CS 5430: Information Flow Part II: Dynamic Enforcement

Fred B. Schneider Samuel B Eckert Professor of Computer Science

Department of Computer Science Cornell University Ithaca, New York 14853 U.S.A.

Enforcement of FBAC

FLI imposes restrictions on each statement. $v \rightarrow w \implies \Gamma(v) \sqsubseteq \Gamma(w)$

- Static Enforcement
 - Compiler ensures type-correct programs satisfy restrictions.
- Dynamic Enforcement
 - run-time checks ensure program execution satisfies restrictions.
 - changes to labels mean program execution satisfies restrictions.

- Static enforcement: Rejects program if any execution could violate Flow-Label invariant.
- Dynamic enforcement: Blocks after partial execution when Flow-Label invariant could be violated.

if 0 = 0 then $x_L \coloneqq 2$ else $x_L \coloneqq x_H$ fi

- Static enforcement: Rejects program if any execution could violate Flow-Label invariant.
- Dynamic enforcement: Blocks after partial execution when Flow-Label invariant could be violated.

Type error!
if
$$0 = 0$$
 then $x_L \approx 2$ **else** $x_L \approx x_H$ **fi**

- Static enforcement: Rejects program if execution could violates Flow-Label invariant
- Dynamic enforcement: Blocks after partial execution when Flow-Label invariant could be violated.

$$check: ctx \sqcup \Gamma(2) \subseteq \Gamma(x_L)?$$

$$if \ 0 = 0 \ then \ x_L \coloneqq 2 \ else \ x_L \coloneqq x_h \ fi$$

$$ctx = L \qquad check: ctx \sqcup \Gamma(x_H) \subseteq \Gamma(x_L)?$$

- Static enforcement: Rejects program if execution could violates Flow-Label invariant
- Dynamic enforcement: Blocks after partial execution when Flow-Label invariant could be violated.

check:

$$ctx \sqcup \Gamma(2) \equiv \Gamma(x_L)$$
?
if $0 = 0$ then $x_L \coloneqq 2$ else $x_L \coloneqq x_h$ fi
 $ctx = L$

Implementing Dynamic Enforcement

Conjecture: To implement dynamic enforcement:

- Precede $x \coloneqq Expr$ with check: "ctx $\sqcup \Gamma(Expr) \sqsubseteq \Gamma(x)$?"
- Block execution if check fails.

Implementing Dynamic Enforcement

Conjecture: To implement dynamic enforcement:

- Precede $x \coloneqq Expr$ with check: "ctx $\sqcup \Gamma(Expr) \sqsubseteq \Gamma(x)$?"
- Block execution if check fails

$$\begin{array}{l} r(B) \sqcup \Gamma(Expr) \sqsubseteq \Gamma(x_L)? \\ \textbf{if B then } x_L \coloneqq Expr \\ \textbf{else } \textbf{skip} \\ \textbf{fi} \end{array}$$

Implementing Dynamic Enforcement

Conjecture:

- Precede $x \coloneqq Expr$ with check: "ctx $\sqcup \Gamma(Expr) \sqsubseteq \Gamma(x)$?"
- Block execution if check fails

$$x_{L} \coloneqq 0$$

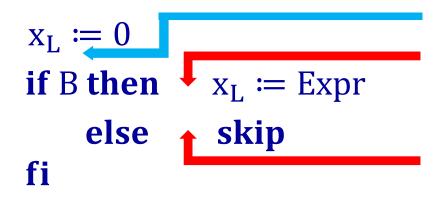
$$f(B) \sqcup \Gamma(Expr) \sqsubseteq \Gamma(x_{L})?$$

$$f(B) \sqcup \Gamma(Expr) \sqsubseteq \Gamma(x_{L})?$$

$$x_{L} \coloneqq Expr$$

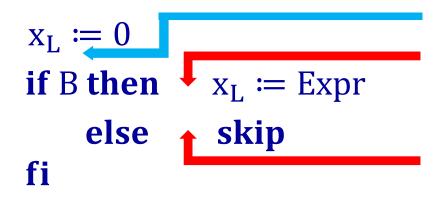
$$else \quad skip$$

- But... when stop on check:
 - ... B=true leaks!
 - Result: implemented RNI (=termination insensitive) only


Solution: Hybrid Enforcement

```
\begin{array}{ll} \mathbf{x}_{L}\coloneqq\mathbf{0}\\ \textbf{if B then} & \mathbf{x}_{L}\coloneqq\mathrm{Expr}\\ \textbf{else} & \textbf{skip}\\ \textbf{fi} \end{array}
```

• $B \rightarrow x_L$ whether or not $x_L \coloneqq Expr$ executes.


- For $\Gamma(B) = H$, could exist memories M and M' with different H values causing termination with x_L having different values.

Solution: Hybrid Enforcement

- $B \rightarrow x_L$ whether or not $x_L \coloneqq Expr$ executes.
 - For $\Gamma(B) = H$, could exist memories M and M' with different H values causing termination with x_L having different values.
 - FLI requires $\Gamma(B) \sqsubseteq x_L$
 - Before if -or- Within then and within else
 - FLI also requires $\Gamma(Expr) \sqsubseteq \Gamma(x_L)$ before $x_L \coloneqq Expr$

Solution: Hybrid Enforcement

- $B \rightarrow x_L$ whether or not $x_L \coloneqq Expr$ executes.
 - For $\Gamma(B) = H$, could exist memories M and M' with different H values causing termination with x_L having different values.
 - FLI requires $\Gamma(B) \sqsubseteq x_L$
 - Before if -or- Within then and within else -or- After if
 - FLI also requires $\Gamma(Expr) \sqsubseteq \Gamma(x_L)$ before $x_L \coloneqq Expr$
- What if B is $x_H \neq x_H$? (... enforcement is conservative.)

Hybrid Enforcement: Summary

if B then C₁ else C₂ fi

- Insert check $\Gamma(\text{Expr}) \sqsubseteq \Gamma(x)$ before execution of each " $x \coloneqq \text{Expr}''$ in C_1 or C_2 .
- Insert check $\Gamma(B) \sqsubseteq \Gamma(x)$ within execution of both C_1 and C_2 if " $x \coloneqq \dots$ " appears anywhere within C_1 or within C_2 .

Flow-Sensitive Labels

A given variable might be given different **flowsensitive** labels during execution.

Example:

$$x \coloneqq Hval; x \coloneqq 0; x_L \coloneqq x$$

Observe:

– If $\Gamma(x) = H$ then program does not type check.

Flow-Sensitive Labels

A given variable might be given different **flowsensitive** labels during execution.

Example:

 $\mathbf{x}\coloneqq \text{Hval}; \quad \mathbf{x}\coloneqq \mathbf{0}; \quad \mathbf{x}_{L}\coloneqq \mathbf{x}$ red given label H; green given label L

Program does type check and satisfies: $v \rightarrow w \Rightarrow \Gamma(v) \sqsubseteq \Gamma(w)$

Flow Sensitive Labels + Dynamic?

```
\mathbf{x} \coloneqq \mathbf{0} \ \{ \Gamma(\mathbf{x}) = \mathbf{L} \}
if h > 0 then x \coloneqq 2; {\Gamma(x) = \Gamma(h) = H}
                    skip
             else
fi
• h > 0 is true: After fi \Gamma(x) = H
• h > 0 is false: After fi \Gamma(x) = L
Problem: h \rightarrow x but \Gamma(h) \not\subseteq \Gamma(x)
```


Rule: Block execution from entering conditional commands with high guards and lower targets.

 $x \coloneqq 0$ $if h > 0 then \quad x \coloneqq 2$ $else \quad skip$

Soln 2

Rule: Update labels of target variables in untaken branches to capture implicit flow.

 $x \coloneqq 0$ if h > 0 then $x \coloneqq 2$; $\Gamma(x) \coloneqq \Gamma(h)$ else skip; $\Gamma(x) \coloneqq \Gamma(h)$ fi

Leaks thru Flow-Sensitive Labels

Suppose: $\Gamma(m) = M$ and $L \sqsubseteq M \sqsubseteq H$

if m > 0 then $w \coloneqq hi$ else $w \coloneqq lo$ fi

Leaks thru Flow-Sensitive Labels

Suppose: $\Gamma(m) = M$ and $L \sqsubseteq M \sqsubseteq H$

false M if m > 0 then $w \coloneqq hi$ else $w \coloneqq lo$ fi

Leaks thru Flow-Sensitive Labels

Suppose: $\Gamma(m) = M$ and $L \sqsubseteq M \sqsubseteq H$

false M
if
$$m > 0$$
 then $w \coloneqq hi$ else $w \coloneqq lo$ fi
true H

• Value of m leaks to label (M vs H) of w.

Avoiding Leaks thru Flow Sensitive 1


Rule: Use the same flow-sensitive label for an assignment target, independent of guard.

Example if m > 0 then $w \coloneqq hi$ else $w \coloneqq lo$ fi H

(Sound but conservative.)

Avoiding Leaks thru Flow Sensitive 2

Rule: Associate a metalabel with each label. Example:

Labels for meta-labels?

Summary

FLI: $v \to w \implies \Gamma(v) \sqsubseteq \Gamma(w)$

- Static enforcement
 - Conservative
- Dynamic enforcement
 - Insert tests
 - Mind the untaken assignment!
 - Change labels
 - Static
 - Dynamic: Leaks thru labels