
Dr. Hamed Okhravi

21 November 2022

Resilient Mission Computer (RMC)

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
This material is based upon work supported by the Under Secretary of Defense for Research and Engineering
under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under
Secretary of Defense for Research and Engineering.

© 2022 Massachusetts Institute of Technology. Delivered to the U.S. Government with Unlimited Rights, as
defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S.
Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above.
Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that
exist in this work.

Resilient Mission Computer- 2
Hamed Okhravi

The Arms Race in Computer Security

• The community has introduced decades worth of defenses:

• …but also, decades of attack advancements

Despite the defenses, classic vulnerabilities still affect modern computer systems

1990s 2000s 2010s 2020s

Stack smashing
[Phrack ‘96]

return-into-libc
[Phrack ‘01]

COOP
[S&P ‘15]

ROP
[CCS ‘07]

DOP
[S&P ‘16]

BOP
[CCS ‘18]

Morris Worm
[‘88]

Heap spraying
[Phrack ‘01]

This tension has
lead to little change
in observed CVEs

KOOBE
[USec ‘20]

BROP
[S&P ‘14]

Valgrind
[PLDI ‘07]

Sys
[USec ‘20]

FUZE
[USec ‘18]

StackGuard
[USec ‘98]

CFI
[CCS ‘05]

DFI
[OSDI ‘06]

Native Client
[S&P ‘09]

SFI
[SOSP ‘93]

CPI
[OSDI ‘14]

Softbound
[PLDI ‘09]

CETS
[ISMM ‘10]

ASLR
[PaX ‘01]

Baggy Bounds
[USec ‘09]

CCured
[POPL ‘02]

Cyclone
[ATC ‘02]

W+X
[PaX ‘03]

Control Jujutsu
[CCS ‘15]

Software Vulnerabilities Increasing in Number and Severity

0

5000

10000

15000

20000

2011 2012 2013 2014 2015 2016 2017 2018

Vu

ln
er

ab
ili

tie
s

Resilient Mission Computer- 3
Hamed Okhravi

BufferFile

Network
Application

Anatomy of a Cyber Attack

Operating System

Processor

Libraries

OS Memory
Space

copy File to Packetcopy File to Packet

Operator

Transmit FileTransmit File

Pointer

OS Memory
Space

Intended Operation Under Attack

OS does not
properly limit

privileges Buffer

Packet

User ID

Pointer

Packet

User ID

File

Inspired by CVE-2016-4997 – known privilege escalation vulnerability in Linux networking

Processor does
not check type

of data

OS does not
properly limit

privileges

Language (C/C++)
does not properly

check data

Resilient Mission Computer- 4
Hamed Okhravi

Design Principles

Hardware-
Enforced
Security

Fine-Grained
Compartmentalization

Safe
Languages

Resilient Mission Computer- 5
Hamed Okhravi

Resilient Mission Computer (RMC)

Moonshot Vision: Create a secure-by-design system in which the mission can succeed regardless of attempted attacks

Compartmentalized

Operating System

Security-Aware

Processor

Safe Libraries

Secure Applications

Resilient Mission Computer (RMC)
Architecture

Formal sanitization

of raw input

Tagged processor

checks semantics

Compartmentalized

OS

Secure interfaces

between lib and OS

Semantics extended

to HW interface

Secure lang. stops

many classes of vul.

High-level app

semantics

preserved

App written in

secure language

(Rust)

1: HAKC: Hardware-Assisted Kernel Compartmentalization, a Zero Trust version of the Linux OS
2: PoC: Proof-of-Concept

1

RMC by numbers: 5 Inventions, 2 Open Source Software, 15 Papers (9 top-tier), 9 Masters theses, 2 Demos, 15+ Talks, 4 Awards

Transitioning to DARPA, DOT&E, NAVAIR, NAWCAD, industry partners, and other external sponsors

Current PoC2 Boards Quadcopter Test Platform Program Team

2016 2017 2018 2019 2020 2021

Seedling

Idea

Developed

Initial

Architecture

Developed

Baseline PoC

(Rust + Tock OS)

Successfully

Tested

Secure App-OS

Interface

Developed

Secure OS-HW

Interface

Developed

Quadcopter

Drone

Tested

Compartmentalized

OS

PoC Fully

Integrated and

Tested on ARM

A feature-

rich, secure

operating

system

(HAKC)

RMC featured on the
cover of prestigious

IEEE Security & Privacy
May/June 20212022

Resilient Mission Computer- 6
Hamed Okhravi

Outline

• Compartmentalizing the OS
– Why compartmentalization
– Implementation on commodity processors
– Evaluation

• Securely using safe languages
– How safe languages work
– Cross-language attacks
– Defending against cross-language attacks

• Conclusion

Resilient Mission Computer- 7
Hamed Okhravi

How to Secure an OS?

We analyzed the past 5 years of vulnerabilities in Linux: 508 with critical or high severity

Memory Safety
33%

Compartmentalization
45%13%

Other
9%

Other includes:
• Race Conditions
• Integer Over/Underflow
• Logic bugs:
– Missing checks
– Buggy initialization
– Buggy error handling

Target of our work

We enforce compartmentalization to prevent the most common class of bugs

Resilient Mission Computer- 8
Hamed Okhravi

Compartmentalized Operating System

Processor

OS
Kernel

Applications

Device Drivers

Scheduler, Virt. Mem.

IPC, File System

System Call, VFS

Processor

Applications

IPC Device
Driver

Device
Driver

Virt.
Mem.

Sched-
uler WiFi UART File

System

Linux1

Default
Kernel
Mode

User
Mode

Fine-
Grained
Isolation

HAKC
Kernel
Mode

User
Mode

1. Also: Windows, MacOS, VXWorks, etc.

Security Weak Strong

Existing App Support Strong Strong

Resilient Mission Computer- 9
Hamed Okhravi

• Invented compartmentalization enforcement mechanism using
limited tag bits
– Uses ARM PAC and MTE
– Heavy weight compartment boundaries, lighter weight cliques

• Compartmented the IPv6 and NFTables kernel modules
– Security evaluation using emulation (QEMU)
– Performance evaluation using surrogate instructions on

Raspberry Pi
• Current overhead 2 – 24%

• HAKC is fully compatible with existing applications/servers
that run on Linux

Hardware-Assisted Kernel Compartmentalization
(HAKC)1

HAKC uses ARM security extensions to secure Linux via compartmentalization

File System

Linux
IPv6

NFTables

Bluetooth

Ethernet Driver

HAKC
IPv6

NFTables

Bluetooth

File System

Ethernet Driver

1. Derrick McKee, Yianni Giannaris, Carolina Ortega, Howard Shrobe, Mathias Payer, Hamed Okhravi, Nathan Burow.
“Preventing Kernel Hacks with HAKCs”. NDSS 2022. Best Paper

Resilient Mission Computer- 10
Hamed Okhravi

ARM Security Primitives -- PAC

64-bit pointer

64-bit saltSign pacda signed pointer

Data Key A

signed pointer

64-bit salt
autda 64-bit pointerAuth

• Pointer Authentication Code (PAC)

• Can sign a pointer with a 64 bit salt value

• Salt is used to encode kernel module, e.g., IPv6

PAC can compartmentalize an arbitrary number of kernel modules

Resilient Mission Computer- 11
Hamed Okhravi

ARM Security Primitives -- MTE

• Memory Tagging Extension (MTE)

• Can add a 4-bit “color” to memory and pointers

• Use colors to encode up to 16 additional protection regions per module 0xFFFF

64-bit pointerColor an address: stg

Retrieve address color: 64-bit pointer ldg 0x0000

MTE allows finer-grained compartmentalization within kernel modules

Resilient Mission Computer- 12
Hamed Okhravi

• Have 4 tag bits from MTE – standard number from our literature survey
• Have the ability to sign a pointer with 64 bits of context from PAC

– 48 bits used for compartment ID
– 16 bits used for other clique metadata

• Achieve 2^48 compartments, each with 2^4 cliques within them

Unlimited Compartments

Pointer

Context

PAC Signed Pointer

48 Bit Compartment ID 16 Bit ACL

48 Bit VAUnused4 Tag Bits

16 Cliques

Clique
Permissions

2^48
Compartments

Invalid unless
checked with same

context

PAC: Pointer Authentication Code
MTE: Memory Tagging Extension

Unclassified

Resilient Mission Computer- 13
Hamed Okhravi

• GUI that allows developers to specify
what compartments at the granularity of
functions (or entire files)

• Compiler automatically adds checks to
pointer dereferences

• Checks validate:
– Pointer and data are owned by the

same compartment
– Pointer and data are in the same clique

(or there is a valid connection)

Applying Compartments

#include <linux/hakc.h>

//Declare Compartment
HAKC_MODULE_CLAQUE(…);
//Declare Allowed Transitions
HAKC_EXIT(…);

int foo(int *x, int y){
//Compiler added check
*(HAKC_CHECK_DATA_ACCESS(x)) = y;

}

Minimal developer intervention required once to set compartmentalization policy

Resilient Mission Computer- 14
Hamed Okhravi

Automating Compartmentalization

• Possible compartmentalization algorithms:
– Minimum Spanning Tree
– Weighted Knapsack

Discovering Policies Applying Policies

Creating a framework to systematically evaluate performance vs security trade-offs

Source
Code

Static
Analysis

Data
Access
Graph

DAG

Profiling

Compart.
Algo. Policy

Policy
HAKC

Compiler

• No code annotations to specify policy

• Automating data transfer between
compartments

• Enable rapid experimentation with
compartmentalization algorithms

Resilient Mission Computer- 15
Hamed Okhravi

Network
Application

Attack Mitigated by Compartmentalization

Operating System

Processor

Libraries

OS Memory
Space

copy File to Packet

Operator

Send File to Cloud

Under Attack

Buffer

Pointer

Packet

User ID

File

Compartment Boundary

Inspired by CVE-2016-4997 Unclassified

Resilient Mission Computer- 16
Hamed Okhravi

Evaluation: Web Server Case Study

Performance tolerable under maximum load for server applications

• Current results, optimization ongoing

• Relies on conservative (additional
overhead) substitute instruction
sequences

• Run our kernel on Raspberry Pi, IPv6
LAN connection to a laptop

• Run Apache on Pi, measure time to
serve 3 different file sizes

No Performance Loss

Higher
Is

Better

Resilient Mission Computer- 17
Hamed Okhravi

• Visited the Alexa Top 50 Websites to see impact of HAKC on load times

• Table shows the measured time differences between HAKC and the baseline kernel,
averaged over 5 samples taken at different times of day

Evaluation: Web Browsing Case Study

Performance impact within standard deviation for most websites

Negative numbers
→

Slower load time with HAKC

Websites with lowest
standard deviation

Websites with highest
standard deviation

Resilient Mission Computer- 18
Hamed Okhravi

How to Securely Use Safe Languages

• Adding Rust to hardened legacy applications may decrease security!

• Attackers can leverage novel cross-language attacks

• Incrementally deploying Rust safely requires accurate threat models

Language 1 (e.g., C)

Language 2 (e.g., Rust)

Exploit PointTransfer PointCorruption Point

Program execution time

Execute Weird
Machine

Execute Rest of
Benign Program

Execution
Start

Memory
Protection

Control-flow
Protection

Need novel security policies for mixed-language applications

Resilient Mission Computer- 19
Hamed Okhravi

Outline

• Compartmentalizing the OS
– Why compartmentalization
– Implementation on commodity processors
– Evaluation

• Securely using safe languages
– How safe languages work
– Cross-language attacks
– Defending against cross-language attacks

• Conclusion

Resilient Mission Computer- 20
Hamed Okhravi

Recall: Memory Corruption Attacks

Spatial Memory Violation Temporal Memory Violation

Heap

Buffer

Function Pointer Attacker

Heap

ObjectFunction Pointer

Attacker

Resilient Mission Computer- 21
Hamed Okhravi

Rise of Safe, System Programming Languages

• Can we prevent memory problems at the onset?

– Without insane performance costs

• Rust

– Compile-time checks
• Strong type system à Prevents arbitrary casting

• Bounds checks on static data

• Ownership and Lifetimes

– Run-time checks
• Bounds checks on dynamic data

• Go

– Compile-time checks

– Run-time checks
• Garbage collection: Leads to slightly larger run-time (but still performant!)

Acceptable run-time
even for the

systems domain

New programming languages à catalyst for real change

Resilient Mission Computer- 22
Hamed Okhravi

Rust: Memory-Safe Programming Language

• A systems programming language that is memory-safe

• Small language runtime: is translated to instructions directly; no need for language VMs

Spatial Memory Safety

Heap

Buffer

Function Pointer

• Spatial safety (no buffer overflows):
– Statically-sized objects: compile-time checks
– Dynamically-sized objects: runtime bounds checks

Correct
Bounds

Temporal Memory Safety

Heap

Object

Pointer is
Destructed when
Object is Freed

• Temporal safety (no use-after-frees):
– Ownership: only one owner of object at a time
– Burrowing: ownership can be temporarily transferred

Resilient Mission Computer- 23
Hamed Okhravi

• Rust’s checks can be disabled by using the unsafe{} keyword

• Done when Rust’s checks are too restrictive

• Example: manipulating raw bits for interfacing with hardware devices in device drivers

• Unsafe Rust is trivially vulnerable to memory corruption like C/C++

• We focus on Safe Rust

Focus on Safe Rust

Resilient Mission Computer- 24
Hamed Okhravi

data

Practical Deployment of Safe Languages

• What about legacy C/C++ code?

– Rust/Go offer strong Foreign Function Interfaces (FFI)
• FFI facilitates incremental adoption into legacy code bases

• Results in a Multi-Language Application (MLA)

• Multi-language applications are common:

– Rust: Firefox, Tor, Windows, Fuchsia, etc.

– Go: Docker, Kubernetes, CockroachDB, BoltDB, etc.

Code
module 2

Code
module 3

Code
module 4

Code
module 1

data

data

Code
module 2

Code
module 3

Code
module 4

Code
module 1

data

C/C++ C/C++

Rust

MLA
FFI

Safe languages are often gradually deployed into legacy code

If not done carefully,
incremental deployment
of safe languages can

reduce security

https://www.programmersought.net/en/article/324364766.html

Firefox Language Breakdown

Resilient Mission Computer- 25
Hamed Okhravi

1 fn rust_fn () {

2 // Create some data

3 let mut v: Vec <i32 > = vec![1, 2; 4];

4

5 // Ownership borrow (mutable reference)

6 v.push (3);

7

8 // Manual memory modification requires unsafe

9 unsafe { *v.as_ptr (). add (1) = 8; }

10

11 // Ownership borrow (shared reference)

12 println!("{}", v[1]);

13

14 // Ownership transfer

15 give_me_a_vec(v); // automatically free ’d on return

16

17 // No longer owner , would result in an error:

18 // v.push (4);

19 }

Rust Safety

Pass-by-Value:
Ownership Transfer

Pass-by-Reference:
Temporary Ownership Borrow

Mutable Reference:
Mutation but no Aliasing

Shared Reference:
Aliasing but no Mutation

LifetimesOwnership

Multiple types of
Ownership Transfer Spatial and

temporal safety
ptr cap=4 len=3

Vec<T>

Stack

T T THeap

Rust provides both spatial and temporal safety

Mutation
XOR

Aliasing

Escape Rust safety
with “unsafe”

FFI is fundamentally unsafe behavior:
For both intended and unintended interactions!

Resilient Mission Computer- 26
Hamed Okhravi

Single vs. Multi-Language Application Threat Models

Start
Execution

Memory
Corruption

Inject
Gadgets

Control-Flow
Hijack

Data-Only
Attack

Weird
Machine

Start
Execution

Inject
Gadgets

Control-Flow
Hijack

Data-Only
Attack

Weird
Machine

Start
Execution

Memory
Corruption

Inject
Gadgets

Data-Only
Attack

Weird
Machine

(a) C Threat Model

Start
Execution

Memory
Corruption

Inject
Gadgets

Data-Only
Attack

Weird
Machine

Inject
Gadgets

Control-Flow
Hijack

Data-Only
Attack

Weird
Machine

Language
Transfer

(b) Hardened C Threat Model

(c) Safe Language Threat Model

Single-language
Approach 1

Combined
Approach

(d) Multi-language Threat Model

Single-language
Approach 2

Adding something good to something bad
may actually leave us with something worse..

MLA threat model is actually similar to the original C threat model

Resilient Mission Computer- 27
Hamed Okhravi

• All C/C++ code cannot be immediately ported to Rust

• Real codebases incrementally port to Rust
• Rust code often exists alongside other languages, primarily C/C++

• Examples: Mozilla (Firefox), DropBox, Microsoft, Amazon, Discord, Facebook, etc.

Problem Statement

Heap

Rust
allocated
memory

Rust code

C++ code

C++
allocated
memory

Unintended Interaction

Heap

Rust
allocated
memory

Rust code

C++ code

Heap

p

*p

*p

Intended Interaction

Safe Unsafe

Resilient Mission Computer- 28
Hamed Okhravi

CLA Attack Construction

Temporal
Corruption

Spatial
Corruption

Heap
Corruption

Stack
Corruption

Intended
Interaction
Corruption

Unintended
Interaction
Corruption

Non-Control
Data

Modification

Control Data
Modification

Waiting for
Execution of

High-Impact Bug

Attack execution*

Protected by Rust

Protected by hardened C

CFI + Shadow Stack

Memory
Corruption

Gadget Injection
Waiting for

Execution of
Gadget

Waiting for
Execution of

Gadget

Weird Machine
Execution

Language
Transfer

Lifetimes + Borrow Checker
+ Bounds Checks

Execution
Start

Backward Edge
Corruption

Forward Edge
Corruption

Data-only Attack
(DOP, BOP, etc.)

Code Reuse
(ROP, COP, etc)

CFI

Shadow Stack

Bounds Checks

Lifetimes + Borrow Checker

C/C++ Code

Rust Code

1

2 3 4

5

7

9

1 9…

6

8

*Papaevripides, Michalis, and Elias Athanasopoulos. "Exploiting mixed binaries." ACM Transactions on Privacy and Security (TOPS) 2021

Now that we have a flexible,
structured way to describe CLA:

Can we think of more variants?

Set of High
Impact Bugs

Weird Machine
Execution

Wait for
Execution of

High-Impact bug

Memory
Corruption

Gadget Injection

Waiting for
Execution of

High-Impact Bug

Memory
Corruption

Gadget Injection
Waiting for

Execution of
Gadget

Waiting for
Execution of

Gadget

Weird Machine
Execution

Language
Transfer

Execution
Start

Our graphical model can represent many forms of CLA

Resilient Mission Computer- 29
Hamed Okhravi

Variants of CLA: Corrupting Rust Dynamic Bounds

ptr

cap

len

Stack

4

Heap

array_val

a

1 fn rust_fn(cb_fptr: fn(&mut i64)) {

2 //Rust vectors have dynamic bounds

3 let mut vecs: vec! [4];

4

5 unsafe{ vuln_fn(/*Ptr to vecs*/) }

6

7 // C++ changed vecs size to 128!

8 let vec_fp_addr: i64 = x.vecs [55];

9 }

1 void vuln_fn(int64_t vec_ptr_addr) {

2 // These values are set by a corruptible

3 // source , e.g., user input

4 int64_t array_index = 2;

5 int64_t array_value = 128;

6

7 int64_t* a = (void *) vec_ptr_addr;

8 a[array_index] = array_value;

9 }

fp

C/C++ can corrupt the
saved length of the

vector to corrupt Rust
dynamic checks

array_index

CLA can corrupt Rust’s spatial safety

a[2]

Resilient Mission Computer- 30
Hamed Okhravi

Variants of CLA: Corrupting Rust Lifetimes

1 fn rust_fn(cb_fptr: fn(&mut i64)) {

2 let heap_obj: /* Rust heap allocation */

3

4 unsafe{ vuln_fn(/*Ptr to heap_obj */) }

5

6 heap_obj [0] += 5; // UaF

7 }

1 // Frees object it does not own

2 void vuln_fn(int64_t obj_ptr_addr) {

3 int64_t* a = (void *) obj_ptr_addr;

4

5 //C/C++ frees Rust allocated object!

6 free(a);

7 }

heap_obj

Stack

val

Heap

a

C/C++ can corrupt
Rust’s automatic

memory management

CLA can corrupt Rust’s temporal safety

Resilient Mission Computer- 31
Hamed Okhravi

Evaluation

Main security questions:

RQ1: How prevalent are language transitions?

RQ2: Are language transitions uniformly distributed or centralized?

We analyze Mozilla Firefox for our evaluation

Resilient Mission Computer- 32
Hamed Okhravi

Methodology and Metrics

• Call Sites

– When a function is the caller of another function

• Transfer Points: From one language to another

• Indirect Calls: Through a register

• Dynamic Calls: Through the program lookup table (PLT)

• Invocations

– When a function is the callee of another function

• Visitor Points: From one language to another

• Heavy Hitters

– Investigate the distribution of language transitions across functions

Our measurements analyze the general extent of the problem

Resilient Mission Computer- 33
Hamed Okhravi

Results:
Call Site Analysis

Rust C/C++ Entire Binary

Call
Sites

327,653
(100%, 9.23%)

3,220,415
(100%, 90.77%)

3,548,068
(100%, 100%)

Transfer
Points

12,118
(3.70%, 5.32%)

215,778
(6.70%, 94.68%)

227,896
(6.42%, 100%)

Indirect
Calls

179,598
(54.81%, 64.04%)

100,843
(3.13%, 35.96%)

280,441
(7.90%, 100%)

Dynamic
Calls

126,710
(38.67%, 22.15%)

445,418
(13.83%, 77.85%)

572,128
(16.13%, 100%)

Raw Magnitude
(Column %, Row %)

Many Rust
indirect calls

Rust Transfer Points % looks small
but magnitude is large

Many Rust
dynamic calls

Especially
compared to

C/C++ behavior

Abundant opportunities for CLA against Rust

Each cell:

Resilient Mission Computer- 34
Hamed Okhravi

Results:
Invocation Analysis

Rust C/C++ Entire Binary

Invocations
346,469

(100%, 10.25%)
3,032,583

(100%, 89.75%)
3,379,052

(100%, 100%)

Visitor
Points

184,799
(53.34%, 81.09%)

43,097
(1.42%, 18.91%)

227,896
(6.74%, 100%)

The majority of Rust
invocations come from

memory unsafe languages
Most language transitions

go from C/C++ to Rust

Rust mostly acts as a service module for C/C++

Resilient Mission Computer- 35
Hamed Okhravi

Results:
Heavy Hitters Analysis

Rust C/C++

Top Functions
with Call Sites

1. assert initial values match@libxul (588)
2. get longhand property value<alloc>@libxul (464)
3. get longhand property value<nsstring>@libxul (459)

1. CreateInstance@libxul (1,631)
2. generateBodyEv@libxul (1,160)
3. run@libxul (846)

Top Functions
with Transfer Points

1. main@crashreporter (55)
2. main@modutil (25)
3. main@logalloc-replay (24)

1. Unified cpp protocol http3@libxul (84)
2. UIShowCrashUI@crashreporter (54)
3. nsWindow@libxul (49)

Top Functions
with Invocations

1. as bytes@libxul.so (930)
2. state@libxul (554)
3. Unwind Resume@plt (520)

1. AnnotateMozCrashReason@libxul (134,254)
2. ReportAssertionFailure@libxul (131,545)
3. Array RelocateUsingMemutil@libxul (17,475)

Top Functions
with Visitor Points

1. Unwind Resume@std (488)
2. as str unchecked@libxul (25)
3. qcms transform data@libxul (24)

1. assert fail@GLIBC (4388)
2. ostream@GLIBC (3326)
3. strlen@GLIBC (1294)

Rust to C/C++ transfers
most often are calls to libc

Most transfers from Rust à libc

May want to focus future
defensive work in this area

Resilient Mission Computer- 36
Hamed Okhravi

Preventing CLAs

Heap

Rust
allocated
memory

Rust code

C++ code

C++
allocated
memory

Unintended Interaction

Heap

Rust
allocated
memory

Rust code

C++ code

Heap

p

*p

*p

Intended Interaction

Safe Unsafe

Need to isolate Rust heap
when running C++ code

à Heap Isolation

Need to avoid passing
actual pointers to C++
à Pseudo-Pointers

Component 1: Heap Isolation Component 2: Pseudo-Pointers

Resilient Mission Computer- 37
Hamed Okhravi

• Uses Intel Memory Protection Keys (MPK) to isolate Rust heap from C++ heap
• Modified Rust standard allocator
• Code to switch permission included around all external call sites
• Implemented using libmpk

Preventing Unintended Interactions: Heap Isolation

Heap
Rust allocated

memoryRust code

C++ code C++ allocated
memory

Heap

Heap

MPK Protection

Safe Unsafe

Resilient Mission Computer- 38
Hamed Okhravi

Heap Isolation Implementation

Heap
Rust allocated

memory
Rust code

C++ code C++ allocated
memory

Heap

Heap

asm! (" rdpkru ", in(" ecx") ecx , lateout (" eax") eax , lateout (" edx") _);
eax = (eax & !PKRU_DISABLE_ALL) | PKRU_ALLOW_READ ;
asm! (" wrpkru ", in(" eax") eax , in(" ecx") ecx , in(" edx ") edx);

Permission Switching Code

Safe Unsafe

Resilient Mission Computer- 39
Hamed Okhravi

• Replace real pointers with pseudo-pointers (identifiers)
• Pass pseudo-pointers to C++
• Replace C++ pointer operations with calls to getter/setter methods (an LLVM pass)
• Let Rust handle actual access to memory

Heap

Rust
allocated
memory

Rust code

C++ code

Heap

p

*p

*p Heap

Rust
allocated
memory

Rust code

C++ code

Heap

p

id(p)

id pointer

id(p) *p

MPK Protection

No Protection Protected with Pseudo-Pointers

Safe Unsafe

Securing Intended Interactions: Pseudo-Pointers

Resilient Mission Computer- 40
Hamed Okhravi

Pseudo-Pointer Implementation

int add5 (MyStruct * const p) {
p->x += 5;

}

int add5 (ID < MyStruct > const p) {
x = get_x_in_MyStruct (p);
set_x_in_MyStruct (p, x +5);

}

No Protection Protected with Pseudo-Pointers

Resilient Mission Computer- 41
Hamed Okhravi

Evaluation: Micro-Benchmarking

Heap Isolation
Average ~50 cycles

Pseudo-Pointers
Average ~100 cycles

Resilient Mission Computer- 42
Hamed Okhravi

Publications

1. [NDSS] Derrick McKee, Yianni Giannaris, Carolina Ortega, Howard Shrobe, Mathias Payer, Hamed
Okhravi, and Nathan Burow, "Preventing Kernel Hacks with HAKC," NDSS, San Diego, CA, 2022
Distinguished Paper Award

2. [NDSS] Samuel Mergendahl, Nathan Burow, and Hamed Okhravi, "Cross-Language Attacks,"
NDSS, San Diego, CA, 2022

3. [CSUR] Nathan Burow, Bryan Ward, Richard Skowyra, Roger Khazan, Howard Shrobe, and Hamed
Okhravi, “TAG: Tagged Architecture Guide”, May 2022

4. [IEEE Security & Privacy] Hamed Okhravi, “A Cybersecurity Moonshot”, IEEE Security & Privacy,
Vol. 19, No. 3, 2021

5. [ACSAC] Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan Burow,
"Keep Safe Rust Safe with Galeed ," ACSAC, December 2021

6. [IEEE Security & Privacy] Hamed Okhravi, et al. “Perspectives on the SolarWinds Hack”, IEEE
Security & Privacy, Vol. 19, No. 2, 2021

7. [DSN] Chad Spensky, Nathan Burow, and Hamed Okhravi, et al., “Glitching Demystified”, DSN, 2021
8. [AsiaCCS] Chad Spensky and Hamed Okhravi, et al., “Conware: Automated Modeling of Hardware

Peripherals”, AsiaCCS, 2021
+ many more theses and reports

Our vision article
featured on the cover of

prestigious
IEEE Security & Privacy

May/June 2021

Resilient Mission Computer- 43
Hamed Okhravi

Conclusion

• Modern computer systems are hard-to-secure because of their legacy design

• RMC seeks to rethink the computer design with security as its central

• Two of our contributions:

– A practical approach for enforcing compartmentalization on Linux on commodity
processors

– Understanding cross-language attacks and securing applications against them

• Future research goals: compartmentalization in other SW stack layers, enforcement on
processors without security extensions, and designing for least privilege (new
languages, app design process)

