CS 5430:

Example of Credentials-Based Authorization

Fred B. Schneider Samuel B Eckert Professor of Computer Science

Department of Computer Science Cornell University Ithaca, New York 14853 U.S.A.

CAL

Language:

C ::= F (F a formula of First-order Predicate Logic)

- P **says** C
- P' **speaksfor** P
- P' **speaks** x:C **for** P
- C ∧ C′
- | C v C'
- $| \quad \mathsf{C} \Rightarrow \mathsf{C}'$

N.b. $\neg C$: (C \Rightarrow false)

Models for CAL

$\omega(P)$ is the set of beliefs principal P has.

- P says C iff $C \in \omega(P)$
- P' speaksfor P iff $\omega(P') \subseteq \omega(P)$

 $\omega(P)$ called the **worldview** of P

CAL Inference Rules: says

С	P says C	P says (P says C)
P says C	P says (P says C)	P says C

 $\frac{P \operatorname{says} (C \Rightarrow C')}{(P \operatorname{says} C) \Rightarrow (P \operatorname{says} C')}$

CAL Inference Rules: speaksfor

 $\frac{P \text{ says } (P' \text{ speaks for } P)}{P' \text{ speaks for } P} \text{ hand-off}$

 $\frac{P' \text{speaksfor } P}{(P' \text{says } C) \Rightarrow (P \text{ says } C)}$

P speaksfor P', P'speaksfor P'' P speaksfor P''

Unrestricted Delegation

$$P' \operatorname{says} C, \quad \frac{P' \operatorname{speaksfor} P}{(P' \operatorname{says} C) \Rightarrow (P \operatorname{says} C)}$$
$$P \operatorname{says} C$$

- **Warning**: *P* inherits beliefs from any principal that was delegated to.
- *P* trusting *P'* means
 - *P* adopts all beliefs of *P*'
 - *P* also adopts beliefs of any principal *P'* trusts (transitive).

Why Delegate?

Transitivity of delegation allows clients to be ignorant of the implementation details of services the clients invoke.

- Transitive delegations are made by implementation of service to lower-level services.
- Transitive delegations are hidden from clients.

Restricted Delegation

 $\frac{P' \text{speaks } x: C \text{ for } P}{(P' \text{says } C[x \coloneqq \tau]) \Rightarrow (P \text{ says } C[x \coloneqq \tau])}$

Example: CS says Major(Alice) CS says $\neg Major(Alice)$ CU says (CS speaksfor CU) S CU says (CS speaks x: Major(x) for CU) C... CU does not inherit $\neg Major(x)$ from CS

Compound Principals

- Every principal *P* has a worldview $\omega(P)$.
- Compound principals combine worldviews from multiple principals to obtain a worldview for the compound principal.
- Example:
 - $P \wedge Q: \quad \omega(P \wedge Q): \quad \omega(P) \cap \omega(Q)$

Useful Compound Principals

- Subprincipals of *P*: *P*.*x*
- Groups $G = \{G_1, G_2, ..., G_n\}$

Subprincipals

For any term η :

P speaksfor *P*. η

$$\frac{\eta = \eta'}{P.\eta \text{ speaksfor } P.\eta'}$$

Use of Subprincipals

- Any belief of *P* is attributed to *P*.*x* for any *x*.
 - Hack: Employ $P.\epsilon$ for beliefs by P that should not be attributed to other sub-principals of P.
- If *L* implements *H* then *H* is a subprincipal of *L*.
 - **Example**: HW implements OS, so HW.OS is the principal that corresponds to the operating system.

Implements: CAL Analysis

L implements H, so H is a subprincipal of L.

- *L* says (*H* says *C*)
- L speaksfor H

L says (H says C), $\frac{L \operatorname{speaksfor} H}{(L \operatorname{says} (H \operatorname{says} C))} \Rightarrow (H \operatorname{says} (H \operatorname{says} C))$

Implements: CAL Analysis

L implements H, so H is a subprincipal of L.

- L says (H says C)
- L speaksfor H

 $L \operatorname{says}(H \operatorname{says} C), \quad \frac{L \operatorname{speaksfor} H}{(L \operatorname{says}(H \operatorname{says} C)) \Rightarrow (H \operatorname{says}(H \operatorname{says} C))}$ $\frac{H \operatorname{says}(H \operatorname{says} C)}{H \operatorname{says} C}$

Group Principals

A **group** is defined by a finite enumeration of its member principals. $G = \{P_1, P_2, \dots P_N\}$

• Conjunctive Groups

 P_i says C, for every $P_i \in G$

 P_G says C

Group Principals

• Disjunctive Groups. Hold beliefs that any member principal holds plus deductive closure!

Credentials Can Convey Beliefs

k_S-sign(C): K_S says C

- Public keys are principals.
- K_S **speaksfor** S if principal S is the only agent with access to private key k_S .

A principal S can be a hash of the running code and data that was read.

Access to a Joint Project

- A works for Intel and is known as A@Intel.
 - Public key K_A; private key k_A
 - Laptop
 - Member of Atom group
- MS has web page Spec
 - ACL allows access to Spec for members of Atom
 - CAL models as: Atom speaksfor Spec
 - Therefore: Atom **says** (access Spec) ⊢ Spec **says** (access Spec)

Suppose A requests access a Spec web page...

Application: Accessing a Joint Project

- 7. k_{MS}-(A@Intel, Atom)
- 8. MS web server authorizes access by Atom: Atom ∈ Spec.ACL

CAL Model for Spec Access

- 1. K_{SSL} **says** (A@Intel **says** (read page: Spec))
- 2. K_{SSL} says r
- 3. K_{SSL} says (K_A says (r,A))

 K_{SSL} **speaksfor** K_A since K_A is a subprincipal of K_{SSL} Conclude: K_A **says** (r,A)

5. K_{intel} says K_A speaksfor A@Intel

K_{intel} **speaksfor** *@Intel, so: K_{intel} **speaksfor** A@Intel Conclude: K_A **speaksfor** A@Intel

7. K_{MS} says (A@Intel speaksfor Atom)

 $\begin{array}{ll} \text{MS speaks for Atom} & \text{since Atom is a subprincipal of MS} \\ \text{K}_{\text{MS}} & \text{speaks for MS} & \text{defn of K}_{\text{MS}} \\ \text{Conclude: A@Intel speaks for Atom} \\ \end{array}$

CAL Model for Spec Access

- 1. K_{SSL} says (A@Intel says (read page: Spec))
- 2. K_{SSL} says r
- 3. K_{SSL} says (K_A says (r,A))

 K_{SSL} **speaksfor** K_A since K_A is a subprincipal of K_{SSL} Conclude: K_A **says** (r,A)

5. K_{intel} says K_A speaksfor A@Intel

K_{intel} **speaksfor** *@Intel, so: K_{intel} **speaksfor** A@Intel Conclude: K_A **speaksfor** A@Intel

7. K_{MS} says (A@Intel speaksfor Atom)

 $\begin{array}{ll} \text{MS speaks for Atom} & \text{since Atom is a subprincipal of MS} \\ \text{K}_{\text{MS}} & \text{speaks for MS} & \text{defn of K}_{\text{MS}} \\ \text{Conclude: A@Intel speaks for Atom} \\ \end{array}$

A@Intel **says** (read page: Spec)

CAL Model for Spec Access

- 1. K_{SSL} says (A@Intel says (read page: Spec))
- 2. K_{SSL} says r
- 3. K_{SSL} says (K_A says (r,A))

 K_{SSL} **speaksfor** K_A since K_A is a subprincipal of K_{SSL} Conclude: K_A **says** (r,A)

5. K_{intel} says K_A speaksfor A@Intel

K_{intel} **speaksfor** *@Intel, so: K_{intel} **speaksfor** A@Intel Conclude: K_A **speaksfor** A@Intel

7. K_{MS} says (A@Intel speaksfor Atom)

 $\begin{array}{ll} \text{MS } \textbf{speaksfor} \ \text{Atom} & \text{since Atom} \ \text{is a subprincipal of MS} \\ \text{K}_{\text{MS}} \ \textbf{speaksfor} \ \text{MS} & \text{defn of } \text{K}_{\text{MS}} \\ \text{Conclude:} \ \ \textbf{A@Intel } \textbf{speaksfor} \ \text{Atom} \\ \end{array}$

A@Intel **says** (read page: Spec) A@Intel **speaksfor** Atom

Access Authorization

A@Intel **says** (read page: Spec)

A@Intel **speaksfor** Atom

⊢

Atom **speaksfor** Spec due to Atom \in Spec.ACL

Spec **says** (read page: Spec)