have
failed if the attacker’s goal was to cause detonation but will have succeeded
if the goal was to prevent detonation. For devices used to control access by
consumers to proprietary content, an attack is often considered successful if it
extracts secrets being stored—even if the device is destroyed by the attack—
because the stolen secrets then can be used to provide unlimited access by using
some other device.

13.2.3 *Physical Unclonable Functions

Tamper-resistant packaging would not be needed to protect a circuit that un-
predictably altered its state and/or operation in response to any physical ac-
cesses by attackers. Providing such functionality for circuitry that stores and/or
computes functions of secret values is driving research into the development of
physical unclonable functions (PUFs). They are not yet ready for general use—
and some experts argue that simpler alternatives will always be a more sensible
choice. Nevertheless PUFs are an intriguing idea to contemplate.

A PUF is a circuit instance C that translates from some fixed, unmeasurable,
and unclonable features of its realization on a specific chip to a function FC(⋅)
satisfying the following properties.

• Evaluation of FC(⋅) is repeatable—the same value is produced every timeFC(x) is evaluated with a given input x from its domain.

July 2022 Copyright Fred B. Schneider All rights reserved



13.2. Hardware Integrity 365

• The value produced by evaluating FC(x) cannot be predicted from inva-
sive or non-invasive measurements of the chip that contains C.

• The value produced by evaluating FC(x) changes unpredictably if the chip
that contains C is modified or probes are attached.

Thus, FC(⋅) is individual, inherent, and unclonable.
The domain of function FC(⋅) depends on the PUF design. Some designs

implement a function that takes no inputs and has a fixed (but unpredictable)
output, causing the PUF to behave like a small read-only memory. Other PUF
designs implement functions that do take inputs. With a weak PUF, the number
of possible input values is linearly related to the number of components in the
circuit used to realize the PUF; with a strong PUF, the number of possible
input values is exponential in the number of circuit components. Because it is
infeasible to collect the values FC(x) for the exponential number of possible
inputs x to a strong PUF, a strong PUF can be used to implement challenge-
response protocols, where each challenge is used at most once.

Examples of PUF Designs. PUF designs typically employ circuits whose
output is determined by di↵erences in signal propagation delays, where the
di↵erences in delays arise from uncontrollable aspects of chip fabrication. The
output of a PUF thus depends, in part, on where the circuitry is located on
some specific chip.

SRAM PUF. A 1-bit SRAM PUF implements a function having as its
output the unpredictable, but (apparently) repeatable, value at power-up for a
specific (uninitialized) SRAM volatile memory cell. With m of these, we obtain
an SRAM PUF that produces an unpredictable but repeatable, instance-specific
m-bit output. To obtain a PUF that maps an n-bit input to an m-bit output,
it su�ces to have (i) a set containing 2n of these m-bit SRAM PUFs and (ii)
a decoder circuit that uses the value of an n-bit input to select an associated
PUF from the set.

Arbiter-based PUF. A 1-bit arbiter-based PUF outputs a 0 or 1 according
to the faster of a selected pair of signal paths, where an n-bit input defines the
segments used to form the two signal paths of the pair. Figure 13.2 gives a
design. The output of that PUF is the output of the flip-flop labeled arbiter.
That output is determined by the relative arrival times of the signal reaching
the flip-flop’s clock input (labeled >) versus its D input. These arrival times
depend on the sequence of muxes and interconnects that are traversed. That
sequence is determined by the input bit to each mux—input bit i determines
for the muxes in the ith column whether the input port labeled 1 or the input
port labeled 0 is the input that the mux outputs. So an n-bit input defines one
pair of the 2n possible n-segment signal paths.

Because each of the segments has an unpredictable but fixed delay, each of
the n-segment signal paths will have an unpredictable but fixed delay. An n-bit

July 2022 Copyright Fred B. Schneider All rights reserved



366 Chapter 13. Run-time Assumptions under Attack

MUX

1

0

MUX

1

0

input
bit 1

MUX

1

0

MUX

1

0

input
bit 2

...

MUX

1

0

MUX

1

0

input
bit n

...

Q

D Q

arbiter

Figure 13.2: Arbiter-based PUF

input selects a specific pair and, thus, always outputs the same unpredictable
value. To build a PUF that produces an m-bit output, we use m of these 1-
bit arbiter-based PUFs; the ith 1-bit arbiter-based PUF produces bit i of the
output.

Ring-Oscillator PUF. The frequency of a ring oscillator is determined by
signal propagation delays in a feedback loop, so di↵erent instances of a ring-
oscillator circuit are likely to have di↵erent frequencies. A 1-bit ring-oscillator
PUF is built using a set of ring oscillators and some control circuitry. Fig-
ure 13.3 illustrates. Each ring oscillator involves a loop that comprises an
nand-gate followed by an even number of inverters. An n-bit input controls
a pair of muxes, causing a pair of ring oscillators to be selected and connected
to counters. The frequency of each ring oscillator determines the speed that
counter is incremented, so a 0 or 1 will be output by the PUF according to
which ring oscillator in the pair has higher frequency. To build a PUF that
produces an m-bit output, it su�ces to combine m of these 1-bit ring-oscillator
PUFs.

PUF Repeatability and Unpredictability. Signal propagation delays in
integrated circuits can be a↵ected by operating temperature, power supply volt-
age, electrical noise, and other aspects of the environment. So a straightforward
realization of the above PUF designs might, for a given input x, produce dif-
ferent values for FC(x) depending on the current conditions. One way that a
PUF circuit can compensate for environmental variation is to have its output
depend on delay ratios (which tend to be more stable) rather than absolute
delays. Repeatability also can be improved by incorporating error correcting

July 2022 Copyright Fred B. Schneider All rights reserved



13.2. Hardware Integrity 367

MUX

MUX

input

�

�

�
�

enable

..
.

..
.

counter

counter

< output

Figure 13.3: Ring-Oscillator PUF

codes into the output of a PUF. Finally, clients that submit an input and then
check for a specific ouput can be designed to accept values that di↵er from the
expected response by a small number of bits.

A second key requirement for a PUF realization is to have unpredictability
of function FC(⋅):

PUF Unpredictability.

– An attacker who learns some set of input-output pairs �x,FC(x)�
must not be able to predict the outputs for other inputs.

– Given a value y that has not yet been output by the PUF, an attacker
must not be able to construct an input x satisfying y = FC(x).

The SRAM PUF above satisfies these properties provided the value of each 1-bit
SRAM PUF does. This is because each 1-bit SRAM PUF is used in producing
the output associated with only one input, so outputs that an attacker has
already observed give no information about unseen outputs that the SRAM
PUF will produce.

But unpredictability is harder to achieve when a small set of signal propa-
gation delays are being combined in multiple (di↵erent) ways, as in the above
arbiter-based PUF and ring-oscillator PUF. With an arbiter-based PUF, for ex-
ample, submitting two inputs that only di↵er in their ith bit enables an attacker
to learn which alternative for the ith segment is faster; 2n inputs thus su�ce to
reveal the faster signal path for all inputs. Under modest assumptions about
possible di↵erences in signal-path segment delays, output FC(x) now can be

July 2022 Copyright Fred B. Schneider All rights reserved



368 Chapter 13. Run-time Assumptions under Attack

used to predict output FC(x′) for other inputs x′ that di↵er from x at a small
number of bit positions.11 However, unpredictability still can be obtained with
this kind of PUF. One solution is to incorporate a cryptographic hash function
at the input and/or output of the PUF. Another solution is to restrict the input
domain DC for FC(⋅) to be the subset of inputs x for which FC(x) cannot be
predicted from FC(x′) for other inputs x′ in DC ; that PUF implementation also
would incorporate circuitry that rejects inputs not in set DC .

PUF Applications. An unpredictable bit string of any desired length can
be formed by concatenating the outputs of one or more inputs to a single PUF
or to di↵erent PUFs. Such a longer bit string could be used, for example, as
the unique identifier for a chip instance. Alternatively, if that bit string is kept
secret then it can be used to generate a chip-specific symmetric key, a chip-
specific public/private key pair, or a chip-specific seed for a random number
generator. However, some conditioning of the PUF outputs might be necessary
to obtain distributions of values suitable for those applications. The necessary
conditioning can be implemented by incorporating a hash function into the final
stage of a PUF.

Having a PUF on a chip P generate a chip-specific symmetric key KP enables
secret values used by P to be stored o↵-chip in a secure way. KP would be
generated whenever a key is needed to encrypt the secret values12 for storage o↵-
chip or to decrypt content being retrieved. By storing KP in P ’s volatile memory
only while KP is needed for performing an encryption or decryption operation,
KP is vulnerable to theft for only short periods. Moreover, an attacker who
removes P and probes the PUF used to generate KP would (i) not be able to
learn KP and (ii) could well cause unpredictable changes to the value being
generated for KP .

Another use for PUF-generated cryptographic keys is to enable authentica-
tion of a chip P by its clients. One approach is to provision each client A with a
separate symmetric key KA generated by a weak PUF on P . KA is then used in
a standard shared key authentication protocol: chip P proves to A knowledge
of KA by performing encryption and/or decryption with that key. Notice, if
the value of KA was obtained by A directly from the chip’s manufacturer, then
this chip authentication protocol even defends against supply-chain attacks that
alter P or substitute a di↵erent chip for P .

An alternative to using cryptographic functions for authenticating a chip is
to leverage the unpredictability of a PUF C located on the chip. Each client
A is provisioned with a disjoint set CRA of challenge/response pairs �c,FC(c)�.
To authenticate the chip, a client A removes from CRA some pair �c, r�, submits
challenge c to the chip, and deems the chip authenticated if the response resp
that A receives from the chip satisfies resp = r. Replay attacks are prevented if

11A similar attack is possible for a ring-oscillator PUF. That attack would reduce the number
of possibilities by leveraging the transitivity of < used in comparisons of oscillator frequency.

12A timestamp should be included in the encrypted information to defend against a rollback
attack that replaces the current version of o↵-chip storage by an older copy.

July 2022 Copyright Fred B. Schneider All rights reserved



13.3. Expectations about Memory and Storage 369

the client never repeats a challenge. But that means the CRA sets must be pe-
riodically refreshed with another set of fresh challenge/response pairs generated
using FC(⋅).

One option for refreshing the CRA sets, which defends against chip substi-
tution in the supply chain, is for the chip fabricator or system builder to have
generated and saved a large set of such pairs produced with the PUF before the
chip is put into operation. Another option, which does not defend against chip
substitution in the supply chain, is to use the PUF in situ for producing these
sets of pairs and then securely transfer the new set to a client. This second
option requires the capability to transfer CRA sets o↵-chip in manner that is
confidential and can be authenticated.

13.3 Expectations about Memory and Storage

Programmers make assumptions about the behavior of random-access main
memory (RAM) and disks. Those assumptions and attacks to falsify them
are the subject of this section. One class of attacks exploits data remanence—
evidence that reveals information about values that had previously been stored.
If those values were not encrypted, then confidentiality can be compromised by
an attacker with access to data remanence.13 A second class of attacks involves
writes to one object that also alter information being stored at another object,
thereby compromising integrity. Defenses and other mitigations, where they
exist, are also discussed in this section.

Assumptions about RAM and Disk. Interfaces to RAM and disks typi-
cally provide operations for reading and writing fixed-size, disjoint, addressable
objects. Di↵erent technologies then lead to storage implementations that di↵er
in cost, performance, as well as other attributes. Programmers, however, will
expect read and write operations to satisfy certain axioms, independent of the
technology.

A1: Execution of read(x) reveals the value currently stored by x—not a past
value of x or the value of some other object.

A2: Execution of write(x, val) only changes the value stored by x. The value
of no other object changes.

A3: Values stored in volatile memory are erased when power is removed; values
stored in stable storage persist, even after power is removed.

Thus, to erase the value stored at a location x, these axioms imply that a
programmer can (i) write a new value to x and depend on A2, or (ii) if x is in
volatile memory, then remove power and depend on A3. Also note that axioms
A1 and A2 together imply that the value read(x) returns cannot be changed
by executing write(y, val) where x and y identify di↵erent objects.

13For this reason, newer processors encrypt values written to memory or to other storage.

July 2022 Copyright Fred B. Schneider All rights reserved



370 Chapter 13. Run-time Assumptions under Attack

13.3.1 Attacks on RAM

RAM implemented on an integrated circuit is typically structured as an array of
cells, where each cell stores 1 bit. A DRAM (Dynamic Random Access Memory)
cell represents that bit by the amount of electrical charge a capacitor stores;
an SRAM (Static Random Access Memory) cell represents the bit by carrying
current in one of two electrical feedback loops. DRAM cells require less chip
area, have higher power consumption, tend to be slower, but are cheaper per
bit than SRAM cells. DRAM is typically used for main memory; SRAM is used
for CPU registers and cache.

RAM Imprinting. Semiconductor RAM stores information by harnessing
certain physical phenomena. Other physical phenomena exist, however, that
can be exploited by attackers to cause RAM imprinting, whereby information
being stored in semiconductor RAM persists long after it should have decayed:

• Low temperatures impede the flow of charge in semiconductors. So by
cooling chips that are implementing a volatile memory, an attacker can
imprint the contents of that memory for inspection after power has been
removed.

• X-ray band irradiation of CMOS RAM transforms the semiconductor in
ways that reflect the distribution of charge, are permanent, and are mea-
surable. A memory implemented with these chips may no longer function
as expected, but the chips will have recorded—for later inspection—a
snapshot of memory.

The obvious defense against attacks that manipulate a memory’s physical
environment is to thwart physical access by attackers. A tamperproof enclosure
is one such defense.14 Alternatively, a computer could be situated someplace
that is inaccessible to attackers. Also, we frustrate an attacker’s e↵orts to re-
move and read imprinted RAM chips if the chips are permanently glued to the
motherboard, so removal destroys them. An operating system can help defend
against RAM imprinting caused by low temperatures if the system startup and
shutdown code always overwrites all regions of memory that could have been
storing secrets. This overwriting forces an attacker (i) to avoid a normal shut-
down and (ii) to boot custom code for accessing the RAM chips.

Cold Boot Attacks. Cryptographic keys are often stored in a computer’s
main memory. Programmers expect this memory to be volatile and, therefore,
they assume cryptographic keys stored there will no longer be available after
the computer has been powered down. This is not an unreasonable assumption.
Main memory invariably is implemented by DRAM, and at standard operating
temperatures (25�–50�), a powered-o↵ DRAM chip will retain its values for at

14X-ray radiation shielding can be unwieldy. Fortunately, X-ray band irradiation attacks
can be launched only by well-resourced threats, so X-ray shielding is rarely needed.

July 2022 Copyright Fred B. Schneider All rights reserved



13.3. Expectations about Memory and Storage 371

most a few seconds before those values decay into random noise. However, when
cooled15 to −50�, values in a DRAM chip will remain uncorrupted for a minute
or more, and when that DRAM chip is submerged in liquid nitrogen (−196�),
data corruption is extremely low, even after an hour. These observations are
the basis for so-called cold boot attacks, which were developed to recover disk
encryption keys from a computer’s DRAM main memory after a shutdown or
hibernation operation that did not overwrite that memory.

Cold Boot Attacks. Secrets stored in DRAM chips on a running com-
puter can be recovered if an attacker cools those chips and then

– restarts the computer, booting a kernel that requires only a small
memory footprint and that gives the attacker access to the rest of
memory, or

– removes those DRAM chips and inserts them on a computer that
gives the attacker access to this memory.

Other RAM Remanence. If a value V is stored for an extended period
at some location in a semiconductor RAM, then electromigration, hot carriers,
ionic contamination, and other physical phenomena can change the cell in ways
correlated with V . Moreover, these changes remain detectable—even after that
location has been overwritten and after the computer is powered-o↵. So data re-
manence has been created. To measure some of the changes requires specialized
equipment and requires removing the a↵ected RAM chip from the motherboard;
only some threats will have those capabilities. Other changes to RAM, though,
are directly visible to a running program. For example, a program might be
able to deduce what value a given location had stored for a long time simply by
reading that location’s uninitialized value at power-on.

RAM remanence caused by storing a value for an extended period is more
than a theoretical curiosity. It is potentially a significant vulnerability for secure
coprocessors, which have separate key memories and are likely to store long-
term cryptographic keys and other secrets in the same locations for extended
periods. It also is potentially a vulnerability for ordinary operating systems,
which typically occupy the same (low) memory region on a given computer
and, therefore, use the same fixed memory locations for storing their long-term
cryptographic keys and other secrets.

For those of us who do not control the design and fabrication of a system’s
semiconductor RAM chips, the obvious way to avoid remanence arising from
long periods of storing the same value at a given location is to arrange that no
memory location holds one of these values for very long. A few minutes is a safe
upper bound for storing a value. Two implementations of this defense are:

• Every few minutes, copy the value to a di↵erent memory location and then
write random values into the memory locations from which the value was
just copied.

15Cooling to −50� can be achieved through evaporation by spraying a DRAM chip with
one of the commercially available compressed-air duster products sold to clean equipment.

July 2022 Copyright Fred B. Schneider All rights reserved



372 Chapter 13. Run-time Assumptions under Attack

ad
d
re
ss

d
ec
od

er

row bu↵er (with sense amplifiers)

Figure 13.4: DRAM Organization

• Every few minutes, complement the memory locations that are storing the
value and update a corresponding representation indication that records
whether the value or its complement is currently stored. Modify read
operations to check the representation indication and, when appropriate,
return a complement of the value retrieved from memory.

Row-Hammer Attacks. Increases to the density of DRAM lead to an in-
crease in disturbance errors, which are changes to the value being stored in one
cell that are caused by accesses to another cell. Disturbance errors violate the
axiom (A2, page 369) that writing to a memory location is the only way to
change the value this location is storing. Disturbance errors become vulnerabil-
ities if attackers can instigate them to change values being stored by targeted
cells. The vulnerability has been present in many of the DRAM chips produced
since 2010. With these DRAM chips, cells are internally organized as an ar-
ray, and making a series of accesses to cells in one row can alter the values
being stored by cells in adjacent rows. Such a series of accesses is known as a
row-hammer attack.

DRAM Internals. To undestand how row-hammer attacks work requires
an understanding of DRAM circuitry. As depicted in Figure 13.4, a DRAM

July 2022 Copyright Fred B. Schneider All rights reserved



13.3. Expectations about Memory and Storage 373

transistor

wordline

A○
capacitor

B○

bitline

sense amplifier

Figure 13.5: Circuit for DRAM Cell

consists of an array of cells (depicted by small rectangles) connected to a row-
bu↵er that, for each column in the array, contains a cell and a sense amplifier.
DRAM read and write operations access cells in the row-bu↵er; refresh for a
row is done by reloading the entire row from the row-bu↵er. So the row-bu↵er
at any time will store the same values as the cells in some selected row.

All DRAM cells in a given row of the array are connected to a wordline for
that row, and all DRAM cells in a given column of the array are connected to a
bitline for that column. Wordlines are driven by an address decoder; it selects
a single row for transfer to/from the row-bu↵er by elevating the voltage on the
corresponding wordline and having low voltage on all other wordlines. Each
bitline is terminated by a separate sense amplifier in the row-bu↵er.

Figure 13.5 shows a circuit that implements a single DRAM cell. The word-
line voltage causes the transistor to control current flow between A○ and B○
and, thus, controls current flow between the capacitor and the bitline. During
periods when the wordline voltage is low, current flow between A○ and B○ is
blocked, so the capacitor is electrically isolated and retains its charge (except
for leakage). An elevated wordline voltage allows current flow between A○ and
B○, enabling the capacitor’s charge to be measured and/or changed by the sense
amplifier that terminates the bitline.

In order to service a read, write, or refresh operation for the contents of
some row r (say), the voltage is elevated on the wordline for r and then the
sense amplifier terminating each bitline b performs a sequence of 2 steps.

(i) The sense amplifier measures the voltage on bitline b and compares that
value to a threshold. The outcome of that comparison indicates the value of
the bit being stored by the capacitor Cr,b of the row r cell that is connected
to bitline b. A DRAM true-cell is storing 1 if the measured voltage was
found to be above a threshold and it is storing 0 if the measured voltage
was below; in a DRAM anti-cell, this representation is inverted.16

(ii) After making that voltage measurement, the sense amplifier sets the volt-
age on bitline b to a value that will cause the charge in Cr,b to be set

16A DRAM chip might include a mixture of true-cells and anti-cells.

July 2022 Copyright Fred B. Schneider All rights reserved



374 Chapter 13. Run-time Assumptions under Attack

L: load r1,x access row containing x
load r2,y access row containing y
flush x evict x from cache
flush y evict y from cache
mfence flush pipelines
jmp L iterate

Figure 13.6: Row-hammer Attack

according to whether the corresponding cell in the row-bu↵er is storing a
0 or 1.

• For a read operation or a refresh operation, the charge in Cr,b is
restored, thereby compensating for past charge leakage and for charge
loss from performing the measurement in step (i).

• For a write operation, the charge in Cr,b is set according to the value
of the new bit to be stored.

Physics of Row-hammer Attacks. The laws of physics imply that a change
to the current flow on a wordline induces a current flow in all physically parallel
wordlines. The induced current is higher in wordlines that are physically closer.
So the e↵ect is more pronounced in a higher-density DRAM chips, and it means
that a change to the current flow in the wordline for a row r induces the largest
flow current in the wordlines for rows r + 1 and r − 1. That induced current can
cause transistors in row r + 1 and r − 1 cells (but possibly cells of other rows
too) to allow a short period of modest current flow between the capacitors they
control and bitlines. Those current flows are leaking charge from the capacitors.

If enough charge gets leaked from a capacitor Cr,b before the next refresh
operation is performed for row r, then Cr,b would transition from storing an
above-threshold charge to storing a below-threshold charge—a disturbance er-
ror. For a true-cell, a 1 changes into a 0; for an anti-cell, a 0 changes into a 1.
DRAM designers have an incentive to have a large interval between refresh oper-
ations, because performing a refresh, read, or write operation requires exclusive
use of the row-bu↵er and, therefore, read and write cannot be overlapped with
refresh. So the interval between refresh operations for a given row on a modern
DRAM typically is chosen to be just small enough to remediate ordinary charge
leakage. That interval does not forestall disturbance errors caused by charge
leaks resulting from repeated access to adjacent rows.

Executing a Row-hammer Attack. Disturbance errors that corrupt
the values stored by cells in victim rows r−1 and r+1 of a DRAM can be
caused when a program repeatedly performs memory accesses that elevate
and drop the voltage on the wordline for aggressor row r.

Code that performs a row-hammer attack is given in Figure 13.6. Variable
x should be stored in a DRAM row that is adjacent to the victim row; variable

July 2022 Copyright Fred B. Schneider All rights reserved



13.3. Expectations about Memory and Storage 375

y should be stored in any other row.17 The flush operations evict x and
y from the cache to ensure that the load instructions in each loop iteration
elevate the intended wordline voltages by fetching the values from the DRAM.
Execution of mfence at the end of each iteration drains the pipeline, thereby
preventing pipeline logic from suppressing18 the load operations for r1 and r2.
By accessing x in alternation with y, the loop repeatedly applies the voltage for
selecting the wordline for the row storing x, even with a DRAM implementation
where consecutive read accesses to the same row are serviced by the row-bu↵er
without repeatedly selecting and copying that row to the row-bu↵er.

Defending Against Row-hammer Attacks. Incorporating an error-correcting
code (ECC) into each DRAM row might seem like an obvious defense against
row-hammer attacks. The number of ECC bits required per row, however, is
proportional to the maximum number of cells in a row that could need to be
corrected. Since a row-hammer attack can corrupt many cells in a victim row,
and any DRAM row could be a victim row, we would require many ECC bits.
That storage overhead makes using ECC an impractical defense.

Frequent refresh operations is the other obvious defense. But additional
refresh operations consume power and reduce DRAM bandwidth by leaving less
time for servicing read and write requests. Moreover, to defend against a row-
hammer attack, frequent refresh for all rows is not necessary. Additional refresh
is needed only for potential victim rows—any row r adjacent to one or more
rows that, in aggregate, were frequently accessed since r was last refreshed.

Various schemes have been suggested for deployment in a DRAM chip or
memory controller in order to identify potential victim rows and initiate re-
fresh just for those. Two of the more influential schemes are TRR (Target Row
Refresh) and PARA (Probabilistic Adjacent Row Activation). TRR requires
additional state; PARA does not require additional state but only gives a prob-
abilistic guarantee. Both schemes have been implemented in some DRAM chips
and in memory controllers. TRR support, going by the name refresh manage-
ment (RFM), appears in recent generations of JDEC (Joint Electron Device
Engineering Council) DRAM memory standards.

TRR: A row r′ is deemed a potential victim row and refreshed if the number
of accesses to any adjacent row has reached a chip-specific threshold MAC
within a chip-specific period of length tMAW . Variations include:

• Use the aggregate number of accesses to a set of adjacent rows as the
basis for deciding whether a row should be refreshed.

17If x and y are each stored in di↵erent rows that are adjacent to the victim row, then the
attack is known as double-sided hammering. With many-sided hammering, there are more
than two aggressor rows; it is e↵ective when the geometry of a specific DRAM realization
causes additional inductive couplings between wordlines.

18Pipeline logic often will skip performing an update to memory or registers if that update
will be overwritten before being read. In the loop of Figure 13.6, registers r1 and r2 are not
read before being loaded again.

July 2022 Copyright Fred B. Schneider All rights reserved



376 Chapter 13. Run-time Assumptions under Attack

• Use sampling on the stream of DRAM accesses to approximate the
number of accesses to each row.

• By using a fixed-depth stack, maintain access counts for only some
fixed, small number of rows that have received the largest number of
accesses within the last tMAW period.

PARA: Whenever a row is activated then, with probability p, refresh one of its
two adjacent rows. Thus, the probability that an access to a neighboring
row does not cause r to be refreshed is 1−p�2, and the probability that row
r is not refreshed during a row-hammer attack involving N total accesses
to rows neighboring r is (1 − p�2)N . The table below uses this formula
to give the probability that a row-hammer attack involving N accesses
would succeed when refresh is expected to be performed only once for
every 1000 accesses (p = .001). Probability of success for a row-hammer
attack is given both for a single refresh period (64 ms) and for a year.

Duration N = 50K N = 100K N = 200K
64 ms 1.4 × 10−11 1.9 × 10−22 3.6 × 10−44
1 year 6.8 × 10−3 9.4 × 10−14 1.8 × 10−35

13.3.2 Attacks on Magnetic Storage

Hysteresis makes magnetization well suited for implementing non-volatile stor-
age. We create a magnetic storage medium by applying a thin film of ferromag-
netic material to a disk platter or a tape. The ferromagnetic film enables phys-
ically disjoint regions—called domains—on the surface of that storage medium
to assume either of two magnetic polarities. A bit string is then represented
by the sequence of magnetic polarity changes encountered by a read/write head
while traveling above the series of domains that constitute a track on the stor-
age medium. On magnetic tapes, tracks run parallel to the length; on magnetic
disks, tracks are concentric circles.

A storage device is realized by using (i) some magnetic storage medium,
(ii) read/write heads to sense and to set the magnetic polarity for domains in
a track segment19 passing underneath, (iii) mechanisms to select which track
segments pass underneath the read/write heads, and (iv) electronics for trans-
lating a sequence of magnetic polarity changes to/from the string of bits being
represented.20 On a tape drive, one read/write head typically will cover all of
the tracks; a motor spools the tape forward or backward, so some selected track
segment passes underneath this read/write head. A disk drive typically has a
read/write head for each platter surface; all of the platters are rotating in tan-
dem, and there is a mechanism for positioning read/write heads over a selected
track on all platters.

19Depending on the device, a track segment might be known as a record, a sector, or a block.
20Modern magnetic storage devices use run-length limited translation to ensure that fre-

quent changes in the direction of magnetization occur for all bit strings—even bit strings
containing long sequences of the same bit.

July 2022 Copyright Fred B. Schneider All rights reserved



13.3. Expectations about Memory and Storage 377

A write operation is performed by activating the read/write head to set the
magnetic polarities for the sequence of domains that are passing underneath.
Subsequent read operations recover that bit string by measuring the average
magnetization in each domain as it passes underneath the read/write head; a
sequence of polarity transitions is constructed from those averages. Because
the average magnetization that a read measures for a domain will indicate the
polarity of the last magnetization from a write to that domain, axioms A1 and
A2 (page 369) that we expect to hold for a storage device should indeed hold.

The averaging performed in a read operation when a domain passes under-
neath provides a way to compensate for two e↵ects:

• Positioning Errors. Positioning a read/write head over a moving track is a
mechanical operation. So a slightly di↵erent region of the storage medium
passes underneath the read/write head each time a given domain is read
or written.

• Partial Magnetizations. For performing write operations, an electromag-
net in the read/write head is used to set the magnetic polarity of domains
passing underneath. An electromagnet that is too strong would set the
magnetic polarity for a large surrounding region (perhaps including other
domains). So a weaker electromagnet is used. But due to natural varia-
tions in magnetic susceptibility of materials, using the weaker electromag-
net means that portions of a domain passing underneath the read/write
head might not get magnetized with a new polarity.

To overcome these e↵ects and have read and write work as expected, (i) the
threshold used in deciding a region’s magnetic polarity is lowered, and (ii)
read/write head positioning is engineered to be accurate enough to ensure sig-
nificant (but not complete) overlap in the area that passes underneath each time
a given domain is being accessed. These implementation tolerances, however,
can cause remanence.

Remanence in Magnetic Storage. When attackers can move a magnetic
storage medium into a laboratory, analysis with magnetic force microscopy
(MFM) becomes possible. MFM creates an image of the medium’s surface.
Each point in that image depicts the magnetization (strength and polarity) for
a small area of that medium’s surface—an area far smaller than a domain. Not
surprisingly, such an image can be used to recover the values being stored. We
average the polarities of points in the image that are located within each domain
forming a track, detect transitions from those averages, and use that sequence
of transitions to reconstruct the values being stored on the medium.

An image produced by MFM also will contain two kinds of points that are
forms of remanence.

• Magnetized points located outside of any domain. These points are most
likely to be near a track edge or at the boundary between domains within
a track. They are caused either by positioning errors or by regions of

July 2022 Copyright Fred B. Schneider All rights reserved



378 Chapter 13. Run-time Assumptions under Attack

the storage medium that have high magnetic susceptibility and are near
a domain.

• Disparate points within a domain. Points arise that are within a domain
and have a di↵erent magnetic polarity than the average for that domain.
This occurs whenever the last write to that domain did not change some
small region’s magnetic polarity, because that region has low magnetic
susceptibility.

What can this remanence reveal? A region containing many disparate points
probably is indicating the value being stored prior to the last write.

Magnetic Disk Sanitization. Servers, desktop computers, and personal de-
vices will be decommissioned and replaced from time to time, then repurposed,
donated, or discarded. Part of the decommissioning should be to erase informa-
tion that the computer’s disk was storing, since erasure protects the confiden-
tiality of information without requiring assumptions about access controls that
computer will enforce in the future.

The procedure to erase the contents of a magnetic disk is called disk saniti-
zation. Three approaches21 are: overwriting, degaussing, and shredding. Which
approach is the most appropriate for a given setting will depend on the capabil-
ities of the threat and on whether the disk must still be usable after sanitization
has been performed.

Overwriting. With a correctly operating magnetic disk, writing a new value
prevents a later read operation from recovering the overwritten value. But a
write does not necessarily prevent MFM from recovering the overwritten value
and perhaps earlier values, depending on the encoding that was used to represent
bit strings.

• With the data encodings used for disks in mid 1990’s and earlier, over-
writing multiple times with di↵erent and unpredictable values is likely to
erase a value and any associated remanence.

• With the encodings that achieve high density in modern magnetic disks,
recovering old values from remanence is virtually impossible, so overwrit-
ing a value once su�ces to prevent recovering that value by using MFM.

However, if a given domain has the same polarity for long periods of time and/or
the magnetic media is stored at elevated temperatures, then a bias for that
polarity is created because the threshold for setting the magnetization to that
polarity will be permanently lowered. Later writes will not alter this bias. So,

21These approaches also work for sanitizing magnetic tape or other magnetic storage media.
They do not work for SSD’s (solid-state drives), because the command to delete or update the
contents of a block on an SSD leaves the contents of that block intact and, instead, re-maps
that block’s address. Specialized sanitization commands are therefore typically provided by
SSD hardware.

July 2022 Copyright Fred B. Schneider All rights reserved



13.3. Expectations about Memory and Storage 379

in a laboratory, the original value stored using that domain would thereafter be
detectable.

Although remanence is not a problem with modern magnetic disks, they
do have features that complicate the use of overwriting for performing disk
sanitization.

• Some disk controllers bu↵er values rather than immediately updating the
magnetic storage medium. With such a controller, overwriting (to erase
a value) is not guaranteed to perform write operations on the magnetic
storage medium, and a sequence of overwrites made to the controller might
not translate into the same sequence of writes to the magnetic storage
medium.

• Some disks forestall data loss by detecting when a sector or track is becom-
ing marginal and, in response, copy its contents to an alternate region of
the magnetic storage medium. Thereafter, accesses to the marginal region
are redirected to the new region by the disk controller. So the contents of
the sector or track at the time it was deemed marginal cannot be erased
by overwriting.

Degaussing. A degauser employs an electromagnet to create a strong mag-
netic field. When the degauser is brought into close proximity to a disk, this
strong magnetic field changes the magnetic polarities for all regions of the mag-
netic storage media. Values represented by magnetic polarities in domains and
in remanence are thus destroyed. Use of a degauser, however, also can leave a
disk inoperable by (i) corrupting formatting information that had been magnet-
ically encoded on the storage media, and (ii) altering the magnets used in the
motors that rotate the disk and that position the read/write heads.

Shredding. The magnetic storage medium is cut into small pieces that can-
not be reassembled. To be completely e↵ective, none of these pieces should be
large enough for MFM to recover useful information—with modern high-density
drives, the pieces must be made quite small. Needless to say, shredding leaves a
disk unusable, though some drives do have replaceable magnetic storage media
and, therefore, some of the mechanism might be reused with new media.

13.3.3 Remanence Software Generates

Software can generate remanence beyond that exhibited by RAM and magnetic
storage. Such software-generated remanence is the subject of this section. Ex-
amples will illustrate specific operations that make remanence inevitable. We
also will see why the implementation of an interface (along with the implementa-
tions of interfaces directly or indirectly invoked) cannot be ignored when trying
to avoid remanence. Software engineers favor interfaces that hide implementa-
tion details, but security engineers cannot a↵ord to ignore those implementation

July 2022 Copyright Fred B. Schneider All rights reserved



380 Chapter 13. Run-time Assumptions under Attack

details when seeking to avoid remanence—unless (as we discuss below) the state
is encrypted.

A trivial cause of remanence is operations that we might have expected would
provide sanitization but don’t. File systems o↵er good examples. Invoking a file
system’s delete or write operations would seem an obvious way for a program
to obliterate a file’s contents.

• In some file systems, invoking delete on a file has no e↵ect on the file
contents being stored on disk—it merely removes the file’s name from its
directory, after copying that file name to the trash directory. So delete
does not implement sanitization, because it does not prevent subsequent
access to the file’s contents through the trash directory.

• In other file systems, a log records the old and new values for each write,
thereby allowing earlier versions of a file to be recreated when desired.
So overwriting a file does not implement sanitization, because it does not
prevent subsequent disclosure of file contents that had been overwritten.

You might expect that every file system interface would provide an operation
to perform sanitization, even if delete or write do not have that e↵ect. The
prevailing view, however, is to favor user convenience over security. So con-
temporary file systems make it easy for a user to reverse a delete or write
operation and make it di�cult to obliterate information irreversibly. Therefore,
sanitization operations are not provided.

A second way that a program might generate remanence is by (i) being
assigned access to some stateful resource22 R, (ii) writing and reading R, and
finally (iii) relinquishing access to R. If R is not sanitized before being assigned
to some other program P (say), then R will contain remanence that P can
read. Note, sanitization of R not only requires overwriting its state; state also
would have to be flushed from caches and bu↵er pools (which might be hidden
in lower levels). The operating system would seem a natural place to perform
this sanitization, since an operating system allocates resources and has access
to memory, bu↵er pools, and caches. Operating system designers, however, cite
performance degradation as the reason for not doing sanitization by default—
overwriting state consumes processing time, and flushing caches and bu↵er pools
cause degraded performance when execution restarts. Remanence should thus
be expected in a stateful resource R unless each individual program to which R
is allocated sanitizes R before relinquishing that access.

A third cause of remanence arises when an implementation maintains copies
of state in order to satisfy cost or performance goals.

• A large virtual memory fits into a small real memory because every page
is stored in a paging file on disk. Notice, CPU mechanisms that control
access to copies of virtual memory pages residing in main memory do not
control access to the pages stored on disk.

22The resource might be a register, region of real or virtual memory, disk block, or a software
abstraction that directly or indirectly uses these hardware storage mechanisms to maintain
state.

July 2022 Copyright Fred B. Schneider All rights reserved



Notes and Reading 381

• A file system is able to deliver faster access by bu↵ering copies of a file’s
disk blocks in main memory. Notice, access to blocks on disk is controlled
by a di↵erent mechanism than controls access to the main memory bu↵ers
containing disk blocks.

Clients have no direct way to delete or overwrite these state copies. Moreover,
because the state copies are invisible to clients, an implementation need not
sanitize the state copies when an associated abstraction is sanitized. So the state
copies are a form of remanence. Whether that remanence can be accessed by an
attacker will depend on whether access to those state copies is being controlled.
As illustrated in the virtual memory and file system examples above, the state
copies are often protected by a di↵erent access control mechanism than used to
protect the original.

Finally, remanence—whether created by software or exhibited by RAM or
magnetic storage—is harmless if it derives from encrypted state. Moreover,
encrypted state can easily be sanitized by deleting or overwriting the key. The
costs for encrypting and decrypting state, however, can be significant if done by
software. To lower those costs, newer I/O devices and CPUs provide hardware
support. A disk controller might, for example, include hardware to generate a
symmetric key, thereafter using that key to encrypt blocks as they are written
to the disk and to decrypt blocks as they are read. Modern CPU designs (see
§2.3) increasingly will generate, store, and use per-principal (sometimes called
enclave) keys to encrypt, decrypt, and/or digitally sign information to/from the
CPU chip, whether that information is en route to a cache, to a page frame in
the main memory, to a page file on a disk, or to a network adapter.23

Notes and Reading

This chapter discusses a sampling of the assumptions that programmers make
and that have proved to be exploitable vulnerabilities; these notes about read-
ings are limited to discussing references that first called out those assumptions.
We thus ignore a considerable body of work that reports vulnerabilities in spe-
cific systems, gives attacks that exploit these vulnerabilities, and proposes de-
fenses to prevent those attacks.

Covert Channels. The term “covert channel” was first used by Lampson [43]
in describing the confinement problem—the requirement that client-provided
data not be leaked by a service. Lampson illustrates three classes of channels
that an attacker might use to perform such a leak: storage channels are written
by the service but can be read by others, legitimate channels are intended to
convey information from the service, and covert channels are not intended for
transferring information but can be repurposed to do so. The meanings of these

23Arithmetic calculations and determining transfers of control require plaintext. So the
CPU internally uses plaintext, which forces its registers and other on-chip memory to store
plaintext.

July 2022 Copyright Fred B. Schneider All rights reserved



382 Chapter 13. Run-time Assumptions under Attack

terms subsequently evolved, and a decade later the Orange Book [17] was stat-
ing security requirements in terms of bandwidth limitations for timing channels
and storage channels which, its readers are told, constitute the two types of
covert channels. That formulation of confinement remains in use today, even
though Wray [69] subsequently had showed that some covert channels could be
portrayed as being both a timing channel and a storage channel.

Initially, solutions to the confinement problem focused on limiting the mech-
anisms that system builders could use. As part of an e↵ort at UCLA to build
a secure operating system, Popek and Kline [55] suggests the use of virtual
time in order to eliminate timing channels. However, as Lipner [46] explains,
virtual time can be defeated in settings where end-users can measure response
times. Fuzzy time avoids that problem; it is proposed in Hu [30] as a means
to reduce the bandwidth of covert timing channels in a secure virtual machine
manager kernel being developed for the Digital Equipment Corporation VAX
architecture [32, 45]. For blocking storage channels, Lipner [46] suggests enforc-
ing the authorization policy of Bell and LaPadula [11, 10] on all objects named
in a formal model of the system. This approach, however, can be unnecessarily
restrictive since it does not account for the semantics of operations.

Analysis methods o↵er system builders the flexibility to eschew restrictive
mechanisms where they are not needed. Perhaps the best known of these is the
shared resource matrix methodology (SRMM) developed by Kemmerer [34]. To
use it, an analyst constructs a table from the (formal or informal) specification
for the system. Each row in the table is associated with some attribute of shared
state, and each column is associated with a system operation. Entries in each
cell indicate whether executing the operation of that column can directly or
indirectly read or modify the attribute associated with that row. Certain table
configurations, if present, indicate the possibility of a covert storage channel;
other configurations indicate the possibility of a covert timing channel.

Wray [69] gives a di↵erent table-based analysis method for identifying pos-
sible covert timing channels. For this, any generator of detectable events is
considered a clock. Each row in the table Wray [69] constructs is associated
with a clock that a sender could modulate to transmit a value, and each column
in the table is associated with a clock that a receiver uses to detect modulation.
Every cell in the table thus corresponds to a potential timing channel.

Unfortunately, any analysis method that depends on people to provide a sys-
tem description risks being inaccurate or incomplete—there is no guarantee that
the input will be accurate and complete account of the system to be analyzed.
These di�culties would seem to be remedied by using system source code as the
input to an analysis method. But automated methods that use system source
code as the input risk being conservative (hence incomplete), because program
analysis to deduce whether specific information flows occur is an undecidable
question.

Covert channels are often surprising, since most people think about intended
uses of given functionality rather than thinking about ways that functionality
might be repurposed. The chapter describes only a few possible covert chan-
nels. One of them—abuse of speculative execution, first proposed in Kocher et

July 2022 Copyright Fred B. Schneider All rights reserved



Notes and Reading 383

al [37]— at first might seem quite complicated. (The example on page 351 is
Spectre Variant 1 from Kocher et al [37].) Concern about speculative execution
attacks not misplaced, because little can be done in software to e↵ect a defense.
This is because speculative execution skips explicit tests that a programmer
might add, and instructions used in an attack need not even appear in the code
for a system.

Side Channels. NSA’s declassified history [51] of TEMPEST (Telecom-
munications Electronics Material Protected from Emanating Spurious Trans-
missions) recounts how Bell Labs engineers in 1943 had discovered that plaintext
could be recovered from RF signals being emitted by 131-B2 encryption hard-
ware. The NSA document goes on to say that those side-channel attacks were
forgotten after the war ended, to be rediscovered by the CIA24 in 1951, lead-
ing to classified standards for shielding and distancing of devices being used to
communicate classified information. Elements of U.S. and NATO standards for
what is now called EMSEC (Emissions Security) remain classified, probably to
avoid revealing information about current capabilities for exploiting emissions.

As long as information about EMSEC attacks remained classified, few would
be aware that such attacks were possible or how to perform them. A 1985
(unclassified) paper by Wim van Eck [65], working at the Netherlands PTT,
changed that. It described a low-cost way that RF emissions could be exploited
to reconstruct the text appearing on a CRT display, making EMSEC attacks
available to any adversary. Van Eck’s paper not only suggested the obvious
defenses (shielding to attenuate the signal and adding noise to obscure it) but
also suggested a novel defense: instead of rendering the scan lines in the usual
order, use a secret to determine a permutation on the order in which the scan
lines are rendered. Additional defenses were subsequently described in Kuhn’s
2003 Ph.D. dissertation [42] at University of Cambridge: for a CRT display,
RF emissions could be reduced by altering the shapes of the characters being
displayed; for a flat-panel display, adding random, low-order bits to the color
combinations used for displaying text could frustrate attempts to reconstruct
text from RF emissions.

Exploits involving optical emissions are first reported in the open literature
by Loughry and Umphress in a paper [47] describing how to recover transmitted
data by monitoring LED status indicators on modems or other data commu-
nications equipment. Independently, Kuhn [41] explores optical eavesdropping
on CRT displays by attackers who do not have a direct line of sight to the
screen. Kuhn’s attacks recover the contents of a CRT screen by measuring the
sequence of changes to overall (perhaps reflected) luminosity, since that sequence
of changes reveals which pixels are being excited in each scan line.

Within the computer security research community, early studies of acoustic

24At some point, the Soviet Union also became aware that emissions were a vulnerability.
The standards for suppression of radio frequency interference they published in 1954 were
mysteriously more stringent for communications equipment than other equipment. And in the
mid-1960’s, evidence was uncovered that the Soviet Union was monitoring RF and acoustic
emissions from devices inside the U.S. Embassy in Moscow.

July 2022 Copyright Fred B. Schneider All rights reserved



384 Chapter 13. Run-time Assumptions under Attack

side channels focused on keyboard emissions. Asonov and Agrawal [4] trained a
neural network to recover keypresses from the sounds generated by an IBM PC
keyboard.25 Once trained, this neural network worked for all typists and for all
instances of a given keyboard make and model, but retraining was required for
di↵erent keyboard models. Follow-on work by others focused on improvements
to training. For example, having training data be labeled (which is required
in [4]) is shown to be unnecessary in Zhuang, Zhou and Tygar [72], and the use
of short sequences of keypresses (instead of individual keypresses) for training
is investigated in Berger, Wool, and Yaedor [12]. Much work followed; space
limitations preclude giving a survey here.

Keyboards are not the only source of acoustic emissions in a computing sys-
tem. Briol [15] is the first to observe that printing di↵erent characters on a dot
matrix printer produces acoustic emissions having di↵erent waveforms.26 That
paper, however, does not give attacks to recover what is being printed from those
“compromising sonsorous [sic] vibrations” [15]. Subsequently, Backes et al. [5]
does create attacks by leveraging the intervening two decades of developments
in machine learning, feature extraction in music and speech, and speech recog-
nition. But mechanical devices are not the only source of problematic acoustic
emissions in a computing system. Genken, Shamir and Tromer [23] shows how
a 4096-bit RSA key can be recovered by recording and analyzing hum caused
by the capacitors and coils in the regulated power supply for a CPU.

Physical side-channels begin to have commercial significance with the de-
ployment of smartcards that controlled access to value by using secret keys
and cryptographic operations.27 To asses the risk of incurring losses required
understanding what side-channel attacks would be feasible for threats having
physical access to the smartcard. With that goal in mind, Kocher [38] shows
how to perform timing attacks on implementations of Di�e-Hellman, RSA, DSS,
and other cryptosystems. That paper also suggests some defenses: making all
cryptographic operations take the same amount of time, depriving attackers ac-
cess to an accurate time source, or performing cryptographic operations on data
that has been blinded. Constant-time cryptography seemed the most promising
of those defenses, so researchers undertook developing constant-time implemen-
tations of various cryptographic operations (e.g., Bernstien et al. [14]) as well
as methods for analyzing a program to determine if its executions are constant
time (e.g., Barth et al. [7]).

Attacks that exploit other side-channels were also explored. Kocher et
al. [39] leads the way with DES attacks based on monitoring power-consumption.

25An attack previously published in Song, Wagner and Tian [62] had exploited di↵erences
in times between key presses (which varied according to the placement of those keys on a
keyboard) to reduce the search space for recovering a password typed over an SSH connection.
When using an SSH connection, each character typed would be encrypted and transmitted in
a separate packet, and the time between transmission of those packets was a good estimate
for the time between the key presses that generated those packets.

26Briol [15] also showed that printing di↵erent characters produced di↵erent wave-forms for
power consumption and for RF emissions.

27Télécerte, launched in 1983 for payment in French pay phones, was the first large-scale
use of smartcards cards.

July 2022 Copyright Fred B. Schneider All rights reserved



Notes and Reading 385

Quisquater and Samyde [57, 58] subsequently discusses how those attacks could
be transformed into attacks that use electromagnetic emissions instead of power
consumption; actual attacks to retrieve key material being employed by smart-
card implementations of DES and RSA are described by Gandolfi, Mourtel, and
Francis [18]. Agrawal et al. [3] gives a systematic account of side-channel attacks
based on electromagnetic emissions from semiconductor devices.

Attacks that exploit the specifics of a cryptosystem’s implementation are
not limited to smartcards or to exploiting physical side-channels. Kelsey et
al. [33], which generalizes Kocher’s timing attacks to implementations of prod-
uct ciphers, suggests that the information needed by an attacker could come
from measuring a cache-hit ratio during an execution. (Hu [31] had already
shown how a shared main-memory cache could become a covert channel on a
mainframe computer.) Side-channel attacks that used main-memory caches be-
gin with attacks on DES by Page [54] and Tsunoo et al. [64]. The formulation
of such cache-based timing attacks in terms of Evict+Time and Prime+Probe
is introduced in Osvik, Shamir and Tromer [53] in connection with attacks on
AES implementations that they give.

Internal side-channels also can be created using parts of a processor’s mi-
croarchitecture that are shared with a program executing cryptographic op-
erations. A 2007 attack in Aciiçmez, Koç, and Seifert [2] recovers keys from
executions of RSA by using the branch predictor as a side channel; an attack
in Acıiçmez [1] uses the instruction cache (I-cache) as a side channel to attack
OpenSSL. Gras et al. [24] uses a translation lookaside bu↵er (TLB) to leak keys
RSA and EdDSA secret keys. The survey by Ge et al. [22] discusses these, many
other attacks, and the various defenses that have been proposed.

Attacks on cryptosystem implementations by using internal side-channels
typically infer details about an execution of some cryptographic operation from
measurements of execution timings. Brumley and Boneh [16] is the first to
demonstrate that the timing measurement can be done remotely—an attacker
learns the private key of an SSL server by remotely measuring the time that
server takes to respond to decryption queries. Subsequently, Bernstein [13] de-
vises a cache-timing attack, where an attacker located elsewhere in the network
detects the timing variations needed to recover an AES key that is being used.

Some attacks involving internal side-channels require the attacker to exe-
cute a program on the processor executing some cryptographic operation being
attacked. Clouds, which typically do not give users control over processor as-
signments, would therefore seem to o↵er a safe hosting environment. Ristenpart
et al. [59] shows that they don’t—with high probability, an attacker can cause
a program being run in such a cloud to get assigned to the processor executing
some target of attack. Stronger isolation of virtual machines, processes, or com-
partments could eliminate internal side-channels that depend on the sender and
receiver being co-resident. There have been numerous proposals in support,
but thus far they have not been embraced by hardware and system software
producers.

July 2022 Copyright Fred B. Schneider All rights reserved



386 Chapter 13. Run-time Assumptions under Attack

Tamperproof Processors. Programmers assume that computer hardware
will function as expected. But even mainframe computers in locked machine
rooms are vulnerable to tampering during regularly-scheduled maintenance pe-
riods. Molho [49] was among the first to write about this, discussing how a
maintenance technician, by changing just a few wires in an IBM 360/50 main-
frame, could disable that processor’s circuits for restricting execution of privi-
leged instructions and for protecting parts of memory.

With the advent of small and low cost microprocessors, computers no longer
had to be housed in machine rooms. Cash machines, smartcards, and personal
computers were now feasible.28 Because legitimate users required physical access
in order to operate this equipment, attackers had physical access, too. Price [56]
seems the first to describe many of the now standard approaches for building
tamperproof packagings: potting to obstruct access to components and connec-
tions, fine wires in that potting to detect penetration attempts, and di↵erent
positioning for those wires in each chip instance so that attackers who decon-
struct one instance of a chip do not learn information that helps in compromising
another instance.

IBM researchers were among the first to build and write about a system that
used these methods. The prevailing wisdom was that sales of personal comput-
ers would be fueled by a rich market for application software, but developers
would be reluctant to invest in building such software absent barriers to prevent
illicit copying. Software alone could not solve that piracy problem, since its
execution could be subverted by tampering with the hardware. Tamperproof
hardware was required. So a group at the Yorktown research laboratory de-
veloped the tamperproof µABYSS coprocessor [66] to support their ABYSS (A
Basic Yorktown Security System) architecture [68] for preventing illicit distribu-
tion of personal computer software. Although µABYSS never became a product,
it was a precursor to a series of tamperproof crypto-coprocessor products from
IBM that enjoyed considerable success in the market.

Tamperproof packaging interferes with only certain means for getting phys-
ical access to monitor or change the operation of a circuit. Physical access to
a circuit becomes a less significant vulnerability, however, if a circuit’s realiza-
tion is itself tamperproof. Physically unclonable functions (PUFs) are a class
of intrinsically tamperproof circuit realizations. Gassend et al. [21] introduced
the term PUF and proposed incorporating a PUF into an integrated circuit.
Those authors, originally seeking a way to authenticate silicon chips, also dis-
cuss in [20] how to use a PUF in solving other security problems. For more
details about PUFS, see the primer by Bauer and Hamlet [9] or the tutorial by
Herder et al. [29]. Figures 13.2 and 13.3 are based on Suh and Devadas [63].

The idea of capturing unique physical properties of an inanimate object in
a digital signature had been brought to the cryptography community a decade
earlier by Simmons [60], who described two schemes developed in the 1980’s at
Sandia by a colleague Don Bauder. One scheme facilitated detection of counter-

28The classified literature doubtless also discusses uses for microprocessors in controlling
weapons systems and secure communication.

July 2022 Copyright Fred B. Schneider All rights reserved



Notes and Reading 387

feit paper money [8]; the other—a reflective particle tag (RPT)—enabled inven-
torying nuclear weapons in support of the Intermediate-range Nuclear Forces
(INF) treaty. Oliver and Fritz Kömmerling took the next step in a December
2000 patent filing [40] that showed how properties in the packaging or substate
for an integrated circuit could be used for a tamperproof approach to generating
a cryptographic key—in e↵ect, describing a special-purpose PUF.

Attacks on Memory. The e↵ects of cooling on RAM remanence was re-
ported by Link and May in 1979 [44], and those e↵ects were reconfirmed for
circa 1988 commercially available DRAM in Wyns et al. [71, 70] and for circa
2002 commercially available SRAM in Skorobogatov [61]. Weingart [66] in 1987
suggests that freezing the RAM chips implementing a volatile memory would
allow an attacker to recover secrets that had been stored before the computer
was powered down. Actual attacks to recover encryption keys from DRAM
after a computer had been powered down were demonstrated by a group at
Princeton [28]; the term “cold boot attack” was introduced in that paper.

Cooling is not the only physical e↵ect that attackers can use to prolong
remanence for RAM chips. Weingart [67] notes that X-ray band irradiation
of a RAM chip will imprint the chip’s contents for later inspection. He also
suggests that short duration high-voltage spikes might have the same e↵ect.
See Gutmann [27] for explanations of how various physical phenomena cause
data remanence in semiconductor memory devices.

Kim et al. [35], describes why row-hammer attacks ought to be possible,
gave code (the basis for Figure 13.6) to cause these targeted disturbance errors,
and analyzed possible defenses. Probabilistic Adjacent Row Activation (PARA)
was introduced in that paper as a lower-cost alternative to row-hammer defenses
that use row-access counts (or approximations) for instigating additional refresh
operations of likely victims. DRAM disturbance errors, however, had been ob-
served starting with the first commercially available DRAM, the Intel 1103
introduced in October 1970. By 1999, Van de Goor and de Neef [52] were con-
sidering a “hammer test” in experiments to assess ways to evaluate DRAM chip
reliability; the hammer test would write each cell 1000 times and then verify
that nearby cells were not disturbed.29 The goal of avoiding disturbance er-
rors for all workloads—especially given expectations of the higher-density chips
to come—resulted in Intel engineers developing schemes that used row-access
counts to instigate additional row refreshes. These schemes are described in
patent applications [6, 25] that were filed in 2012 (becoming public only some
months after Kim et al. [35] had been submitted for publication). The Intel
work doubtless is the basis for Target Row Refresh (TRR) found in the various
DRAM standards from JDEC (Joint Electron Device Engineering Council).

Since virtually all systems included DRAM, the revelations in Kim et al. [35]
prompted the security community to engage. A 2020 retrospective by Mutlu and

29The term “hammer test” had further evolved by August 2013, where we see a slide
deck [48] for a MemCon talk that is using the term “row hammer” for this source of DRAM
disturbance errors.

July 2022 Copyright Fred B. Schneider All rights reserved



388 BIBLIOGRAPHY

Kim [50] surveys that work, including how attacks to flip a bit can be leveraged
for taking control of a system, how software might be modified to resist row-
hammer attacks, and various proposals for hardware defenses. Various TRR
versions are being implemented today by DRAM manufacturers—probably be-
cause TRR is part of JDEC DRAM standards and involves no changes to other
hardware or to software. Frigo et al. [50] measure the e↵ectiveness of these
TRR implementations in defending against row-hammer attacks, finding that
the defenses circa 2020 were not completely e↵ective.

Attacks on Magnetic Storage. Guttmann [26] discusses the relevant physics
foundations and engineering challenges for implementing magnetic storage (circa
1996), how remanance is being produced, recovery of values using magnetic
force microscopy and other laboratory instrumentation, and protocols for eras-
ing values. Although some of that material does not apply to newer storage
technologies, that paper remains an important resource, and Guttmann has
been providing updates on his web site. Generally accepted guidance for sani-
tization of magnetic media is given by NIST [36]. This guidance is not followed
often enough, though, as a study by Garfinkel and Shelat [19] showed. In that
study, the authors collected a large number of decommissioned computers and,
because disk sanitization had been performed poorly or not at all, were able to
recover confidential personal from the disks.

Bibliography

[1] Onur Aciiçme. Yet another microarchitectural attack: Exploiting I-cache.
In Proceedings of the 2007 ACM Workshop on Computer Security Archi-
tecture, CSAW ’07, pages 11–18, New York, NY, USA, 2007. Association
for Computing Machinery.

[2] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret
keys via branch prediction. In Topics in Cryptology – CT-RSA 2007, The
Cryptographers’ Track at the RSA Conference 2007, volume 4377 of Lec-
ture Notes in Computer Science, pages 225–242, Berlin, Heidelberg, 2007.
Springer.

[3] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Ro-
hatgi. The EM side—Channel(s). In Burton S. Kaliski, Çetin K. Koç, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems –
CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages
29–45, Berlin, Heidelberg, 2003. Springer.

[4] D. Asonov and R. Agrawal. Keyboard acoustic emanations. In Proceedings
of the 2004 IEEE Symposium on Security and Privacy, pages 3–11. IEEE
Computer Society, May 2004.

July 2022 Copyright Fred B. Schneider All rights reserved



BIBLIOGRAPHY 389

[5] Michael Backes, Markus Dürmuth, Gerling Sebastian, Manfred Pinkal, and
Caroline Sporleder. Acoustic side-channel attacks on printers. In Proceed-
ings of the 19th USENIX Conference on Security, USENIX Security’10,
USA, August 2010. USENIX Association.

[6] Kuljit S. Bains, John B. Halbert, Christopher P. Mozak, Theordore Z.
Schoenborn, and Zvika Greenfield. Row hammer refresh command. US
Patent Application Publication US 2014/0006703 A1. Filed June 30 2012,
publication date January 2, 2014.

[7] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David
Pichardie. System-level non-interference for constant-time cryptography.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pages 1267–1279. Association for Com-
puting Machinery, 2014.

[8] D. W. Bauder. An anti-counterfeiting concept for currency systems. Tech-
nical Report PTK–11990, Sandia National Labs, Albuquerque, NM, 1983.

[9] Todd Bauer and Jason Hamlet. Physical unclonable functions: A primer.
IEEE Security and Privacy, 12(6):97–1015, November/December 2014.

[10] D. Elliott Bell and Leonard J. La Padula. Secure computer systems: A
mathematical model. Technical Report ESD-TR-73-278, Volume II, Elec-
tronic Systems Division (AFSC), Hanscom Field, Bedford, MA, November
1973.

[11] D. Elliott Bell and Leonard J. La Padula. Secure computer systems: Math-
ematical foundations. Technical Report ESD-TR-73-278, Volume I, Elec-
tronic Systems Division (AFSC), Hanscom Field, Bedford, MA, November
1973.

[12] Yigael Berger, Avishai Wool, and Arie Yeredor. Dictionary attacks using
keyboard acoustic emanations. In Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security, CCS ’06, pages 245–254.
Association for Computing Machinery, 2006.

[13] Daniel J. Bernstein. Cache-timing attacks on AES, 2005.
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[14] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast
constant-time code-based cryptography. In Guido Bertoni and Jean-
Sébastian Coron, editors, Cryptographic Hardware and Embedded Systems
– CHES 2013, volume 8086 of Lecture Notes in Computer Science, pages
250–272. Springer-Verlag, 2013.

[15] Roland Briol. Emanation: How to keep your data confidential. In Proceed-
ings Symposium on Electromagnetic Security for Information Protection,
SEPI ’91, pages 225–234, November 1991.

July 2022 Copyright Fred B. Schneider All rights reserved



390 BIBLIOGRAPHY

[16] David Brumley and Dan Boneh. Remote timing attacks are practical.
In 12th USENIX Security Symposium (USENIX Security 03), pages 1–14,
Washington, D.C., August 2003. USENIX Association.

[17] National Computer Security Center. Trusted computer system evaluation
criteria. Technical Report CSC-STD-001-83, Department of Defense, Au-
gust 1983.

[18] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Çetin K. Koç, David Naccache, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems –
CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages
251–261, Berlin, Heidelberg, May 2001. Springer.

[19] Simson L. Garfinkel and Abhi Shelat. Remembrance of data passed: A
study of disk sanitization practices. IEEE Security and Privacy, 1(1):17–
27, January 2003.

[20] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas.
Controlled physical random functions. In Proceedings of 18th Annual Com-
puter Security Applications Conference, CSAC ’02, pages 149–160. IEEE
Computer Society Press, December 2002.

[21] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas.
Silicon physical random functions. In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security, CCS ’02, pages 148–160.
Association for Computing Machinery, November 2002.

[22] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contemporary
hardware. Journal of Cryptographic Engineering, 8(1):1–27, 2018.

[23] Daniel Genkin, Adi Shamir, and Tromer Eran. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, pages 444–461. Springer,
August 2014.

[24] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giu↵rida. Translation
leak-aside bu↵er: Defeating cache side-channel protections with TLB at-
tacks. In 27th USENIX Security Symposium (USENIX Security 18), pages
955–972, Baltimore, MD, August 2018. USENIX Association.

[25] Zvika Greenfield, John B. Halbert, and Kuljit S. Bains. Method, apparatus
and system for determining a count of accesses to a row of memory. US
Patent Application Publication US 2014/0085995 A1. Filed September 25
2012, publication date March 27, 2014.

[26] Peter Gutmann. Secure deletion of data from magnetic and solid-state
memory. In Proceedings of the 6th Conference on USENIX Security Sym-
posium, USA, July 1996. USENIX Association.

July 2022 Copyright Fred B. Schneider All rights reserved



BIBLIOGRAPHY 391

[27] Peter Gutmann. Data remanence in semiconductor devices. In 10th
USENIX Security Symposium (USENIX Security 01), Washington, D.C.,
August 2001. USENIX Association.

[28] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and EdwardW. Felten. Lest we remember: Cold boot attacks on encryption
keys. In 17th USENIX Security Symposium (USENIX Security 08), San
Jose, CA, July 2008. USENIX Association.

[29] Charles Herder, Meng-Day (Mandel) Yu, Farinaz Koushanfar, and Srini-
vas Devadas. Physical unclonable functions and applications: A tutorial.
Proceedings of the IEEE, 102(8):1126–1141, 2014.

[30] Wei-Ming Hu. Reducing timing channels with fuzzy time. In Proceedings
of the 1991 IEEE Symposium on Security and Privacy, pages 8–20. IEEE
Computer Society Press, May 1991.

[31] Wei-Ming Hu. Lattice scheduling and covert channels. In Proceedings of
the 1992 IEEE Symposium on Security and Privacy, SP ’92, pages 52–61.
IEEE Computer Society Press, 1992.

[32] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason,
and Cli↵ord E. Kahn. A VMM security kernel for the VAX architecture. In
Proceedings of the 1990 IEEE Symposium on Security and Privacy, pages
2–19. IEEE Computer Society, May 1990.

[33] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side chan-
nel cryptanalysis of product ciphers. In Jean-Jacques Quisquater, Yves
Deswarte, Catherine Meadows, and Dieter Gollmann, editors, Computer
Security — ESORICS 98, volume 1485 of Lecture Notes in Computer Sci-
ence, pages 97–110, Berlin, Heidelberg, 1998. Springer.

[34] Richard A. Kemmerer. Shared resource matrix methodology: An approach
to identifying storage and timing channels. ACM Transactions on Com-
puter Systems, 1(3):256–277, August 1983.

[35] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in mem-
ory without accessing them: An experimental study of DRAM disturbance
errors. In Proceeding of the 41st Annual International Symposium on Com-
puter Architecuture, ISCA ’14, pages 361–372. IEEE Press, 2014.

[36] Richard Kissel, Andrew Regenscheid, Matthew Scholl, and Kevin Stine.
Guidelines for media sanitization. Technical Report NIST Special Publica-
tion 800–88, National Institute of Standards and Technology, Computer Se-
curity Division, Information Technology Laboratory, Gaithersburg, Mary-
land, December 2004.

July 2022 Copyright Fred B. Schneider All rights reserved



392 BIBLIOGRAPHY

[37] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. Communications of the ACM, 63(7):93–101, June
2020.

[38] Paul C. Kocher. Timing attacks on implementations of Di�e-Hellman,
RSA, DSS, and other systems. In Annual International Cryptology Confer-
ence (CRYPTO ’96), volume 1109 of Lecture Notes in Computer Science,
pages 104–113. Springer, 1996.

[39] Paul C. Kocher, Joshua Ja↵e, and Benjamin Jun. Di↵erential power analy-
sis. In Proceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology (CRYPTO ’99), volume 1666 of Lecture Notes
in Computer Science, pages 388–397, Berlin, Heidelberg, 1999. Springer-
Verlag.

[40] Oliver Kömmerling and Fritz Kömmerling. Anti tamper encapsulation for
an integrated circuit. U.S. Patent 7,005,733 B2. Filed December 26, 2000,
issued February 28, 2006.

[41] Markus G. Kuhn. Optical time-domain eavesdropping risks of CRT dis-
plays. In Proceedings of the 2002 IEEE Symposium on Security and Pri-
vacy, pages 3–18. IEEE Computer Society, May 2002.

[42] Markus G. Kuhn. Compromising emanations: Eavesdropping risks of com-
puter displays. PhD thesis, University of Cambridge, Computer Laboratory,
December 2003. Technical report UCAM-CL-TR-577.

[43] Butler W. Lampson. A note on the confinement problem. Communications
of the ACM, 16(10):613–615, October 1973.

[44] W. Link and H. May. Eigenschaften von MOS-ein-transistorspeicherzellen
bei tiefen temperaturen. Archiv für Etektronik und Übertragungstechnik,
33, June 1979.

[45] Steve Lipner, Trent Jaeger, and Mary Ellen Zurko. Lessons from VAX/SVS
for high-assurance VM systems. IEEE Security and Privacy, 10(6):26–35,
2012.

[46] Steven B. Lipner. A comment on the confinement problem. In Proceedings
of the Fifth ACM Symposium on Operating Systems Principles, SOSP ’75,
pages 192–196, New York, NY, USA, 1975. Association for Computing
Machinery.

[47] Joe Loughry and David A. Umphress. Information leakage from optical em-
anations. ACM Transactions on Information Systems Security, 5(3):262–
289, August 2002.

July 2022 Copyright Fred B. Schneider All rights reserved



BIBLIOGRAPHY 393

[48] Mike Micheletti. Tuning DDR4 for power and perfor-
mance. Slides from presentation at MemCon, August 2013.
http://cdn.teledynelecroy.com/files/whitepapers/tuningddr4 for power
performance.pdf.

[49] Lee M. Molho. Hardware aspects of secure computing. In Harry L. Cooke,
editor, Proceedings of the 1970 Spring Joint Computer Conference, vol-
ume 36 of AFIPS Conference Proceedings, pages 135–141. AFIPS Press,
May 1970.

[50] Onur Mutlu and Jeremie S. Kim. Rowhammer: A retrospective. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 39(8):1555–1571, August 2020.

[51] National Security Agency. TEMPEST: A signal problem. NSA Cryp-
tologic Spectrum, 2(3):26–30, Summer 1972. https://cryptome.org/nsa-
tempest.pdf.

[52] J. de Neef and A van de Goor. Industrial evaluation of DRAM tests. In
Design, Automation & Test in Europe Conference & Exhibition, pages 623–
630. IEEE Computer Society, March 1999.

[53] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and coun-
termeasures: The case of AES. In David Pointcheval, editor, Topics in
Cryptology – CT-RSA 2006, The Cryptographers’ Track at the RSA Con-
ference 2006, volume 3860 of Lecture Notes in Computer Science, pages
1–20, Berlin, Heidelberg, 2006. Springer.

[54] Daniel Page. Theoretical use of cache memory as a cryptanalytic side-
channel. Technical Report CSTR-02-003, Computer Science Department,
University of Bristol, 2002.

[55] Gerald J. Popek and Charles S. Kline. Verifiable secure operating sys-
tem software. In Proceedings of the National Computer Conference and
Exposition, AFIPS ’74, pages 145–151, New York, NY, USA, May 1974.
Association for Computing Machinery.

[56] W. L. Price. Physical security of transaction devices. Technical Memo
DITC 4/86, National Physical Laboratory, January 1986.

[57] Jean-Jacques Quisquater and David Samyde. A new tool for non-intrusive
analysis of smart cards based on electro-magnetic emissions. The SEMA
and DEMA methods. Presented at Eurocrypt 2000 Rump Session, May
2000. Burgge, Belgium.

[58] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis
(EMA): Measures and counter-measures for smart cards. In Isabelle Attali
and Thomas P. Jensen, editors, Smart Card Programming and Security,

July 2022 Copyright Fred B. Schneider All rights reserved



394 BIBLIOGRAPHY

Proceedings of International Conference on Research in Smart Cards, E-
smart 2001, volume 2140 of Lecture Notes in Computer Science, pages
200–210, Berlin, Heidelberg, September 2001. Springer.

[59] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get o↵ of my cloud: Exploring information leakage in third-party
compute clouds. In Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS ’09, pages 199–212, New York, NY,
USA, 2009. Association for Computing Machinery.

[60] G. J. Simmons. Identification of data, devices, documents and individuals.
In Proceedings 25th Annual 1991 IEEE International Carnahan Conference
on Security Technology, pages 197–218, 1991.

[61] S. Skorobogatov. Low temperature data remanence in static RAM. Techni-
cal Report UCAM-CL-TR-536, University of Cambridge, Computer Labo-
ratory, June 2002. https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
536.pdf.

[62] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analy-
sis of keystrokes and timing attacks on SSH. In Proceedings of the 10th
USENIX Security Symposium, USENIX Security ’01, Washington, D.C.,
August 2001. USENIX Association.

[63] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for
device authentication and secret key generation. In Proceedings of the 44th
Annual Design Automation Conference, DAC ’07, pages 9–14, New York,
NY, USA, June 2007. Association for Computing Machinery.

[64] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hi-
roshi Miyauchi. Cryptanalysis of DES implemented on computers with
cache. In Colin D. Walter, Çetin K. Koç, and Christof Paar, editors, Cryp-
tographic Hardware and Embedded Systems (CHES 2003), volume 2779 of
Lecture Notes in Computer Science, pages 62–76, Berlin, Heidelberg, 2003.
Springer.

[65] Wim van Eck. Electromagnetic radiation from video display units: An
eavesdropping risk? Computers & Security, 4(4):269–286, December 1985.

[66] S. H. Weingart. Physical security for the µABYSS system. In Proceedings
of the 1987 IEEE Symposium on Security and Privacy, pages 52–52. IEEE
Computer Society Press, April 1987.

[67] Steve H. Weingart. Physical security devices for computer subsystems: A
survey of attacks and defenses. In Çetin K. Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems—CHES 2000, pages 302–
317, Heidelberg, 2000. Springer.

July 2022 Copyright Fred B. Schneider All rights reserved



BIBLIOGRAPHY 395

[68] S. R. White and Liam Comerford. ABYSS: A trusted architecture for soft-
ware protection. In Proceedings of the 1987 IEEE Symposium on Security
and Privacy, pages 38–38. IEEE Computer Society Press, April 1987.

[69] John C. Wray. An analysis of covert timing channels. In Proceedings of the
1991 IEEE Symposium on Security and Privacy, pages 2–7. IEEE Com-
puter Society Press, May 1991.

[70] P. Wyns and R. L. Anderson amd W. F. DesJardins. Temperature de-
pendence of required refresh time in dynamic random access memories. In
Proceedings Symposium Low Temperature Electronics and High Tempera-
ture Superconductors, volume 88–9, pages 234–239. The Electrochemical
Society, 1988.

[71] P. Wyns and R. L. Anderson. Low-temperature operation of silicon dy-
namic random-access memories. IEEE Transactions on Electron Devices,
36(8):1423–1428, 1989.

[72] Li Zhuang, Feng Zhou, and J. D. Tygar. Keyboard acoustic emanations
revisited. In Proceedings of the 12th ACM Conference on Computer and
Communications Security, CCS ’05, pages 373–382, New York, NY, USA,
2005. Association for Computing Machinery.

July 2022 Copyright Fred B. Schneider All rights reserved




