
Chapter 11

Measured Principals and
Gating Functions

A program running on a processor can be considered a principal. Whether that
principal will comply with a given security policy depends on what properties
its executions satisfy. We might try to infer those properties by using the name
of the program (e.g., Linux4.8.0-36-generic or gcc 4.3.2) to identify code
that we or some trusted authority then analyzes. But to make inferences about
the principal’s executions from that analysis, we must also establish:

• the binary being executed corresponds to the code that was analyzed,

• initialization data read by the program is what the analysis assumed, and

• services that the execution environment provides perform as expected.

Measured principals provide a way to implement this approach.
The defining characteristic of being a measured principal is having a name

that is derived from the binary being executed, initialization data read, and
the name of a measured principal that is providing the execution environment.
Moreover, we require the name of a measured principal to be derived in such a
way that changing one or more bits of those elements would lead to an unpre-
dictably di↵erent name. The name of measured principal can therefore serve as
a label for properties we believe to be satisfied by the principal’s executions.

A gating function1 [K-F](⋅) is a cryptographic function obtained by adding
access control that restricts uses of cryptographic function K-F(⋅) and its asso-
ciated key K:

• Key K can be used only by gating functions [K-F](⋅) naming K. Other
accesses to K are blocked.

1The use of square brackets for naming a gating function is not standard notation. We
introduce it to distinguish gating functions from ordinary cryptographic functions, graphically
depicting that access to K and F is protected.
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298 Chapter 11. Measured Principals and Gating Functions

• Invocations ofK-F(⋅) succeed only in systems satisfying an associated con-
figuration constraint Config([K-F]), which is a set of measured principals
that must have started executing.

So gating functions enforce a form of authentication-based access control, where
binary executables as well as their run-time environments are being authenti-
cated. That means Config([K-F]) can provide assurance about whether invoca-
tions of [K-F](⋅) could violate a given security policy because (i) an invocation of[K-F](⋅) requires that the measured principals in Config([K-F]) have started
executing, and (ii) the name of a measured principal can be associated with
properties that we believe will be satisfied by that principal’s executions.

Gating functions support enforcement of a wide range of restrictions on ac-
cess to digital content. Confidentiality can be enforced by using encryption.
Integrity can be protected by using digital signatures, message authentication
codes, or authenticated encryption—all make unauthorized updates detectable
to subsequent readers, although unauthorized writes do compromise availability.
Gating functions also can be used to generate attestations that provide infor-
mation about the system configuration when a system response is produced.

Isolation is a combination of confidentiality and integrity. The isolation that
gating functions and cryptography enforce di↵ers from the isolation enforced by
the system abstractions—processes, virtual machines, and containers—discussed
in Chapter 10. The isolation enforced by gating functions is weaker because they
don’t protect availability, whereas the system abstractions block unauthorized
writes and, therefore, do preserve availability. The isolation enforced by gat-
ing functions is stronger because they require that certain code be running as
a prerequisite for access; in comparison, the system abstractions are agnostic
about the code they are isolating and thus (inadvertently) might run malware.
Finally, attestation that gating functions can implement is not supported by the
system abstractions.

11.1 Measured Principal Descriptions

One way to satisfy the requirements for a measured principal’s name N (D) is
to derive that name from a description D, which is a sequence2 �d1 d2 . . . dn�
of descriptors such that3

• changing one or more of the descriptors in D results in a new description
D
′ with an unpredictably di↵erent name N (D′),

2Using a set would be less expressive than using a sequence. For example, consider two
measured principals: (i) an operating system that runs in a virtual machine, (ii) a hypervisor
that is started by an operating system. Both measured principals involve the same resources
(viz. a hypervisor and an operating system). A description defined by a set of descriptors for
those resources would not distinguish between (i) and (ii); a description defined by a sequence,
ordered by first access, does distinguish.

3For those wondering about the etymology of the term “measured principal”, some authors
use the term measurement for what we call a descriptor and measurement list or measurement
chain for what we call a description.
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11.1. Measured Principal Descriptions 299

• each descriptor di is derived from some resource at the time of first access
by the measured principal being named, and

• descriptors are listed in order of first access by the measured principal
being named.

Examples of resources include: hardware processors, input/output devices, ex-
ecutables, regions of storage, and files. Our goal is for a description to indicate
whether the associated measured principal can be trusted to satisfy some prop-
erties. This goal is facilitated if each descriptor is not just an arbitrary name but
can be interpreted as a label for properties satisfied by an associated resource.

A principal’s executions are determined by the processor on which it runs, all
of the code that processor has executed since the last reboot (assuming reboot
resets the processor state), and information read at initialization and subse-
quently. So a conservative implementation of the description for a measured
principal P would include a prefix that comprises descriptors for all interpreters
(hardware processors and/or software) and all storage (registers, memory, disk)
accessed prior to starting P . For example, in a description �d1 d2 . . . dn� for the
measured principal associated with an operating system, d1 might identify the
hardware processor on which the operating system booted, d2 might be derived
from the firmware, d3 might identify the contents of disk blocks comprising boot
code, and so on.

Completeness of Descriptions. A description that does not include a de-
scriptor for each resource that a measured principal has accessed could lead to
inaccurate predictions about properties of executions. We then might trust a
system that is not trustworthy or be prompted to install defenses against prob-
lematic executions that cannot actually arise. For example, because firmware
and boot routines restrict possible execution by an operating system and its
clients, a description for an operating system will be more useful for predict-
ing possible executions if that description includes descriptors for the hardware
processor, firmware, and boot routines.

More-complete descriptions bring other benefits, too. A more-complete de-
scription for a measured principal P can facilitate blocking attacks embedded
in a modified version P ′ that masquerades as P . This is because the additional
code or file(s) accessed to create P ′ would produce a di↵erent description and,
therefore, P ′ will be given an unpredictably di↵erent name from the name that
P was given. The di↵erent name would cause gating functions to block P ′ from
using the cryptographic keys that P is using. So the attempt by P ′ to masquer-
ade as P is foiled. Moreover, the unpredictability of the name P ′ is given means
(with high probability) that name would be di↵erent from the name of any of
the executing measured principals and, therefore, P ′ could not masquerade as
any of those, either.

More-complete descriptions also can prevent attackers from achieving per-
sistence by modifying files that will be reloaded each time the system restarts.
It su�ces that descriptions include descriptors for those files—descriptors that
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300 Chapter 11. Measured Principals and Gating Functions

(because the descriptor for a file will be calculated from that file’s contents)
would be di↵erent for the altered versions of the files. So, after the restart, a
measured principal that accesses the corrupted files has a di↵erent description
and, therefore, would be given an unpredictably di↵erent name from the name
given to the measured principal that read the uncorrupted system files. Gat-
ing functions that required the old name would not work when invoked by a
measured principal with the new name; the system restart would be unable to
proceed.

Complete descriptions of execution environments can be a source of incon-
venience, though. Customizations, patches, and upgrades change files contents.
Because descriptors for files are derived from file contents, measured principals
would now be given di↵erent names and their access requests would be denied
unless some sort of upgrade protocol is run. Such a protocol ought to require
that changes to the system come with a digitally-signed attestation that allows
the system to verify the integrity of the updates; an approach like Sealed-State
Upgrade Protocol (page 309) might then be employed to change content being
protected by gating functions.

11.2 Naming Schemes for Measured Principals

An attacker could co-opt a gating function [K-F](⋅) if that attacker is able
to run a measured principal that will be given the same name as a measured
principal already allowed access by Config([K-F]). So there is good reason to
prevent attackers from exerting control over the names that will be assigned to
measured principals.

An attacker can control the order in which resources are accessed by a pro-
gram it writes and runs, so an attacker can control the description that will be
constructed for the resulting measured principal. But exerting control over a
description D for a measured principal will not co-opt a gating function if it
is infeasible to predict the name N (D) that will be assigned to that measured
principal. The following requirements on naming function N (⋅) provide that
defense.

Names for Measured Principals. Function N (⋅) for assigning nameN (D) to a measured principal having description D satisfies:

Collision Resistance. If D ≠ D
′ holds then, with high probability,N (D) ≠N (D′) holds.4

Preimage Resistance. Given D, it is infeasible to construct a descrip-
tion D

′ where D ≠D′ and N (D) =N (D′) hold.
4Names will be fixed length and relatively short, whereas descriptions are neither. So there

are more possible descriptions than names, and mappingN (⋅) from descriptions to names must
map two or more di↵erent descriptions to the same name. But if the space of names is large,
then the probability of such collisions would be low in the small set of descriptions that arise
while a system is running.
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Collision Resistance implies that, in practice, names of measured principals in
a system will be unique. Therefore, it is unlikely that one measured principal
would be authorized by some gating function just because that measured prin-
cipal got assigned the same name as some other measured principal that already
is authorized. Preimage Resistance further stipulates that it is infeasible for at-
tackers to orchestrate one of those (unlikely) name collisions with a given nameN (D) by creating a principal with description D

′ that satisfies N (D′) =N (D).
Collision Resistance and Preimage Resistance also happen to be the defining

properties of a cryptographic hash function H(⋅). Therefore, the requirements
for names of measured principals are satisfied if function N (⋅) is defined in terms
of cryptographic hashes.

N (D) = � 0 if D = ��
H(N ( �d1 . . . dn−1� ) ⋅H( dn )) if D = �d1 d2 . . . dn� (11.1)

By unwinding the recursion in (11.1), we see thatN (�d1 d2 . . . dn�) incorporates
the descriptors of �d1 d2 . . . dn� in order of appearance, and there is a function
to generate the name for a description �d1 d2 . . . dn d� by using the name N for
a description �d1 d2 . . . dn�:

X (N,d)∶ H(N ⋅H( d ) ) (11.2)

We thus say that X (N,d) extends name N with descriptor d.
Allowing N (D) to be calculated incrementally accommodates descriptions

incorporating descriptors for files that have been read but become inaccessi-
ble while the description continues to evolve. System boot and other parts of
startup typically access such files. Incremental calculation ofN (D) also allows a
descriptor di+1 to become known only after descriptor di has been incorporated
into the description—an important feature if access to the resource correspond-
ing to di is needed for deciding subsequent execution.

Names for measured principals must come from trusted sources. If that
source is the local runtime environment and names are computed from de-
scriptions according to (11.1), then it su�ces for the integrity of a measured
principal’s name—but not its description—to be protected. Descriptions for
measured principals need not be protected, because a simple check is available
to determine if the integrity of a candidate description DP has been compro-
mised: if N (DP ) = NP holds and the integrity of name NP is trusted then DP

can be trusted, too.

11.2.1 Descriptor Details

Descriptors for Programs and Data. Digital computers use bit strings
to represent programs and data, whether that object is being stored by main
memory or by a long-term storage device like a disk. To prevent attackers
from counterfeiting descriptors for such objects, a descriptor dO for an object O
should be a collision and preimage resistant function of the bit string BO that
is representing O. So an obvious choice for dO is a cryptographic hash H( BO ).

January 30, 2021 Copyright   Fred B. Schneider All rights reserved



302 Chapter 11. Measured Principals and Gating Functions

This scheme for generating descriptors does mean that copies of an object
O incorporating pointers and located at di↵erent addresses will be given di↵er-
ent descriptors. If that is undesirable then O might be represented as a pair�ARMO,AIDO�, where ARMO is an address-relocation map and AIDO is an
address-independent description. Hash H(AIDO) can then serve as a descrip-
tor for object O that does not change for copies at di↵erent locations. Such
a descriptor, however, would be insensitive to di↵erences in ARMO, and those
di↵erences might well cause copies of O to satisfy di↵erent sets of properties.

Descriptors for Hardware Processors. If each hardware processor hw has
a unique name N (hw) then using H(N (hw)) as the descriptor dhw for hw
prevents substitution of a di↵erent processor that will have the same descriptor.
The problem of defining descriptors for hardware processors is now reduced to
the problem of assigning unique names to hardware processors.

We might have each hardware processor provide a read-only register that
contains a unique name for use in forming the processor’s descriptor. That
approach, however, is easy to subvert. A program able to read this register
could retrieve the processor’s name for use in an emulator implemented by
software and executed on a di↵erent processor. That emulator would then be
able to impersonate the original hardware processor, subverting the association
of the name with the specific hardware processor.

We prevent such impersonations by deriving a name N (hw) for a hardware
processor hw from a unique signing key k

id
hw that hw stores, uses, but never

reveals. Tamper-proof packaging prevents attackers who have physical access to
hw from learning or changing k

id
hw . Key k

id
hw could be generated and installed by

the manufacturer of hw when the device is fabricated5 or the device itself could
generate k

id
hw by, for example, leveraging fixed and unique timing di↵erences

inevitably present in a specific semiconductor chip.
A processor instruction to compute k

id
hw -signed messages then allows corre-

sponding verification key K
id
hw to serve as N (hw). To make this hardware pro-

cessor naming scheme concrete, code for checking whether N (hw) =K holds is
given in Figure 11.1.6 The routine assumes that a register qkrid comes preloaded
with k

id
hw . It also assumes this register cannot be accessed except by execut-

ing instruction7 quote(qkrid, r,out), which computes kidhw -S(r) and writes that
value into memory out . Therefore, if r is fresh and AuthHW (K,r) returns true
then N (hw) =K holds and the underlying processor has name K.

When needed, information about the instruction set architecture ISAhw that
the processor with name K id

hw implements would be conveyed using a certificate

kC-S(K id
hw speaksfor ISAhw) (11.3)

5A manufacturer should not keep records of kidhw . Otherwise, attackers could learn kidhw by
compromising the database being stored at the manufacturer.

6K-S?(m) used in Figure 11.1 evaluates to true if m is digitally signed by a private key
corresponding to verification key K.

7See §11.3.3 for a detailed discussion of the quote instruction.
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AuthHW : function(K, r)
quote(qkrid, r,out)
if K-S?(out)

then return( true )
else return( false )

end AuthHW

Figure 11.1: Check if N (hw) =K by Using Nonce r

signed by the processor’s manufacturer or some other trusted party C, where
verification key KC is a well known and ISAhw is a subprincipal of C, so that
K

id
hw speaksfor ISAhw is implied by (11.3). This certificate need not be kept

secret, so it might be stored in read-only processor memory and/or disseminated
on demand by the processor’s manufacturer. The certificate is essential for
defending against an attacker who picks a processor name K that corresponds
to some private key k the attacker knows. If the attacker could choose K then
the attacker could install k in an attacker-provided software emulator and use
that to impersonate hw . But the attacker would not be able to create an instance
of certificate (11.3) for a public key K chosen by the attacker.

Firmware on some hardware processors can be upgraded, potentially chang-
ing ISAhw for the device. After such an upgrade, certificate (11.3) no longer
conveys the full picture, because that certificate does not say what version of
the firmware is installed. Firmware upgrades typically are performed as part of
the processor’s boot or by a function that the existing firmware supports. In
either case, prudence dictates that an upgrade request include a certificate that
authenticates the specific changes and is signed by the processor’s manufacturer.
The protocol that performs microcode updates would check this certificate be-
fore making changes and, after the changes are made, would store this certificate
to document the current microcode version and to serve as a descriptor for the
processor’s microcode. Some means also would be employed to revoke the old
certificate.

Additional Names for Hardware Processors. If there is a unique name for
each processor then descriptors and descriptions reveal whether two measured
principals are sharing a processor. That, in turn, can reveal information about
location, ownership, likely users, etc. We might desire that such information
be hidden for privacy and other reasons—especially if the information is being
included in messages sent to untrusted services.

One solution is for a processor hw to have one or more attestation identity
keys, each a surrogate for K

id
hw and usable as the name for hw . Validity of an

attestation identity key K
A
hw is conveyed by a certificate

kT -S(KA
hw speaksfor ISAhw) (11.4)

that is signed by some trusted-third party T having a well known verification
key KT . Certificate (11.4) would be generated by T in response to a request
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that contains two certificates

kC-S(K id
hw speaksfor ISAhw), k

id
hw -S(KA

hw speaksforK
id
hw)

where the first certificate gives the instruction set architecture of K id
hw and the

second gives the new key so, by transitivity of speaksfor, the same instruction
set architecture is associated with attestation identify K

A
hw as with original

identity K
id
hw .

Descriptors for Properties. When using the descriptors discussed above for
programs and data, an upgrade or other modification could lead to a di↵erent
descriptor. Compare that with a descriptor that is derived from the statement
of some property characterizing an artifact’s behaviors. Such a descriptor need
not be changed if the artifact is modified in ways that do not a↵ect the prop-
erty. So descriptors for statements of properties are less brittle than descriptors
computed directly from the artifacts themselves.

Descriptors for properties turn out to be essential. This is because descrip-
tions, names of measured principals, and system configurations used to authorize
gating functions do not have to be changed if applying a patch or upgrade leaves
unchanged the properties of that resource. (The integrity of a patch would need
to be verified before that patch is applied.) System configurations used to au-
thorize gating functions also are easier to manage if di↵erent resource instances
use the same descriptor.

The descriptor for a property would be derived from an attestation that binds
some assertion to a source, where if the source is trusted then the assertion can
be trusted. Various implementations are possible.

• A signed certificate from a trusted organization, where the contents identi-
fies the property that is purported to hold. This property should be trusted
if the certificate’s signer is trusted. A descriptor would be obtained by
computing a hash function over the certificate representation.

• The output of an analyzer. The analyzer output can be trusted by P
provided (i) a descriptor for the code executed is equal to the descriptor
for an analyzer that P trusts and (ii) P invoked the analyzer, provided
the inputs, and received the outputs. A descriptor for the analyzer output
is obtained by computing a hash function on the name of the measured
principal that executes the analyzer, a descriptor for the analyzer code,
and descriptors for the inputs.

11.2.2 Auxiliary Information

The identity or implementation details of the resources associated with individ-
ual descriptors could be important for deciding whether to trust a measured
principal. So trust assessments for measured principals are facilitated when
auxiliary information is made available for each descriptor.8

8There is no widely accepted term for what we call auxiliary information. Some authors
require that this information be incorporated into a descriptor; others call it a load list.
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Requirements for Auxiliary Information. Auxiliary information
Aux i associated with a descriptor di should allow:

(i) identification and retrieval of the objects involved in calculating de-
scriptor di,

(ii) recalculation of di from those objects, and

(iii) assessment of whether those objects should be trusted.

One example of such auxiliary information is the name of a software release
(e.g., Linux4.8.0-36-generic) or the name of a file or directory on a public
server. This information would allow relevant files to be downloaded and a
descriptor d

′
i
independently computed for that downloaded content. If its de-

scriptor d
′
i
satisfies d

′
i
= di then the files identified in Aux i correspond to di,

so properties of the resources di describes can be validated by analyzing the
downloaded files. Analysis of the downloaded files might involve testing, for-
mal methods, or simply checking that the files are from some trusted software
provider.

As another example, auxiliary information Aux i for a digital certificate cert
associated with a descriptor di might simply be cert itself. This auxiliary infor-
mation is not only useful with descriptors for properties. It also is useful with
descriptors for hardware processors, where certificate (11.3) would serve as the
auxiliary information.

The integrity of auxiliary information is crucial. But additional mechanism
is not needed for protecting that integrity, provided the integrity of measured
principal names is being protected.

Checking Integrity of Auxiliary Information. To check the integrity
of auxiliary information associated with a measured principal having a
name NP

1. Obtain and validate the integrity of a candidate description DP for
NP by checking that NP =N (DP ) holds.

2. For each descriptor di in candidate description DP , check the in-
tegrity of associated auxiliary information Aux i by using the above
Requirements for Auxiliary Information.

(a) Obtain copies of the associated resources, based on the informa-
tion provided in requirement (i).

(b) Use those copies to compute a descriptor d′
i
(as per requirement

(ii)) and compare d
′
i
with di. If di = d′i holds then the integrity

of Aux i has not been compromised.

Once integrity has been established for the auxiliary information then copies of
the resources fetched in step 2a can be analyzed (as requirement (iii)) allows)
to make a trust assessment for NP .
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11.3 Hardware Support for Gating Functions

Hardware support for gating functions typically extends a processor’s instruc-
tion set architecture by adding registers and system-mode instructions. To
illustrate, we describe an idealized embodiment. It includes:

• Instructions to update measurement registers. All but one of the measure-
ment registers is reset whenever the processor reboots. These registers are
used for defining configuration constraints.

• Instructions to generate fresh cryptographic keys and store into key regis-
ters those keys that must be kept secret.9 Values stored in key registers
persist across reboots. The key registers include sealing-key registers skr1,
..., skrN, quoting-key registers qkrid, qkr1, ..., qkrN, and unbinding-key
registers ukr1, ...., ukrN.

• Instructions that use a key K in a specified key register and compute a
gating function [K-F](⋅) to perform

– sealing to protect the confidentiality and integrity of local content,

– quoting to establish authenticity of locally produced content, or

– binding to import remote content but only if the local system satisfies
certain configuration constraints,

where Config([K-F]) is defined in terms of measurement register contents.

In this design, confidentiality of cryptographic keys is protected because (i)
unencrypted keys never leave key registers and (ii) instructions that use the
contents of a key register are computing cryptographic functions that, by design,
reveal nothing about the key. Moreover, even though values in key registers
persist across reboots, those keys cannot be abused. This is because the values
of the measurement registers do not persist across reboots. So for a gating
function to use the contents of a key register after a reboot, the measurement
registers would have to be returned to the values they had before the reboot.
That implies the same set of measured principals would have to be running after
the reboot as before the reboot (and presumably those measured principals are
trusted to use the keys).

11.3.1 Measurement Registers and Constraints

Measurement registers mr0, mr1, ..., mrN are used for defining configuration con-
straints.

Measurement register mr0 is automatically incremented each time the sys-
tem reboots. By including this counter in a configuration constraint, we can
create an ephemeral key—a key that becomes unusable after a reboot occurs.

9To avoid the cost of unnecessary mechanism, keys that need not be kept secret are stored
in memory rather than being stored in key registers.
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Ephemeral session keys defend against TOCTOU (time-of-check, time-of-use)
attacks in which an attacker instigates a reboot to load and start malware that
will run in place of principals that had been authenticated by some remote ser-
vice, causing the remote service to confuse messages from the malware with
messages being from the authenticated principals.

Measurement registers mr1, mr2, ..., mrN (unlike mr0) are reset to 0 whenever
the system reboots. System mode instructions MRreset and MRextend update
these registers. In the description of MRextend below, mem denotes the contents
(not the address) of some memory region. That contents often is the executable
for a program being incorporated into the configuration, but mem could be
initialization data.

Instruction Operation
MRreset(mri) mri ∶=0
MRextend(mri ,mem) mri ∶=H(mri ⋅H(mem))

MRreset and MRextend are the only instructions that change mr1, mr2, ..., mrN.
Values stored by these registers thus reflect past and/or current contents of one
or more memory regions. Notice that MRextend calculates values according to
(11.2), making mr1, mr2, ..., mrN ideally suited to storing names of measured
principals.

Configuration Constraints. A configuration constraint C will be specified
by listing a subset of the measurement registers and, for each, giving a value it
must store. Set of pairs C = {. . . , �i, vi�, . . . }
specifies configuration constraint

��i,vi�∈C
mri = vi. (11.5)

and can involve any subset of the measurement registers.
A configuration contraint C is satisfied during execution if and only if the

current values of the measurement registers that C mentions agree with the
values C prescribes:

ConfigSat(C)∶ �i, vi� ∈ C ⇒ mri = vi
Hardware support for gating functions typically will associate a separate

configuration constraint with each key register rather than associating a config-
uration constraint with each gating function. This limitation is not significant
when, as is typical, a single predetermined gating function (and perhaps its in-
verse, for symmetric cryptography) provides the sole way to access the value in
a given key register.

Systems often follow conventions that associate specific measurement reg-
isters with the di↵erent layers of the system software stack. For example, a
convention might stipulate that mr1 contain the name of a measured principal
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for the operating system, mr2 the name of a measured principal for middleware,
and so on.

To base trust on a configuration constraint, we must have reason to believe
that principals invoke MRextend instructions as appropriate. That belief about
principals can be justified if (i) they are measured principals, (ii) their names
derive from descriptions for software we analyzed and are therefore prepared to
trust, and (iii) we also trust the software that loaded those measured principals.
So we build a chain of trust by following execution back through the operating
system, boot-loader, firmware, and ultimately to the hardware processor. Trust
in the chain depends on having trust in every link of the chain; trust that a link
(except the first) is what it purports is derived from trust in the actions by the
code in the preceding link; trust in the first link—called the root of trust for the
chain—must be based on information from some external source.

11.3.2 Seal and Unseal

Instructions seal and unseal are gating functions to convert between unsealed
bit strings and K�C-sealed bit strings, where K is a symmetric key stored in
some sealing-key register, and C is a configuration constraint.

• Reading a K�C-sealed bit string sb reveals nothing about K or about the
unsealed bit string from which sb was derived.

• Updates to a K�C-sealed bit string are not blocked but cause subsequent
execution of unseal to fail.

Because writes to K�C-sealed bit strings are not blocked, availability of a K�C-
sealed bit string is compromised by writing to it but integrity of a K�C-sealed
bit string is not compromised.

SKRgen generates a fresh symmetric key, loads that key into an indicated
sealing-key register, and associates a configuration constraint defined by the
current values of those measurement registers selected by a bit string crSet
string stored in memory.10 Each sealing key register skri comprises two fields:
skri .key, which stores the key, and skri .config, which stores the configuration
constraint.

Instruction Operation
SKRgen(skri , crSet) skri .key ∶= fresh symmetric key

skri .config ∶= {�i, vi� � crSet[i] ∧ mri = vi}
Instruction seal is a gating function for shared-key authenticated encryption
function K -EA(⋅); instruction unseal is a gating function for corresponding
decryption function K -DA(⋅), which fails rather than decrypting an argument

10As usual, 1 denotes true and 0 denotes false. So a measurement register mri is selected if
and only if crSet[i] = 1 holds.
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not produced by K -EA(⋅).11
Instruction Operation
seal(skri , in,out) out ∶= skri .key-EA(in)
unseal(skri , in,out) if ConfigSat(skri .config)

then out ∶= skri .key-DA(in)
else fail

Any program can invoke seal to encrypt information—independent of the sys-
tem configuration. The resulting encrypted content can be recovered only by
using unseal and only when the system satisfies the configuration constraint
associated with the sealing-key register that seal used. And unseal fails if the
encrypted value is altered (because execution of K -DA(in) then fails).

By sealing the state that is being saved between executions of a given pro-
gram or service, we protect the confidentiality of that state from attackers—
including across system reboots. However, software upgrade then needs a proto-
col to migrate sealing-key registers from requiring the pre-upgrade configuration
to requiring the configuration present after the upgrade is complete. Here is a
sketch of such a protocol.

Sealed-State Upgrade Protocol.

1. System invokes unseal to transform all sealed bit strings data into
unsealed bit strings.

2. Perform software upgrade. Upgraded system is now executing and
has access to unsealed bit strings generated in step 1.

3. Upgraded system resets then reloads measurement registers and re-
provisions the sealing-key registers (using configuration constraints
that are defined using updated values in measurement registers).

4. Upgraded system, using reprovisioned sealing-key registers, invokes
seal to transform unsealed bit strings from step 1 back into sealed
bit strings.

In this protocol and elsewhere, indirection can be used to lower the cost
of sealing and unsealing large amounts of data because, to reduce the costs
for a rarely used feature, hardware implementations of seal and unseal often
are slow compared with running code for shared-key encryption and decryption
directly on general purpose hardware. So we protect state by running a shared-
key encryption routine on the processor, then use seal to protect that shared

11One implementation for K-EA(⋅) and K -DA(⋅), known as encrypt then MAC, splits sym-
metric key K into two equal size pieces: K = K1 ⋅ K2. K2 is used to generate a message
authentication code, which becomes part of a pair that K -EA(⋅) returns:

K-EA(m) = �K1-E(m), H(K1-E(m) ⋅K2)�.
K -DA( �x,h� ) returns K1-D(x) only if h = H(x ⋅ K2) holds; otherwise the invocation of
K -DA( �x,h� ) fails. See Bellare and Namprempre [4] for strengths and weakness of alter-
native constructions.
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key. This two-level scheme, however, has risks. A cryptographic key now would
be exposed in memory (rather than residing in a key register) while running
the encryption and decryption programs on the general purpose hardware. And
attackers have an easier time getting access to keys in memory than to keys that
reside in key registers protected by configuration constraints.

Key Archives. Extensions of seal and unseal facilitate time multiplexing
the key registers. KRseal seals the contents of some specified subset of the key
registers (including the key and configuration constraint fields for each) and
stores that in memory as a key archive. KRunseal restores those values to their
original key registers. In the descriptions that follow, krj denotes an arbitrary
key register, krSet is a bit string that selects a subset of the key registers, and
ska is the memory address for the key archive.

Instruction Operation
KRseal(skri , krSet , ska) let keyArchive = {�j, vj� � krSet[j] ∧ krj = vj}

in ska ∶= seal(skri , keyArchive)
KRunseal(skri , ska) let keyArchive = unseal(skri , ska)

in for �j val j� ∈ keyArchive do krj ∶= val j

Because a key archive is a sealed bit string, reading a key archive reveals nothing
about keys or configuration constraints it contains. In addition, writing to a key
archive cannot alter the values of keys or configuration constraints that will be
restored, because the invocation unseal by KRunseal will fail for a key archive
that has been modified.

11.3.3 Quoting

A quoted bit string will have an unforgeable digital signature a�xed. By using
a su�ciently restrictive configuration constraint, a valid signature implies that
the quoted bit string was generated on a specified processor while executing
specified binaries that read certain files. That, in turn, can serve as a basis
for deciding whether information conveyed by that quoted bit string should be
trusted.

To generate quoted bit strings, we use gating functions based on crypto-
graphic functions for generating and verifying digital signatures.

• Signing keys along with associated configuration constraints for a quoting
key register qkr are stored in fields qkr.key and qkr.config.

– Quoting-key register qkrid has a fixed value and has no associated
configuration constraints

qkrid.key = kidhw qkrid.config = �
where k

id
hw is a unique signing key associated with the processor hw

that hosts this register.12

12Recall (see page 302), corresponding verification key Kid
hw will be well known.
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– Quoting-key registers qkr1, ..., qkrN can be reloaded.

• Verification keys for checking digital signatures and the certificates to iden-
tify those verification keys are not secret and, therefore, they are stored
in memory rather than being stored in a key register.

QKRgen provisions a quoting-key register by (i) generating a fresh signing key,
(ii) associating a specified configuration constraint, and (iii) storing in memory
a k

id
hw -signed certificate that gives the verification key for signatures generated

using this fresh signing key.

Instruction Operation
QKRgen(qkri , crSet , mem) qkri .config ∶= {�i, vi� � crSet[i] ∧ mri = vi}

let k�K be a fresh private/public key pair
in qkri .key ∶=k

mem ∶= qkrid.key-S(qkr key∶ i K)
Instruction quote is a gating function based on a cryptographic function k-S(⋅)
for generating digitally-signed bit strings.

Instruction Operation
quote(qkri , in,out) if ConfigSat(qkri .config)

then out ∶= qkri .key-S(sig∶ i in)
else fail

Notice, bit strings that quote produces cannot be mistaken for certificates that
QKRgen produces—each contains a di↵erent prefix. As we shall see, each kind of
instruction that generates a certificate will include a distinctive prefix, making it
impossible to mistake what instruction was used to produce a given certificate.
Attacks that repurpose certificates now are more di�cult to devise.

Retrieving Configurations. To trust results produced by executing a gating
function [K-F](⋅) requires knowledge of the configuration constraint associated
with the key register that stores K. Instruction KRgetConf provides that infor-
mation; it stores into memory a k

id
hw -signed certificate for the configuration con-

straint currently associated with a specified key register. A second instruction
KRgetCurConf reveals the current configuration, so a program can test whether
a key register’s configuration constraint is currently satisfied; KRgetCurConf
stores into memory a k

id
hw -signed certificate giving the current values for any

designated set of measurement registers. Argument r allows a nonce to be
incorporated into certificates produced by these instructions, which facilitates
defending against replay attacks.

Instruction Operation
KRgetConf(kri , r ,out) out ∶= qkrid.key-S(keyCnfig∶ i r kri .config)
KRgetCurConf(crSet , r ,out) cc ∶= {�i, vi� � i ∈ crSet ∧ mri = vi}

out ∶= qkrid.key-S(curCnfig∶ r cc)
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Certificates from KRgetCurConf that include mr0 in crSet are useful for de-
fending against attacks that replay outdated immutable data objects, including
old descriptions of measured principals and old configuration constraints. For
that defense, the certificate is included as part of the object so that the certifi-
cate contents a↵ects the descriptor for that object and, consequently, it a↵ects
the name of any measured principal that incorporates a descriptor for the ob-
ject. A measured principal using an outdated version of the data object then
would be assigned a di↵erent name and have di↵erent privileges than a measured
principal that uses a current version of the data object.

11.3.4 Binding and Unbinding

If decryption with a private key k is provided by a gating function [k-D](⋅) then
information that is encrypted under the corresponding public key K can be re-
covered only by systems satisfying configuration constraint Config([k-D]). By
encrypting some information under public key K, we are binding that informa-
tion to the specific system that is able to use gating function [k-D](⋅) to invert
that encryption. Gating function [k-D](⋅) thus implements the corresponding
unbinding.

Encryption under a public key can be performed by a remote processor,
because public keys can be shared freely. That location flexibility distinguishes
binding from sealing. Sealing must be performed on the same processor as the
unsealing, since both operations must access the same key register. By allowing
encryption and decryption to be performed on di↵erent processors, binding and
unbinding provide a way for a remote client to submit an encrypted request
to some service and have assurance that the request can be decrypted only by
specific code running in its intended system configuration.

Hardware support for binding and unbinding includes unbinding-key regis-
ters to hold private keys, an instruction UKRgen to generate a public/private key
pairs with appropriate certificates, and an instruction UKRdec that implements a
gating function for decryption using a private key stored in some unbinding-key
register.

Instruction Operation
UKRgen(ukri , crSet , mem) ukri .config ∶= {�i, vi� � crSet[i] ∧ mri = vi}

let k�K be a fresh private/public key pair
in ukri .key ∶=k

mem ∶= qkrid.key-S(ukr key∶ i K)
UKRdec(ukri , in, out) if ConfigSat(ukri .config)

then out ∶= ukri .key-D(in)
else fail

UKRgen stores into memory a k
id
hw -signed certificate that identifies an unbinding-

key register ukri and gives a public key K for binding content to configurations
satisfying ukri .config. To bind content, it su�ces to encrypt using K; key
registers (and constraints) play no role in that computation.

January 30, 2021 Copyright   Fred B. Schneider All rights reserved



11.4. Remote Attestation 313

1. R �→ S : �r,P�, where r is a fresh nonce.

2. S : Generate fresh public/private keys Katt
P �kattP for use with a

gating function [kattP -S](⋅), where Config([kattP -S]) = {P}.
3. S �→ R: [kattS -S](r, P , K

att
P )

4. R: Accept Katt
P as a remote attestation key for P provided:

(a) Nonce r and name P received step 3 are the same values as
sent in step 1.

(b) K
att
S verifies digital signature received step 3.

Figure 11.2: Remote Attestation by R of P Running on S

11.4 Remote Attestation

A remote attestation protocol returns to its initiator

• the name P for a measured principal being executed by a remote host,
and

• an attestation public key K
att
P for verifying signatures on messages digitally

signed by P .

To decide whether P and messages that Katt
P verifies can be trusted, it su�ces

to have a candidate description DP along with associated auxiliary informa-
tion, perform Checking Integrity of Auxiliary Information (page 305), and then
engage in the necessary analysis to determine that the system DP describes sat-
isfies expected properties, including that digital signatures verified by K

att
P can

be created only by executing P .
Note, if rebooting the processor that is running P does not delete signing key

k
att
P then clients need to defend against TOCTOU attacks involving a reboot

that is instigated between the remote attestation that K
att
P provided and the

subsequent sending of messages thatKatt
P verifies. One such defense is to include

in DP a descriptor for a value that is incremented with each reboot. The value
of mr0 would work; but a certificate giving the current time and signed by a
trusted source also would work.

11.4.1 A Remote Attestation Protocol

A remote attestation protocol is sketched in Figure 11.2. By communicating
with some measured principal S , initiator R learns a name P and attestation
public key K

att
P for some measured principal that S is executing. The protocol

depends on the following assumptions.

(i) R trusts S and has an attestation public key K
att
S that verifies signatures

on messages digitally signed by S .
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(ii) S is the environment that executes P . Thus, description DS is a prefix of
DP and P =N (DP ) holds.

(iii) S implements gating function [kattP -S](⋅), for generating digital signatures,
as required in step 2 of the protocol in Figure 11.2.

Discharging (i) is straightforward when S comprises a hardware processor hw
and the lowest levels of its software stack. Initiator R provides a fresh challenge r
that S uses when invoking instruction KRgetConf to obtain a k

id
hw -signed certifi-

cate that attests Config([kattS -S]) is the configuration constraint associated with
a gating function [kattS -S](⋅) and K

att
S is the associated verification key. This

certificate is returned to R. Knowledge of verification key K
id
hw and challenge

r allows R to validate the source and timeliness of the certificate; knowledge
of DS allows R to compute N (DS) and verify that this value defines the con-
figuration constraint that the k

id
hw -signed certificate specifies. R then concludes

K
att
S speaksfor S . To discharge (ii) is simple, given some means to obtain

description DP . Finally, a manufacturer’s certificate like (11.3) that gives the
instruction set architecture for hw provides a basis, in conjunction with DS , for
discharging (iii).

*Formal Analysis of Remote Attestation Protocol. Formalized in CAL, the
goal of the protocol in Figure 11.2 is for initiator R to obtain values for P and
K

att
P satisfying

K
att
P speaksfor P . (11.6)

This can be formally derived from the protocol and assumptions as follows.
Step 3 of the protocol in Figure 11.2, is formalized as

K
att
S says (S .r says (Katt

P speaksfor P)) (11.7)

where a subprincipal S .r is being used to identify the activity that principal S
undertakes in processing a request accompanied by nonce r, so we have

S .r speaksfor S . (11.8)

Assumption (i) above implies

K
att
S speaksfor S . (11.9)

We are using the following CAL inference rule, which formalizes how gating
functions restrict the creation of digitally signed messages:

gating:
{T} = Config([kattT -S])
Katt

T speaksfor T
. (11.10)

The hypothesis {T} = Config([kattT -S]) is discharged by obtaining a k
id
hw -signed

certificate from S , as discussed above.
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Now, by using CAL inference rule (9.16) with (11.9) and with (11.7) we get

S says (S .r says (Katt
P speaksfor P)).

Another use of CAL inference rule (9.16) but with (11.8) yields:

S .r says (S .r says (Katt
P speaksfor P)) (11.11)

CAL inference rule says-e with (11.11) infers:

S .r says (Katt
P speaksfor P)

Because S provides the execution environment for P (due to assumption (ii)
above), we conclude that P is subprincipal of S . So from CAL inference rule
subprin we conclude S speaksfor P , and by transitivity of speaksfor CAL
inference rule deleg-trans with (11.8) we get S .r speaksfor P . Applying
(9.16) we get:

P says (Katt
P speaksfor P)

An application of CAL inference rule hand-off then yields (11.6), as desired.

11.4.2 Remote Attestation for System Startup

The remote attestation protocol just given depends on hardware support for
gating functions. We now discuss a remote attestation protocol that does not
require such hardware support but does require that system startup undertake
advance preparation for servicing future attestation requests.

System startup typically comprises stages that execute one at a time, start-
ing with processor firmware and continuing to layers of system software. The ex-
act sequence of stages will depend on the system configuration, including which
co-processors and/or specific input/output devices are present. Each stage ini-
tializes its state, does some computation, determines its successor stage, loads
code and data for that successor, and terminates by transferring control to its
successor. Once a stage has terminated, it no longer participates in remote
attestation protocols (or any other protocol, for that matter).

System startup that culminates in running a measured principal S produces
a series D

0
S ,D

1
S , . . . ,D

n

S of descriptions. Each D
i

S is the description for a stage
and corresponds to a measured principal N (Di

S), with D
n

S satisfying N (Dn

S ) =
S . A system startup remote attestation protocol

• associates a pair of public/private attestation keys K
att
i

/katt
i

with each
stage N (Di

S),
• restricts uses of katt

i
according to Config([katt

i
-S]) = {N (Di

S)}, and
• provides a set AttCertsS of certificates from which K

att
i

speaksfor N (Di

S)
can be inferred.
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1. k
att
0 ∶=kidhw ; K

att
0 ∶=K id

hw ; N (D0
S) ∶=N (hw);

2. for i ∶=0 to n − 1 do
(a) N (Di

S) loads software for its successor stage, creating description
D

i+1
S . Compute name N (Di+1

S ).
(b) N (Di

S) obtains public/private attestation keys Katt
i+1/katti+1 and installs

a gating function [katt
i+1-S](⋅), with Config([katt

i+1-S]) = {N (Di+1
S )}.

(c) AttCertsS ∶=AttCertsS ∪ {katti
-S(Katt

i+1, N (Di+1
S ))}

(d) N (Di

S) relinquishes control to N (Di+1
S ) if AuthStages(N (Di+1

S ))
holds; otherwise N (Di

S)) halts.
Figure 11.3: System Startup Attestation Protocol

One such protocol is given in Figure 11.3. The resulting set of certificates
AttCertsS can be used to construct a chain for justifying trust in measured
principal N (Dn

S ). In step 2a of the protocol, a stage N (Di

S) loads its successorN (Di+1
S ). For step 2b, two approaches could ensure that private attestation

key k
att
i+1 has not previously been revealed: (i) generate a fresh k

att
i+1, or (ii) use

key registers and key archives to store k
att
i+1. In step 2d, AuthStages(N (Di+1

S ))
implements checks to establish that next stage N (Di+1

S ) can be trusted and,
thus, should next receive control.

A stage N (Di+1
S ) can be trusted if there is reason to believe it will execute

the protocol and, therefore, will relinquish control only to a stage that itself
satisfies this requirement for being trusted. That check is being abstracted in
step 2d by a predicate AuthStages, which is assumed to be satisfied only by
names of stages that will correctly execute the protocol. An implementation
of AuthStages might simply compare against a list of names that have already
been analyzed and stored in read-only firmware memory. Or it could use a
description and auxiliary information for a stage to determine whether that
stage instantiates some predefined template, where code for steps 2a through 2d
is already given in the template and where only certain state may be referenced
by other code the stage executes.

The use of hardware-provided gating functions, key registers, and key archives
is not the only way to ensure that an attestation private key k

att
i+1 is not revealed

or abused. For executions of a system startup attestation protocol, deletion of
keys can achieve the same e↵ect if keys are stored in processor memory and
a program running on the processor computes k

att
i+1-S(⋅). Once stage N (Di+1

S )
starts executing, no predecessor will execute. So access restrictions that a gating
function [katt

i+1-S](⋅) would impose can be achieved simply by N (Di+1
S ) deleting

k
att
i+1 when N (Di+1

S ) relinquishes control to its next stage.

A proof below shows that the certificates in AttCertsS su�ce, as required, to
establish K

att
i

speaksfor N (Di

S) for 0 ≤ i ≤ n. That proof assumes certificates
in AttCertsS are current rather than generated prior to the last reboot. The
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1. R �→ S : �Att∶ r� for r a fresh nonce.

2. S �→ R: kidhw -S(AttRply∶ AttCertsS , DS , v), where v = kidhw -S(r, mr0)
3. R: Accept remote attestation certificates in AttCertsS provided:

(a) K
id
hw verifies digital signatures received step 2.

(b) Nonce r received step 2 is same value as sent in step 1.
(c) Using AttCertsS , DS , and v received step 2 check that:

• AttCertsS implies K speaksfor S for some K.

• DS satisfies S =N (DS),
• DS incorporates a descriptor giving a value for mr0 that
is consistent with v.

Figure 11.4: Defense Against Remote Attestation Replays

remote attestation protocol in Figure 11.2 defended against such replay attacks
by having initiator R submit a fresh nonce r as a challenge. But that defense
is not feasible for a protocol (e.g., Figure 11.3) that executes before remote
attestation requests have been made.

One way to detect whether a certificate in AttCertsS is current, would be
for the processor running S to have an instruction that computes response
k
id
hw -S(r, mr0) for any r, where register mr0 can be read, cannot be written, and

is incremented with each reboot.13 A response is deemed current if it is produced
when the value of mr0 is the same as its value when the check is being made.
So to check whether a response is current, it su�ces to check whether (i) the
response includes a value that is a Collision Resistant and Preimage Resistant
function of mr0 and (ii) that value is consistent with the current value of mr0.

Responses in AttCertsS include N (Di

S), which is a Collision Resistant and
Preimage Resistant function of description D

i

S . So, provided the value of mr0
is incorporated as a descriptor in each D

i

S then each element of AttCertsS does
include the information needed for defending against replay attacks. Figure 11.4
gives such a protocol. It assumes initiator R knows a verification key K

id
hw for

digital signatures produced by the processor hw purportedly executing S .
Note there is an alternative to requiring that the processor have a register

mr0 and an instruction to produce a certificate k
id
hw -S(r, mr0). The protocol of

Figure 11.4 also works if each description D
i

S includes a certificate signed by a
remote trusted third party and containing challenge r along with a timestamp
or sequence number that can be checked.

*Formal Analysis of System Startup Attestation Protocol. We prove that
K

att
i

speaksfor N (Di

S) for 0 ≤ i ≤ n can be inferred from AttCertsS after a
system having description DS has run System Startup Attestation Protocol of
Figure 11.3. The proof is by induction on i.

13Instruction KRgetCurConf described on page 311 provides the required functionality.
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The base case is to prove Katt
0 speaksfor N (D0

S). Step 1 of System Startup
Attestation Protocol in Figure 11.3 sets N (D0

S) to N (hw). By definition,N (hw) = K
id
hw holds. Since K

att
0 speaksfor K

att
0 is trivially valid, substitu-

tion of equals for equals yields Katt
0 speaksfor N (D0

S), as needed.
For the induction case, assume K

att
j

speaksfor N (Dj

S) for 0 ≤ j ≤ i can
be inferred from the certificates in AttCertsS ; we must show how to infer
K

att
i+1 speaksfor N (Di+1

S ). From step 2c of System Startup Attestation Pro-
tocol, AttCertsS includes a certificate that implies:

K
att
i

saysK
att
i+1 speaksfor N (Di+1

S ).
The induction hypothesis implies K

att
i

speaksfor N (Di

S), so from CAL infer-
ence rule (9.16), we conclude

N (Di

S) saysKatt
i+1 speaksfor N (Di+1

S ).
Because each stage D

i+1
S is executing in an environment created by its prede-

cessor D
i

S , we have that N (Di+1
S ) is a subprincipal of N (Di

S). CAL inference
rule subprin thus implies

N (Di

S) speaksfor N (Di+1
S )

so CAL inference rule (9.16) derives

N (Di+1
S ) saysKatt

i+1 speaksfor N (Di+1
S ).

hand-off from Figure 9.4 yields goal Katt
i+1 speaksfor N (Di+1).

Trusted Boot and Secure Boot. In addition to their role in the remote attes-
tation protocol of Figure 11.3, AttCertsS and AuthStages are useful for establish-
ing trust in a local execution environment—here, measured principal S—that
system startup creates. It su�ces that description DS start with the descriptor
for hw , followed by descriptors for everything executed since hw last rebooted:
boot firmware, other firmware, IPL routines, kernel initialization, etc.

With a processor that supports trusted boot, software establishes trust in its
local environment by checking whether AttCertsS contains what is expected.
Usually, the processor will have a register rt (say) for maintaining some well
known Collision Resistant and Preimage Resistant function of AttCertsS . Reg-
ister rt is reset automatically on reboot and there are instructions (i) to read its
current value and (ii) to recompute its value when an element is being added to
AttCertsS .

14 Provided a system startup stage that updates AttCertsS (step 2c
of Figure 11.3) also updates rt, then reading rt su�ces for checking whether
AttCertsS is consistent with some predetermined set of certificates characteriz-
ing an execution environment that can be trusted. If the check passes, then the
boot can be trusted.

14Thus, a measurement register (page 307) could serve as rt.
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As with N (DS), changes to DS have unpredictable e↵ects on the value in
rt. That means installing a new input/output device, adding a co-processor, or
updating the operating system must also update expectations for the value to
be found in rt.

With a processor that supports secure boot, predicate AuthStages is strength-
ened so that it is satisfied only by a certain sequence of stages where, as before,
all of those stages implement the protocol of Figure 11.3. Step 2d of that pro-
tocol implies system startup will halt execution rather than transfer control to
an unanticipated stage, thereby implementing a belief that unanticipated stages
are attacks. Hardware support for secure boot involves (i) register rt discussed
above (ii) processor read-only memory initialized with the allowed sequence of
values that rt may hold during system startup, and (iii) an instruction to up-
date rt that will halt the processor when the new value of rt does not agree
with the next value in the sequence being stored in the read-only memory.

11.5 Other Uses

11.5.1 Full Disk Encryption

A laptop that is lost or stolen might fall into the hands of an adversary. We pro-
tect the confidentiality of information its disks store if disk blocks are encrypted
and, even with the laptop in hand, adversaries cannot access the key.

Gating functions for sealing might seem like an obvious way to implement
such disk encryption. But processor-provided gating functions often are slow,
making them ill-suited for encrypting and decrypting a disk block. There-
fore, shared-key cryptographic routines implemented by software are the better
choice. By using length-preserving shared-key encryption, block addresses on
the disk and the disk layout itself do not have to be changed in order to accomo-
date storing encrypted disk blocks in place of plaintext disk blocks. However,
with no space to incorporate redundant information, length-preserving encryp-
tion schemes cannot protect integrity. So disk encryption schemes typically
protect the confidentiality, but not the integrity, of disk blocks.

To implement disk encryption, each laptop is provisioned with a unique,
secret disk key ; that key is generated when the laptop is booted for the first
time. A disk key must reside in main memory (rather than residing in a key
register) in order to be read by encryption routines implemented in software.
So confidentiality of the disk key is protected (only) by memory isolation that
an operating system and/or hypervisor enforces.

Some laptops o↵er a hibernation mode as an alternative to choosing between
the power drain of normal operation versus the time delays of system startup
after a shutdown. A naive design for entering hibernation mode would store
to disk a plaintext image of main memory, thereby allowing the laptop to re-
sume operation without incurring delays associated with decryption. But that
exhibits a vulnerability, because attackers who obtain a device can learn the
disk key by reading the memory image from disk. Therefore, the memory image
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for hibernation mode must be stored in encrypted form. To exit hibernation
mode, that memory image must be decrypted—but that decryption should be
undertaken only after the system authenticates the user.

Because main memory contents is assumed to be obliterated15 when a laptop
is powered down or enters hibernation mode, the disk key must be stored by
some non-volatile device. The disk is an obvious choice. To protect this stored
copy of the disk key (since it cannot be encrypted using the disk key), it is
sealed using a hardware-implemented gating function. The associated sealing-
key register has a configuration constraint that authorizes only a single measured
principal, which comprises the laptop’s processor, non-volatile storage devices,
boot sequence, and system software. That configuration constraint ensures an
adversary cannot retrieve the disk key by replacing the processor, by connecting
the non-volatile devices to a di↵erent computer, or by running di↵erent system
software.

Having a disk key that is not being kept in a key register also facilitates
recovery of disk contents if the laptop fails. Encrypted disk blocks might be
retrieved from a backup copy stored elsewhere, retrieved by connecting the disk
to a di↵erent processor (perhaps because the original processor has failed), or
retrieved by using the laptop after updates to the operating system (perhaps
distributed with malicious intent) prevent access to the processor’s sealing key
register because the name of the measured principal associated with the oper-
ating system has changed. Therefore, recovery of data from the encrypted disk
blocks is made feasible if, whenever a new disk key is generated

• the new disk key is copied to removable media that is kept someplace
physically secure and/or

• the new disk key, encrypted using a recovery key (perhaps just a long
passphrase), is stored someplace likely to remain available, and the recov-
ery key is kept secret.

By incorporating the routines to encrypt and decrypt disk blocks into the
operating system, we avoid the need to include this functionality in each appli-
cation that uses the disk. A design that put the encrypt and decrypt routines
inside the disk driver might seem clean, but it would require cooperation from
disk manufacturers, since they provide the device drivers. Therefore, the most
practical design is to leave disk drivers unchanged and have the operating system
provide separate caches for encrypted and for unencrypted disk blocks. The disk
driver would access the cache of encrypted disk blocks; input/output operations
called by applications would access the cache of plaintext disk blocks; and op-
erating system routines would perform cryptographic operations, as needed, to

15How long data in a volatile memory can still be read after power is removed depends
on the semiconductor device technology. For some device technologies, this window can be
extended by an attacker who perpetrates a so-called cold boot attack. First, the attacker chills
the memory chips by spraying liquid nitrogen or compressed air. Then, once the memory chips
have been chilled, the attacker reboots the system and executes a program that performs a
memory dump onto an I/O device that the attacker later connects to a di↵erent system.
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transform and move blocks between the encrypted and plaintext block caches.
Note that boot blocks on the disk would not be encrypted, since those blocks are
read from disk and executed before the operating system is available to perform
decryption.

11.5.2 Cloud-Hosted Services

Gating functions enable cloud-hosted servers to resist attacks intended to change
server code or to compromise confidentiality and/or integrity of server state
stored outside of main memory. The server is implemented as a measured prin-
cipal and provisioned with a sealing key, a quoting key, and an unbinding key.
The sealing key is used to protect the confidentiality of information the server
stores; the quoting key allows responses from the server to be authenticated by
receivers; and the unbinding key allows clients to send confidential messages to
the server.16

However, the hosting environment for the server also must provide certain
functionality.

• Memory isolation. Various approaches can be employed to isolate server
state in main memory from other execution in the hosting environment.
The server might be allocated its own processor, its own virtual machine,
or leverage memory isolation an operating system provides for its pro-
cesses. Caches and other shared processor resources, though, can become
covert channels that compromise confidentiality.

• Measured principals and gating functions. This functionality could be pro-
vided by hardware, by software, or by some combination. A separate and
independent sealing key, unbinding key, and quoting key is required for
each server. Keys provisioned for a measured principal P that is imple-
menting a server must be restricted so that only P can use them.

Clients of a cloud-based server must trust that server and its hosting envi-
ronment. For a server implemented as a measured principal, its description DP

would identify what hardware and software components must be trusted. So a
client can get assurance by obtaining a candidate description DP and checking
whether it is authentic: The client first uses a remote attestation protocol to
learn the name P (say) for the measured principal that implements the server
and checks whether N (DP) = P holds. Then the client retrieves the auxil-
iary information associated with description DP , performs Checking Integrity
of Auxiliary Information (page 305), and makes a trust assessment based on
that information.

Whether clients must trust a cloud’s owner or operators depends on the
hosting environment. Trust is required if compromising the operation of the
server or its state is possible when given physical access to hardware while
the server is executing or by privileges granted to administrator accounts or

16Clients, in turn, need to know the corresponding public keys for verification of quoted bit
strings and for encryption that the unbinding key decrypts.
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operator consoles. Such information about the hosting environment should be
available from description DP and the associated auxiliary information for the
server. Capabilities of administrator accounts and operator consoles would be
deduced by analyzing the system software components with descriptors listed in
DP . Whether the hardware is tamper-proof would be ascertained from device
serial numbers, which ought to be verifiable using the descriptor that DP lists
for each device.17

11.5.3 Digital Rights Management (DRM)

Computer networks o↵er an attractive infrastructure for distributing digital
objects to customers. But certain digital objects require that access control be
enforced—no matter where that object is hosted and no matter which hosts in
the network are trusted.

• A business that monetizes intellectual property in digital form would want
only paying customers to have access to that content, according to various
payment plans.

• A business or other institution seeking mandatory access control for dig-
ital documents might need to authorize di↵erent operations (e.g., view,
update, copy, print, or transfer) according to an employee’s role, identity,
prior activity, or other attributes.

An application we trust running on a host we trust can enforce access restrictions
on a digital object by incorporating checks in the code it provides to perform
operations. A thief could still record sound and images, though, so copyrighted
text, music, and video can be stolen—albeit with degradations in fidelity that
arise from converting between digital and analog formats. Active content (e.g.,
games and simulators), however, cannot be stolen in this way since the value is
in having the capability to interact rather than having a record of the output.
So active content can be monetized by enforcing restrictions on operations.

Support for measured principals enables hosts and applications that should
be trusted to be distinguished from those that should not. That ability to
discriminate, in turn, makes it feasible for decryption keys to be made available
only to those trusted hosts and applications. So by disseminating digital objects
in encrypted form and requiring all operations on those digital objects to be

17Descriptions for measured principals will not contain all of the information needed by
a client seeking assurance about a hosting environment. For example, to mollify untrusting
clients, a cloud provider might enclose each rack of computers in a metal cage having a door
that remains locked while those computers are running and for an additional period after
a shutdown. Such protection ensures that remnants of confidential data in main memory
will decay before it can be read by anyone having physical access to the hardware. Video
surveillance of the metal cages completes the defense by deterring employees and others from
entering a cage while the processors or memories it encloses still store confidential data that
can be read by physical access. Whereas descriptions for measured principals might report
serial numbers for hardware, no descriptor would report the locked cages or video cameras in
a deployment environment. So actual observation is necessary to have assurance about the
physical surroundings for a given device.
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performed (only) by measured principals, then gating functions for decryption
can be used to prevent access on untrusted hosts or by untrusted applications
(including hosts and applications that were trusted but subsequently have been
modified or had their identities or secrets stolen).

An application that will be trusted to enforce access restrictions for a digital
object O from server S is implemented as a measured principal (say) P with
a description DP and provisioned with a locally generated unbinding/binding
key pair kP�KP . Trust in P by S is contingent on DP providing assurance
that decryption private key kP is only available for use by a measured principal
consistent with DP—modifications to the hosting environment or application
code must make kP inaccessible. S and P can then follow the expected protocol.
S uses remote attestation to check that P has description DP and, therefore, can
be trusted. If P is among those principals S trusts, then S encrypts a shared
key KO using binding public key KP . Finally, S sends to P : KO encrypted
using KP and digital object O encrypted using KO. P uses unbinding key kP

to recover KO, which P uses to decrypt the digital object.

11.6 Possible Abuses and Benefits

Potential for Abuse. Measured principals and gating functions enable soft-
ware producers—rather than a computer’s owners or operators—to control what
programs can be run, what information can be processed, and what programs
must be used to process a given digital object. Although we saw above that
applications can benefit from such control, it can be abused.

One abuse is software vendor lock-in18 which occurs when a vendor’s sys-
tems are designed to prevent software provided by others from executing on
the platform. This practice not only limits competition, but it restricts user-
innovation and discourages new entrants to a market. Some argue, though,
that software vendor lock-in is a good business model to allow, because it drives
technological progress by incentivizing existing vendors to invest in developing
new components (since competition is blocked, just like with patent protection).

Another form of abuse arises when DRM is used to automate access control
policies today grounded in human judgement. Consider “fair use” which in the
United States provides a legal basis for copying excerpts of material protected
by copyright. The legal test for “fair use” is nuanced and subjective, mak-
ing it impossible to implement in a program (even if various machine learning
algorithms can mimic human judgement for some settings). So a typical pro-
grammed test for “fair use” just bounds the number and/or lengths of excerpts.
That test almost certainly will disallow some copying that a human judge would
allow. Another policy that cannot be programmed, so it too is approximated
in a manner that is overly-restrictive, is the test for obscenity.19 A third exam-

18Economists use the term vendor lock-in for situations where a customer is made dependent
on a vendor or where the customer would incur substantial costs for switching to another
vendor.

19As example of such a policy is Supreme Court Justice Potter Stewart’s widely quoted
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ple is the definition of “fake news” (versus accurate accounts), which seems to
require human judgement based on context. In all cases, approximations of a
policy must be programmed for use by DRM, these approximations invariably
are conservative, and some form of censorship is the result.

Benefits. Users also can benefit from giving software producers control over
what software can be executed on a given computer, because such control of-
fers the potential for experts to enhance the security of individual systems and
networks. We see this when software for a platform must be downloaded from
a platform vendor’s “app store” that o↵ers software the vendor has evaluated
and found not to have certain vulnerabilities.20 Most owners or operators of a
computer would be incapable of undertaking such an evaluation and, therefore,
would happily delegate that task and responsibility to some software produc-
ers. So an owner or operator avoids the risks of running insecure software by
having a computer that blocks software not downloaded from the “app store”.
Moreover, networks that include this computer benefit too, because insecure
machines in a network can be co-opted by attackers and used as platforms for
attacking other machines in the network.

Critics of measured principals and gating functions complain about a trans-
fer to system developers of rights that previously were held by computer owners
and operators. But measured principals and gating functions also transfer re-
sponsibilities. When a computer is connected to a network, its owners and
operators have a responsibility to ensure the computer does not attack comput-
ers elsewhere in the network. With measured principals and gating functions,
this responsibility is delegated to the system developer. A more-capable party
now controls what software can be downloaded and run. So measured princi-
pals and gating functions make it unnecessary to invest in educating the ever
growing number of computer owners and operators.

Notes and Reading

The abstractions introduced in this chapter evolved from e↵orts in the late
1980’s at Digital Equipment Corporation to build secure distributed systems
assuming secure stand-alone systems. Gasser et al. [16] gives an overview, de-
scribing an architecture where a user’s login at one computer su�ces for access-
ing objects hosted at other computers. In this architecture, the cryptographic
hash of a software system’s binary is the name given to the principal identified
with execution of that binary, since this name can be checked to determine if
the expected is running; authenticated messages are proposed for attributing
requests made by software running on a remote host, so such requests can be

1964 test from Jacobellis v. Ohio: “I know it when I see it”. Originally o↵ered as a test for
hard-core pornography, it is now often cited as a test for obscenity.

20Beware: An app store that claims to perform evaluations might not do so, might not
be thorough, might impose arbitrary restrictions, and/or it might exist primarily to block
o↵erings from competitors.
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authorized; and remote attestation was introduced for deciding whether a re-
mote computer should be trusted to perform operations or to hold sensitive
data. The protocol sketched §11.4.2 for remote attestation at system startup
was first described there.

Fast forward a decade. The PC, running Microsoft’s Windows operating
system on an x86 microprocessor, has become ubiquitous. It is not secure. New
applications—for example, disseminating copyrighted digital content and o↵er-
ing on-line financial services—will depend critically on enforcing confidentiality
and integrity. Other market growth, too, has slowed because computers cannot
be trusted with data or operations. So Microsoft embarked on a project to build
a PC-based platform that would be secure. Next-Generation Secure Computing
Base21 (NGSCB) [9] would provide strong isolation for new applications, protect
cryptographic keys and other secrets, yet still run legacy Windows applications.
To achieve these goals, the new platform would involve new hardware support
and a new operating system.

The NGSCB design enforced isolation by using several mechanisms. A vir-
tual machine manager supported “red” virtual machines that ran legacy Win-
dows and “green” virtual machines that ran a new operating system for applica-
tions requiring higher assurance. Hardware support for curtained memory [10]
would ensure that access to certain memory locations could be made only by
code in a specified address range. And there would be hardware support for
gating functions, a term introduced by England and Peinado in a paper [12]
written to show that the construct had utility beyond NGSCB.

Although NGSCB never became a Microsoft product, some of its elements
have been incorporated into Windows releases and doubtless others will be.
BitLocker full disk encryption (which inspired the discussion in §11.5) appears
in Windows Vista; secure boot and trusted boot appears in Windows 8; and
device guard, which uses a separate virtual machine for isolation, appears in
Windows 10.

In anticipation of NGSCB, a policy debate started (distilled in §11.5) about
rights accompanying ownership of platforms and digital content, potential for
abuses [1, 2, 31] when those rights are delegated and/or restricted, potential
benefits [26] of requiring delegation, and potential drawbacks [17] when users
cannot share new products and services they develop for themselves.

A secure co-processor, called the trusted platform module (TPM), would pro-
vide NGSCB with the needed hardware support for gating functions to provide
sealing, quoting, and unbinding. The TPM specification was developed by the
Trusted Computing Platform Alliance22 (TCPA), formed in 1999 for this pur-
pose by Compaq23, HP, IBM, Intel, and Microsoft. (Other companies have since
joined.) The material in §11.3 describes a simplified TPM.24 See the Trusted

21The initial name was Palladium. Microsoft changed the name in January 2003.
22Trusted Computing Platform Alliance was renamed Trusted Computing Group (TCG) in

April 2003.
23In June 1998, Digital Equipment Corporation, on the brink of insolvency, had been ac-

quired by Compaq, a PC manufacturer.
24That discussion benefitted greatly from Ariel Segall’s creative commons video course [27]
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Computing Group’s website [33] for the current, full TPM specification.
Anticipating that TPMs or other hardware to support gating functions could

become widely available, researchers started investigating how best to leverage
such functionality. Terra [15] was among the first e↵orts, implementing a hyper-
visor that supports two kinds of virtual machines. An open box virtual machine
provides a standard instruction set architecture and was intended for enforcing
isolation of a legacy operating system running a few, cooperating, applications.
A closed box virtual machine provides capabilities to perform remote attesta-
tion and sealing, thereby protecting applications from other execution on that
computer and from the platform’s owners, operators, or anyone else with access
to disks or other state stored outside of the processor.

The instruction set of virtual machines implemented by Terra (and NGSCB)
does not include a virtual TPM. There are good reasons for this design choice.
Although a virtual machine manager could create a chain of trust from a virtual
TPM to an underlying hardware TPM, the semantics of the resulting virtual
TPM would not be the same as a hardware TPM—a root of trust implemented
by software can be compromised in ways that a hardware implementation can-
not. Virtual TPMs, nevertheless, can be useful. So Berger et al. [5] extends
Xen [3] to provide each virtual machine with a TPM. Other approaches to re-
alizing virtual TPMs have also been explored. Para-virtualization to realize a
version 1.2 TPM is discussed in England and Loeser [11]; Yap and Tomlinson [37]
discuss para-virtualization for realizing a version 2.0 TPM.

CloudProxy [20, 32], which is intended for deployment in a cloud datacen-
ter (and is the basis for the cloud-hosted services implementation sketched in
§11.5), also o↵ers a para-virtualization. The “CloudProxy Tao” prescribes that
each level of a software stack provide gating functions for sealing, quoting, and
unbinding. A cloud-based application would be run in an isolated virtual ma-
chine. Within that virtual machine, the operating system and the application
each would use the gating functions available to that layer in order to protect
information stored on disks or conveyed in messages.

Sailer et al. [25], explores other operating system support for attestation
of a software stack. In this work, a Linux kernel was modified to make and
append integrity measurements onto measurement lists that are updated if an
executable is loaded or if a (new) measure system call is invoked, naming a file to
be measured. The integrity of measurement lists is protected by cryptography
using keys stored in a TPM. Using the vocabulary of this chapter, Sailer et
al. [25] extends Linux to implement measured principals that are characterized
by descriptions comprising lists of descriptors. Remote attestation of these
measured principals is supported, but gating functions for sealing, quoting, and
unbinding are not.

In this chapter, as in much of the literature, authorization for gating func-
tions is based on names of principals, where names are hashes of executables
and/or other files. Since an executable must be analyzed to infer properties
of its executions, the connection between a principal’s name and its properties

about TPMs.
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is indirect. The goals of gating functions are better served if that connection
can be direct. With property-based attestation [23, 24], the name for a mea-
sured principal satisfying a property is formed by computing a hash for the
property description. The descriptors for properties discussed on page 304 ex-
emplify this. Sadeghi and Stüble [23] discusses having property descriptions be
certificates from trusted third parties; their subsequent work with Winandy [24]
avoids third-party dependence by delegating to analyzers that are part of the
system.

The Nexus25 [29] operating system disentangles property attestation from
the naming of principals. Specifically, Nexus provides a unified language for
authorization decisions that combine attestations of axiomatic, analytic, and
synthetic properties of a principal and/or its execution environment. Nexus also
o↵ers operating system support for a form of capabilities based on statements
from a TPM. To gain experience with the approach, a social networking sys-
tem that enforces fair resource allocation, code safety, and confidentiality was
implemented on Nexus. Other applications Nexus supported include a video
player that enforces DRM and NetQuery [28] for managing a knowledge plane
in a network.

The thread of work that started with NGSCB goes today by the label
“Trusted Computing”. It includes research and development both in software
and in hardware. Mitchell [21] collects papers about Trusted Computing re-
search circa 2005, and Parno et al. [22] o↵ers an excellent survey about system
support for collecting and conveying information for making trust assessments.
Various forms of hardware support for Trusted Computing are now also becom-
ing available. Typically, the goal is support for functionality that is believed
easier to use than gating functions or the TPM’s packaging of them. The secure
enclaves supported by Intel’s Software Guard Extensions (SGX) [18] is a notable
example. So far, though, SGX has not been widely embraced—rich abstractions
can involve a steep learning curve and tend to exhibit implementation vulnera-
bilities. Costan and Devadas [6] documents vulnerabilities in initial releases of
SGX. Secure enclaves are also supported by Sanctum [7] and Komodo [14]—but
with part of that functionality implemented as software.

Cryptography is practical for enforcing isolation only if (i) delays to perform
encryption/decryption are not problematic and (ii) access to cryptographic keys
is restricted. Hardware-implemented gating functions provide one solution, but
other hardware support has also been suggested. In 1979, for example, Dorothy
Denning [8] proposed (and later defended [19]) that an RSA public-key encryp-
tion/decryption device be inserted between each workstation and a remote file
server in a distributed system. Encryption would protect information that is in
transit or stored on the file server; an individual’s cryptographic keys would be
kept (only) in a removable ROM chip, carried by that individual and plugged
into the encryption/decryption device while operating the workstation.

With their Citidal architecture [36], IBM researchers circa 1991 turned their
attention to security in distributed systems comprising devices located where

25Nexus also is the name that Microsoft gave to one of the NGSCB components.
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attackers had physical access. Earlier IBM research e↵orts µABYSS26 [34] and
ABYSS [35] had explored obstructing physical access to hardware for crypto-
graphic operations and storing keys. Building on this earlier work, Citidal’s
architecture would protect programs and information by combining safe envi-
ronments (like restricted-access machine rooms), robust enclosures, and cryp-
tography.

Citidal’s thesis was simple, yet compelling: Information may exist as plain-
text on a computer located within safe environment or on hardware having a
robust physical enclosure; otherwise, the information must be encrypted. Cou-
pled with a belief27 that performing operations on encrypted data was not possi-
ble, Citidal’s thesis determined where specialized cryptographic hardware must
be deployed and when information must be encrypted. To put this vision into
commercial practice required suitable cryptographic co-processors. IBM did
take this next step, building the IBM 4758 series cryptographic co-processors,
which reached the market in 1997 [30].

Cryptographic hardware is useful even when physical security is not a fo-
cus. Assurance for a platform requires some basis to believe that the intended
boot and IPL routines are what was executed (and not other code). Gasser
et al. [16] described the basic scheme for obtaining such assurance when a sys-
tem comprises a stack of software layers: Each layer authenticates the code for
its successor before transferring control there, where authentication of a layer
involves checking a hash and/or performing decryption. A secure hardware
cryptographic co-processor is thus ideal for inclusion in the lowest layer. Ar-
baugh et al. [13] addresses the rich case of an open architecture (as found in the
PC). Here, transfers of control during system startup cannot be described by a
sequence of stages, because call/return transfers of control are used to execute
initialization for various peripheral devices.
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