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The Arms Race in Computer Security

• The community has introduced decades worth of defenses:

• …but also, decades of attack advancements

Despite the defenses, classic vulnerabilities still affect modern computer systems

1990s 2000s 2010s 2020s

Stack smashing
[Phrack ‘96]

return-into-libc
[Phrack ‘01]

COOP
[S&P ‘15]

ROP
[CCS ‘07]

DOP
[S&P ‘16]

BOP
[CCS ‘18]

Morris Worm
[‘88]

Heap spraying
[Phrack ‘01]

This tension has  
lead to little change 
in observed CVEs

KOOBE
[USec ‘20]

BROP
[S&P ‘14]

Valgrind
[PLDI ‘07]

Sys
[USec ‘20]

FUZE
[USec ‘18]

StackGuard
[USec ‘98]

CFI
[CCS ‘05]

DFI
[OSDI ‘06]

Native Client
[S&P ‘09]

SFI
[SOSP ‘93]

CPI
[OSDI ‘14]

Softbound
[PLDI ‘09]

CETS
[ISMM ‘10]

ASLR
[PaX ‘01]

Baggy Bounds
[USec ‘09]

CCured
[POPL ‘02]

Cyclone
[ATC ‘02]

W+X
[PaX ‘03]

Control Jujutsu
[CCS ‘15]

Software Vulnerabilities Increasing in Number and Severity
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BufferFile

Network  
Application

Anatomy of a Cyber Attack

Operating System

Processor

Libraries

OS Memory 
Space

copy File to Packetcopy File to Packet

Operator

Transmit FileTransmit File

Pointer

OS Memory 
Space

Intended Operation Under Attack

OS does not 
properly limit 

privileges Buffer

Packet

User ID

Pointer

Packet

User ID

File

Inspired by CVE-2016-4997 – known privilege escalation vulnerability in Linux networking 

Processor does 
not check type 

of data

OS does not 
properly limit 

privileges

Language (C/C++) 
does not properly 

check data 
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Design Principles

Hardware-
Enforced 
Security

Fine-Grained 
Compartmentalization

Safe      
Languages
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Resilient Mission Computer (RMC)

Moonshot Vision:  Create a secure-by-design system in which the mission can succeed regardless of attempted attacks

Compartmentalized        

Operating System

Security-Aware               

Processor

Safe Libraries

Secure Applications

Resilient Mission Computer (RMC) 
Architecture

Formal sanitization 

of raw input

Tagged processor 

checks semantics

Compartmentalized 

OS

Secure interfaces 

between lib and OS

Semantics extended 

to HW interface

Secure lang. stops 

many classes of vul. 

High-level app 

semantics 

preserved

App written in 

secure language 

(Rust)

1: HAKC: Hardware-Assisted Kernel Compartmentalization, a Zero Trust version of the Linux OS 
2: PoC: Proof-of-Concept

1

RMC by numbers: 5 Inventions, 2 Open Source Software, 15 Papers (9 top-tier), 9 Masters theses, 2 Demos, 15+ Talks, 4 Awards

Transitioning to DARPA, DOT&E, NAVAIR, NAWCAD, industry partners, and other external sponsors

Current PoC2 Boards Quadcopter Test Platform Program Team

2016 2017 2018 2019 2020 2021

Seedling

Idea 

Developed

Initial 

Architecture 

Developed

Baseline PoC

(Rust + Tock OS) 

Successfully 

Tested

Secure App-OS 

Interface 

Developed

Secure OS-HW 

Interface 

Developed

Quadcopter 

Drone 

Tested

Compartmentalized 

OS

PoC Fully 

Integrated and 

Tested on ARM

A feature-

rich, secure 

operating 

system

(HAKC)

RMC featured on the 
cover of prestigious 

IEEE Security & Privacy
May/June 20212022
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Outline

• Compartmentalizing the OS
– Why compartmentalization
– Implementation on commodity processors
– Evaluation

• Securely using safe languages
– How safe languages work
– Cross-language attacks
– Defending against cross-language attacks

• Conclusion
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How to Secure an OS?

We analyzed the past 5 years of vulnerabilities in Linux: 508 with critical or high severity

Memory Safety
33%

Compartmentalization
45%13%

Other
9%

Other includes:
• Race Conditions
• Integer Over/Underflow
• Logic bugs:
– Missing checks
– Buggy initialization
– Buggy error handling

Target of our work

We enforce compartmentalization to prevent the most common class of bugs
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Compartmentalized Operating System 

Processor

OS 
Kernel

Applications

Device Drivers

Scheduler, Virt. Mem.

IPC, File System

System Call, VFS

Processor

Applications

IPC Device 
Driver

Device 
Driver

Virt. 
Mem.

Sched-
uler WiFi UART File 

System

Linux1

Default 
Kernel 
Mode

User 
Mode

Fine-
Grained 
Isolation

HAKC 
Kernel 
Mode

User 
Mode

1. Also: Windows, MacOS, VXWorks, etc.

Security Weak Strong

Existing App Support Strong Strong
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• Invented compartmentalization enforcement mechanism using 
limited tag bits
– Uses ARM PAC and MTE
– Heavy weight compartment boundaries, lighter weight cliques

• Compartmented the IPv6 and NFTables kernel modules
– Security evaluation using emulation (QEMU)
– Performance evaluation using surrogate instructions on 

Raspberry Pi
• Current overhead 2 – 24%

• HAKC is fully compatible with existing applications/servers 
that run on Linux 

Hardware-Assisted Kernel Compartmentalization 
(HAKC)1

HAKC uses ARM security extensions to secure Linux via compartmentalization

File System

Linux
IPv6

NFTables

Bluetooth

Ethernet Driver

HAKC
IPv6

NFTables

Bluetooth

File System

Ethernet Driver

1. Derrick McKee, Yianni Giannaris, Carolina Ortega, Howard Shrobe, Mathias Payer, Hamed Okhravi, Nathan Burow. 
“Preventing Kernel Hacks with HAKCs”. NDSS 2022.  Best Paper
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ARM Security Primitives -- PAC

64-bit pointer

64-bit saltSign pacda signed pointer

Data Key A

signed pointer

64-bit salt
autda 64-bit pointerAuth

• Pointer Authentication Code (PAC)

• Can sign a pointer with a 64 bit salt value

• Salt is used to encode kernel module, e.g., IPv6

PAC can compartmentalize an arbitrary number of kernel modules
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ARM Security Primitives -- MTE

• Memory Tagging Extension (MTE)

• Can add a 4-bit “color” to memory and pointers

• Use colors to encode up to 16 additional protection regions per module 0xFFFF

64-bit pointerColor an address: stg

Retrieve address color: 64-bit pointer ldg 0x0000

MTE allows finer-grained compartmentalization within kernel modules
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• Have 4 tag bits from MTE – standard number from our literature survey
• Have the ability to sign a pointer with 64 bits of context from PAC

– 48 bits used for compartment ID
– 16 bits used for other clique metadata

• Achieve 2^48 compartments, each with 2^4 cliques within them

Unlimited Compartments

Pointer

Context

PAC Signed Pointer

48 Bit Compartment ID 16 Bit ACL

48 Bit VAUnused4 Tag Bits

16 Cliques

Clique 
Permissions

2^48 
Compartments

Invalid unless 
checked with same 

context

PAC: Pointer Authentication Code
MTE: Memory Tagging Extension

Unclassified
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• GUI that allows developers to specify 
what compartments at the granularity of 
functions (or entire files)

• Compiler automatically adds checks to 
pointer dereferences

• Checks validate:
– Pointer and data are owned by the 

same compartment
– Pointer and data are in the same clique 

(or there is a valid connection)

Applying Compartments

#include <linux/hakc.h>

//Declare Compartment
HAKC_MODULE_CLAQUE(…);
//Declare Allowed Transitions
HAKC_EXIT(…);

int foo(int *x, int y){
//Compiler added check
*(HAKC_CHECK_DATA_ACCESS(x)) = y;

}

Minimal developer intervention required once to set compartmentalization policy
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Automating Compartmentalization

• Possible compartmentalization algorithms:
– Minimum Spanning Tree
– Weighted Knapsack

Discovering Policies Applying Policies

Creating a framework to systematically evaluate performance vs security trade-offs

Source 
Code

Static 
Analysis

Data 
Access 
Graph

DAG

Profiling

Compart.
Algo. Policy

Policy
HAKC 

Compiler

• No code annotations to specify policy

• Automating data transfer between 
compartments

• Enable rapid experimentation with 
compartmentalization algorithms
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Network 
Application

Attack Mitigated by Compartmentalization

Operating System

Processor

Libraries

OS Memory 
Space

copy File to Packet

Operator

Send File to Cloud

Under Attack

Buffer

Pointer

Packet

User ID

File

Compartment Boundary

Inspired by CVE-2016-4997 Unclassified
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Evaluation: Web Server Case Study

Performance tolerable under maximum load for server applications 

• Current results, optimization ongoing

• Relies on conservative (additional 
overhead) substitute instruction 
sequences

• Run our kernel on Raspberry Pi, IPv6 
LAN connection to a laptop

• Run Apache on Pi, measure time to 
serve 3 different file sizes

No Performance Loss

Higher 
Is

Better
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• Visited the Alexa Top 50 Websites to see impact of HAKC on load times

• Table shows the measured time differences between HAKC and the baseline kernel, 
averaged over 5 samples taken at different times of day

Evaluation: Web Browsing Case Study

Performance impact within standard deviation for most websites 

Negative numbers 
→

Slower load time with HAKC

Websites with lowest 
standard deviation

Websites with highest 
standard deviation
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How to Securely Use Safe Languages

• Adding Rust to hardened legacy applications may decrease security!

• Attackers can leverage novel cross-language attacks

• Incrementally deploying Rust safely requires accurate threat models

Language 1 (e.g., C)

Language 2 (e.g., Rust)

Exploit PointTransfer PointCorruption Point

Program execution time

Execute Weird 
Machine

Execute Rest of 
Benign Program

Execution 
Start

Memory 
Protection

Control-flow 
Protection

Need novel security policies for mixed-language applications
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Outline

• Compartmentalizing the OS
– Why compartmentalization
– Implementation on commodity processors
– Evaluation

• Securely using safe languages
– How safe languages work
– Cross-language attacks
– Defending against cross-language attacks

• Conclusion
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Recall: Memory Corruption Attacks

Spatial Memory Violation Temporal Memory Violation

Heap

Buffer

Function Pointer Attacker

Heap

ObjectFunction Pointer

Attacker
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Rise of Safe, System Programming Languages

• Can we prevent memory problems at the onset?

– Without insane performance costs

• Rust

– Compile-time checks
• Strong type system à Prevents arbitrary casting

• Bounds checks on static data 

• Ownership and Lifetimes

– Run-time checks
• Bounds checks on dynamic data

• Go

– Compile-time checks

– Run-time checks
• Garbage collection: Leads to slightly larger run-time (but still performant!)

Acceptable run-time 
even for the 

systems domain

New programming languages à catalyst for real change



Resilient Mission Computer- 22
Hamed Okhravi

Rust: Memory-Safe Programming Language

• A systems programming language that is memory-safe

• Small language runtime: is translated to instructions directly; no need for language VMs

Spatial Memory Safety

Heap

Buffer

Function Pointer

• Spatial safety (no buffer overflows): 
– Statically-sized objects: compile-time checks
– Dynamically-sized objects: runtime bounds checks

Correct 
Bounds

Temporal Memory Safety

Heap

Object

Pointer is 
Destructed when 
Object is Freed 

• Temporal safety (no use-after-frees): 
– Ownership: only one owner of object at a time
– Burrowing: ownership can be temporarily transferred
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• Rust’s checks can be disabled by using the unsafe{} keyword

• Done when Rust’s checks are too restrictive

• Example: manipulating raw bits for interfacing with hardware devices in device drivers

• Unsafe Rust is trivially vulnerable to memory corruption like C/C++

• We focus on Safe Rust 

Focus on Safe Rust
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data

Practical Deployment of Safe Languages

• What about legacy C/C++ code?

– Rust/Go offer strong Foreign Function Interfaces (FFI)
• FFI facilitates incremental adoption into legacy code bases

• Results in a Multi-Language Application (MLA)

• Multi-language applications are common:

– Rust: Firefox, Tor, Windows, Fuchsia, etc.

– Go: Docker, Kubernetes, CockroachDB, BoltDB, etc.

Code 
module 2

Code 
module 3

Code 
module 4

Code 
module 1

data

data

Code 
module 2

Code 
module 3

Code 
module 4

Code 
module 1

data

C/C++ C/C++

Rust

MLA
FFI

Safe languages are often gradually deployed into legacy code

If not done carefully, 
incremental deployment 
of safe languages can 

reduce security

https://www.programmersought.net/en/article/324364766.html

Firefox Language Breakdown
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1 fn rust_fn () {

2 // Create some data

3 let mut v: Vec <i32 > = vec![1, 2; 4];

4

5 // Ownership borrow (mutable reference)

6 v.push (3);

7

8 // Manual memory modification requires unsafe

9 unsafe { *v.as_ptr (). add (1) = 8; }

10

11 // Ownership borrow (shared reference)

12 println!("{}", v[1]);

13

14 // Ownership transfer

15 give_me_a_vec(v); // automatically free ’d on return

16

17 // No longer owner , would result in an error:

18 // v.push (4);

19 }

Rust Safety

Pass-by-Value:
Ownership Transfer

Pass-by-Reference:
Temporary Ownership Borrow

Mutable Reference:
Mutation but no Aliasing

Shared Reference:
Aliasing but no Mutation

LifetimesOwnership

Multiple types of 
Ownership Transfer Spatial and 

temporal safety
ptr cap=4 len=3

Vec<T>

Stack

T T THeap

Rust provides both spatial and temporal safety

Mutation
XOR

Aliasing

Escape Rust safety 
with “unsafe”

FFI is fundamentally unsafe behavior:
For both intended and unintended interactions!
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Single vs. Multi-Language Application Threat Models

Start 
Execution

Memory 
Corruption

Inject 
Gadgets

Control-Flow 
Hijack 

Data-Only 
Attack

Weird 
Machine

Start 
Execution

Inject 
Gadgets

Control-Flow 
Hijack 

Data-Only 
Attack

Weird 
Machine

Start 
Execution

Memory 
Corruption

Inject 
Gadgets

Data-Only 
Attack

Weird 
Machine

(a) C Threat Model

Start 
Execution

Memory 
Corruption

Inject 
Gadgets

Data-Only 
Attack

Weird 
Machine

Inject 
Gadgets

Control-Flow 
Hijack 

Data-Only 
Attack

Weird 
Machine

Language 
Transfer

(b) Hardened C Threat Model

(c) Safe Language Threat Model

Single-language 
Approach 1

Combined 
Approach

(d) Multi-language Threat Model

Single-language 
Approach 2

Adding something good to something bad 
may actually leave us with something worse..

MLA threat model is actually similar to the original C threat model
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• All C/C++ code cannot be immediately ported to Rust

• Real codebases incrementally port to Rust
• Rust code often exists alongside other languages, primarily C/C++

• Examples: Mozilla (Firefox), DropBox, Microsoft, Amazon, Discord, Facebook, etc.

Problem Statement

Heap

Rust 
allocated
memory

Rust code

C++ code

C++ 
allocated 
memory

Unintended Interaction

Heap

Rust 
allocated
memory

Rust code

C++ code

Heap

p

*p

*p

Intended Interaction

Safe Unsafe
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CLA Attack Construction

Temporal 
Corruption

Spatial 
Corruption

Heap 
Corruption

Stack
Corruption

Intended 
Interaction 
Corruption

Unintended 
Interaction 
Corruption

Non-Control 
Data 

Modification

Control Data 
Modification

Waiting for 
Execution of 

High-Impact Bug

Attack execution*

Protected by Rust

Protected by hardened C

CFI + Shadow Stack

Memory 
Corruption

Gadget Injection
Waiting for 

Execution of 
Gadget

Waiting for 
Execution of 

Gadget

Weird Machine
Execution

Language 
Transfer

Lifetimes + Borrow Checker
+ Bounds Checks

Execution
Start

Backward Edge 
Corruption

Forward Edge 
Corruption

Data-only Attack 
(DOP, BOP, etc.)

Code Reuse
(ROP, COP, etc)

CFI

Shadow Stack

Bounds Checks

Lifetimes + Borrow Checker

C/C++ Code

Rust Code

1

2 3 4

5

7

9

1 9…

6

8

*Papaevripides, Michalis, and Elias Athanasopoulos. "Exploiting mixed binaries." ACM Transactions on Privacy and Security (TOPS) 2021

Now that we have a flexible, 
structured way to describe CLA:

Can we think of more variants?

Set of High 
Impact Bugs

Weird Machine 
Execution

Wait for 
Execution of 

High-Impact bug

Memory 
Corruption

Gadget Injection

Waiting for 
Execution of 

High-Impact Bug

Memory 
Corruption

Gadget Injection
Waiting for 

Execution of 
Gadget

Waiting for 
Execution of 

Gadget

Weird Machine
Execution

Language 
Transfer

Execution
Start

Our graphical model can represent many forms of CLA
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Variants of CLA: Corrupting Rust Dynamic Bounds

ptr

cap

len

Stack

4

Heap

array_val

a

1 fn rust_fn(cb_fptr: fn(&mut i64)) {

2 //Rust vectors have dynamic bounds

3 let mut vecs: vec! [4];

4

5 unsafe{ vuln_fn(/*Ptr to vecs*/) }

6

7 // C++ changed vecs size to 128!

8 let vec_fp_addr: i64 = x.vecs [55];

9 }

1 void vuln_fn(int64_t vec_ptr_addr) {

2 // These values are set by a corruptible

3 // source , e.g., user input

4 int64_t array_index = 2;

5 int64_t array_value = 128;

6

7 int64_t* a = (void *) vec_ptr_addr;

8 a[array_index] = array_value;

9 }

fp

C/C++ can corrupt the 
saved length of the 

vector to corrupt Rust 
dynamic checks

array_index

CLA can corrupt Rust’s spatial safety

a[2]
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Variants of CLA: Corrupting Rust Lifetimes

1 fn rust_fn(cb_fptr: fn(&mut i64)) {

2 let heap_obj: /* Rust heap allocation */

3

4 unsafe{ vuln_fn(/*Ptr to heap_obj */) }

5

6 heap_obj [0] += 5; // UaF

7 }

1 // Frees object it does not own

2 void vuln_fn(int64_t obj_ptr_addr) {

3 int64_t* a = (void *) obj_ptr_addr;

4

5 //C/C++ frees Rust allocated object!

6 free(a);

7 }

heap_obj

Stack

val

Heap

a

C/C++ can corrupt 
Rust’s automatic 

memory management

CLA can corrupt Rust’s temporal safety
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Evaluation

Main security questions:

RQ1:  How prevalent are language transitions?

RQ2:  Are language transitions uniformly distributed or centralized? 

We analyze Mozilla Firefox for our evaluation
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Methodology and Metrics

• Call Sites

– When a function is the caller of another function

• Transfer Points: From one language to another

• Indirect Calls: Through a register

• Dynamic Calls: Through the program lookup table (PLT)

• Invocations

– When a function is the callee of another function

• Visitor Points: From one language to another

• Heavy Hitters

– Investigate the distribution of language transitions across functions

Our measurements analyze the general extent of the problem
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Results:
Call Site Analysis

Rust C/C++ Entire Binary

Call
Sites

327,653
(100%, 9.23%)

3,220,415
(100%, 90.77%)

3,548,068
(100%, 100%)

Transfer
Points

12,118
(3.70%, 5.32%)

215,778
(6.70%, 94.68%)

227,896
(6.42%, 100%)

Indirect
Calls

179,598
(54.81%, 64.04%)

100,843
(3.13%, 35.96%)

280,441
(7.90%, 100%)

Dynamic
Calls

126,710
(38.67%, 22.15%)

445,418
(13.83%, 77.85%)

572,128
(16.13%, 100%)

Raw Magnitude
(Column %, Row %)

Many Rust 
indirect calls

Rust Transfer Points % looks small 
but magnitude is large

Many Rust 
dynamic calls

Especially 
compared to 

C/C++ behavior

Abundant opportunities for CLA against Rust

Each cell:
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Results:
Invocation Analysis

Rust C/C++ Entire Binary

Invocations
346,469

(100%, 10.25%)
3,032,583

(100%, 89.75%)
3,379,052

(100%, 100%)

Visitor
Points

184,799
(53.34%, 81.09%)

43,097
(1.42%, 18.91%)

227,896
(6.74%, 100%)

The majority of Rust 
invocations come from 

memory unsafe languages
Most language transitions 

go from C/C++ to Rust 

Rust mostly acts as a service module for C/C++
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Results:
Heavy Hitters Analysis

Rust C/C++

Top Functions
with Call Sites

1. assert initial values match@libxul (588)
2. get longhand property value<alloc>@libxul (464)
3. get longhand property value<nsstring>@libxul (459)

1. CreateInstance@libxul (1,631)
2. generateBodyEv@libxul (1,160)
3. run@libxul (846)

Top Functions
with Transfer Points

1. main@crashreporter (55)
2. main@modutil (25)
3. main@logalloc-replay (24)

1. Unified cpp protocol http3@libxul (84)
2. UIShowCrashUI@crashreporter (54)
3. nsWindow@libxul (49)

Top Functions
with Invocations

1. as bytes@libxul.so (930)
2. state@libxul (554)
3. Unwind Resume@plt (520)

1. AnnotateMozCrashReason@libxul (134,254)
2. ReportAssertionFailure@libxul (131,545)
3. Array RelocateUsingMemutil@libxul (17,475)

Top Functions
with Visitor Points

1. Unwind Resume@std (488)
2. as str unchecked@libxul (25)
3. qcms transform data@libxul (24)

1. assert fail@GLIBC (4388)
2. ostream@GLIBC (3326)
3. strlen@GLIBC (1294)

Rust to C/C++ transfers 
most often are calls to libc

Most transfers from Rust à libc

May want to focus future 
defensive work in this area
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Preventing CLAs

Heap

Rust 
allocated
memory

Rust code

C++ code

C++ 
allocated 
memory

Unintended Interaction

Heap

Rust 
allocated
memory

Rust code

C++ code

Heap

p

*p

*p

Intended Interaction

Safe Unsafe

Need to isolate Rust heap 
when running C++ code 

à Heap Isolation

Need to avoid passing 
actual pointers to C++    
à Pseudo-Pointers

Component 1: Heap Isolation Component 2: Pseudo-Pointers
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• Uses Intel Memory Protection Keys (MPK) to isolate Rust heap from C++ heap
• Modified Rust standard allocator
• Code to switch permission included around all external call sites
• Implemented using libmpk

Preventing Unintended Interactions: Heap Isolation

Heap
Rust allocated

memoryRust code

C++ code C++ allocated 
memory

Heap

Heap

MPK Protection

Safe Unsafe
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Heap Isolation Implementation

Heap
Rust allocated

memory
Rust code

C++ code C++ allocated 
memory

Heap

Heap

asm! (" rdpkru ", in(" ecx") ecx , lateout (" eax") eax , lateout (" edx") _);
eax = ( eax & !PKRU_DISABLE_ALL ) | PKRU_ALLOW_READ ;
asm! (" wrpkru ", in(" eax") eax , in(" ecx") ecx , in(" edx ") edx );

Permission Switching Code

Safe Unsafe
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• Replace real pointers with pseudo-pointers (identifiers)
• Pass pseudo-pointers to C++
• Replace C++ pointer operations with calls to getter/setter methods (an LLVM pass)
• Let Rust handle actual access to memory

Heap

Rust 
allocated
memory

Rust code

C++ code

Heap

p

*p

*p Heap

Rust 
allocated
memory

Rust code

C++ code

Heap

p

id(p)

id pointer

id(p) *p

MPK Protection

No Protection Protected with Pseudo-Pointers

Safe Unsafe

Securing Intended Interactions: Pseudo-Pointers
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Pseudo-Pointer Implementation

int add5 ( MyStruct * const p) {
p->x += 5;

}

int add5 (ID < MyStruct > const p) {
x = get_x_in_MyStruct (p);
set_x_in_MyStruct (p, x +5);

}

No Protection Protected with Pseudo-Pointers
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Evaluation: Micro-Benchmarking

Heap Isolation
Average ~50 cycles

Pseudo-Pointers
Average ~100 cycles
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Conclusion

• Modern computer systems are hard-to-secure because of their legacy design

• RMC seeks to rethink the computer design with security as its central

• Two of our contributions:

– A practical approach for enforcing compartmentalization on Linux on commodity 
processors

– Understanding cross-language attacks and securing applications against them

• Future research goals: compartmentalization in other SW stack layers, enforcement on 
processors without security extensions, and designing for least privilege (new 
languages, app design process)


