CS 5430:
 Example of Credentials-Based Authorization

Fred B. Schneider
Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University
Ithaca, New York 14853
U.S.A.

Cornell CIS

CAL

Language:

C ::= F (F a formula of First-order Predicate Logic)
| P says C
| P^{\prime} speaksfor P
| P^{\prime} speaks $x: C$ for P
| C^C'
| CvC'
$\mathrm{C} \Rightarrow \mathrm{C}^{\prime}$
N.b. $\neg \mathrm{C}: ~(\mathrm{C} \Rightarrow$ false)

Models for CAL

$\omega(P)$ is the set of beliefs principal P has.

- P says C iff $C \in \omega(P)$
- P^{\prime} speaksfor P iff $\quad \omega\left(\mathrm{P}^{\prime}\right) \subseteq \omega(\mathrm{P})$
$\omega(\mathrm{P})$ called the worldview of P

CAL Inference Rules: says

$$
\frac{C}{P \text { says } C} \quad \frac{P \text { says } C}{P \text { says }(P \text { says } C)} \quad \frac{P \text { says }(P \text { says } C)}{P \text { says } C}
$$

$$
\frac{P \text { says }\left(C \Rightarrow C^{\prime}\right)}{(P \text { says } C) \Rightarrow\left(P \text { says } C^{\prime}\right)}
$$

CAL Inference Rules: speaksfor

P says $\left(P^{\prime}\right.$ speaksfor P) P^{\prime} speaksfor P
P^{\prime} speaksfor P
$\left(P^{\prime}\right.$ says $\left.C\right) \Rightarrow(P$ says $C)$
$\frac{P \text { speaksfor } P^{\prime}, P^{\prime} \text { speaksfor } P^{\prime \prime}}{P}$

$$
P \text { speaksfor } P^{\prime \prime}
$$

Unrestricted Delegation

P^{\prime} says C,
 P^{\prime} speaksfor P $\overline{\left(P^{\prime} \text { says } C\right) \Rightarrow(P \text { says } C)}$
 P says C

- Warning: P inherits beliefs from any principal that was delegated to.
- P trusting P^{\prime} means
- P adopts all beliefs of P^{\prime}
- P also adopts beliefs of any principal P^{\prime} trusts (transitive).

Why Delegate?

Transitivity of delegation allows clients to be ignorant of the implementation details of services the clients invoke.

- Transitive delegations are made by implementation of service to lower-level services.
- Transitive delegations are hidden from clients.

Restricted Delegation

P^{\prime} speaks x : C for P

$$
\overline{\left(P^{\prime} \text { says } C[x:=\tau]\right) \Rightarrow(P \text { says } C[x:=\tau])}
$$

Example:
CS says Major(Alice)
CS says \neg Major (Alice)
$C U$ says (CS speaksfor $C U$)
$C U$ says (CS speaks x : $\operatorname{Major}(x)$ for $C U$)
... $C U$ does not inherit $\neg \operatorname{Major}(x)$ from $C S$

Compound Principals

- Every principal P has a worldview $\omega(P)$.
- Compound principals combine worldviews from multiple principals to obtain a worldview for the compound principal.
- Example:
$-P \wedge Q: \quad \omega(P \wedge Q): \omega(P) \cap \omega(Q)$

Useful Compound Principals

- Subprincipals of $P: P . x$
- Groups $G=\left\{G_{1}, G_{2}, \ldots G_{n}\right\}$

Subprincipals

For any term η :
$\overline{P \text { speaksfor } P . \eta}$

$$
\frac{\eta=\eta^{\prime}}{P . \eta \text { speaksfor } P . \eta^{\prime}}
$$

Use of Subprincipals

- Any belief of P is attributed to $P . x$ for any x.
- Hack: Employ P. ϵ for beliefs by P that should not be attributed to other sub-principals of P.
- If L implements H then H is a subprincipal of L.
- Example: HW implements OS, so HW.OS is the principal that corresponds to the operating system.

Implements: CAL Analysis

L implements H, so H is a subprincipal of L.

- L says $(H$ says C)
- L speaksfor H
L says $(H$ says $C), \frac{L \text { speaksfor } H}{(L \text { says }(H \text { says } C)) \Rightarrow(H \text { says }(H \text { says } C)}$

Implements: CAL Analysis

L implements H, so H is a subprincipal of L.

- L says $(H$ says C)
- L speaksfor H
$\frac{L \text { says }(H \text { says } C), \frac{L \text { speaksfor } H}{(L \text { says }(H \text { says } C)) \Rightarrow(H \text { says }(H \text { says } C)}}{\frac{H \text { says }(H \text { says } C)}{H \text { says } C}}$

Group Principals

A group is defined by a finite enumeration of its member principals. $G=\left\{P_{1}, P_{2}, \ldots P_{N}\right\}$

- Conjunctive Groups

$\frac{P_{G} \text { says } C}{P \text { says } C}$
$\overline{P_{G} \text { speaksfor } P}$ for $P \in G$

Group Principals

- Disjunctive Groups. Hold beliefs that any member principal holds plus deductive closure!
$\frac{P \text { says } C}{P_{G} \operatorname{says} C}$

$$
\overline{P \text { speaksfor } P_{G}} \text { for } P \in G
$$

$$
\frac{P_{G} \text { says } C, \quad P_{G} \text { says }\left(C \Rightarrow C^{\prime}\right)}{P_{G} \text { says } C^{\prime}}
$$

Credentials Can Convey Beliefs

k_{s}-sign(C): K_{S} says C

- Public keys are principals.
- K_{S} speaksfor S if principal S is the only agent with access to private key k_{s}.

A principal S can be a hash of the running code and data that was read.

Access to a Joint Project

- A works for Intel and is known as A@Intel.
- Public key K_{A}; private key k_{A}
- Laptop
- Member of Atom group
- MS has web page Spec
- ACL allows access to Spec for members of Atom
- CAL models as: Atom speaksfor Spec
- Therefore: Atom says (access Spec) \vdash Spec says (access Spec)

Suppose A requests access a Spec web page...

Application:

Accessing a Joint Project

CAL Model for Spec Access

1. $\mathrm{K}_{\mathrm{SSL}}$ says (A@Intel says (read page: Spec))
2. $\mathrm{K}_{\text {SSL }}$ says r
3. $\mathrm{K}_{\text {SSL }}$ says $\left(\mathrm{K}_{\mathrm{A}}\right.$ says (r, A))
$\mathrm{K}_{\text {SSL }}$ speaksfor K_{A} since K_{A} is a subprincipal of $\mathrm{K}_{\text {SSL }}$
Conclude: K_{A} says (r, A)
4. $\mathrm{K}_{\text {intel }}$ says K_{A} speaksfor A@Intel
$\mathrm{K}_{\text {intel }}$ speaksfor *@Intel, so: Kintel speaksfor A@Intel
Conclude: K_{A} speaksfor A@Intel
5. $\mathrm{K}_{\text {MS }}$ says (A@Intel speaksfor Atom)

MS speaksfor Atom since Atom is a subprincipal of MS
$\mathrm{K}_{\text {MS }}$ speaksfor MS defn of $\mathrm{K}_{\text {MS }}$
Conclude: A@Intel speaksfor Atom

CAL Model for Spec Access

1. $\mathrm{K}_{\mathrm{SSL}}$ says (A@Intel says (read page: Spec))
2. $\mathrm{K}_{\text {SSL }}$ says r
3. $\mathrm{K}_{\text {sSL }}$ says $\left(\mathrm{K}_{\mathrm{A}}\right.$ says (r, A))
$\mathrm{K}_{\text {SSL }}$ speaksfor K_{A} since K_{A} is a subprincipal of $\mathrm{K}_{\text {SSL }}$
Conclude: K_{A} says (r, A)
4. $\mathrm{K}_{\text {intel }}$ says K_{A} speaksfor A@Intel
$\mathrm{K}_{\text {intel }}$ speaksfor *@Intel, so: K $\mathrm{K}_{\text {intel }}$ speaksfor A@Intel
Conclude: K_{A} speaksfor $A @ I n t e l$
5. K_{MS} says (A@Intel speaksfor Atom)

MS speaksfor Atom since Atom is a subprincipal of MS
$\mathrm{K}_{\text {MS }}$ speaksfor MS defn of $\mathrm{K}_{\text {MS }}$
Conclude: A@Intel speaksfor Atom
A@Intel says (read page: Spec)

CAL Model for Spec Access

1. $\mathrm{K}_{\mathrm{SSL}}$ says (A@Intel says (read page: Spec))
2. $\mathrm{K}_{\text {SSL }}$ says r
3. $\mathrm{K}_{\text {sSL }}$ says $\left(\mathrm{K}_{\mathrm{A}}\right.$ says (r, A))
$\mathrm{K}_{\text {SSL }}$ speaksfor K_{A} since K_{A} is a subprincipal of $\mathrm{K}_{\text {SSL }}$
Conclude: K_{A} says (r, A)
4. $\mathrm{K}_{\text {intel }}$ says K_{A} speaksfor A@Intel
$\mathrm{K}_{\text {intel }}$ speaksfor *@Intel, so: K $\mathrm{K}_{\text {intel }}$ speaksfor A@Intel
Conclude: K_{A} speaksfor $A @ I n t e l$
5. $\mathrm{K}_{\text {MS }}$ says (A@Intel speaksfor Atom)

MS speaksfor Atom since Atom is a subprincipal of MS
$\mathrm{K}_{\text {MS }}$ speaksfor MS defn of $\mathrm{K}_{\text {MS }}$
Conclude: A@Intel speaksfor Atom
A@Intel says (read page: Spec)
A@Intel speaksfor Atom

Access Authorization

A@Intel says (read page: Spec)
A@Intel speaksfor Atom
Atom speaksfor Spec due to Atom \in Spec.ACL
\vdash
Spec says (read page: Spec)

