
CS 5430:

Example of Credentials-Based

Authorization

Fred B. Schneider
Samuel B Eckert Professor of Computer Science

Department of Computer Science

Cornell University

Ithaca, New York 14853

U.S.A.

CAL

Language:
C ::= F (F a formula of First-order Predicate Logic)

| P says C
| P’ speaksfor P
| P’ speaks x:C for P
| C ∧ C’
| C ∨ C’
| C ⇒ C’

N.b. ¬C: (C ⇒ false)
1

Models for CAL

!(P) is the set of beliefs principal P has.
§ P says C iff C ∈ !(P)
§ P’ speaksfor P iff !(P’)⊆ !(P)

!(P) called the worldview of P

2

CAL Inference Rules: says

$
% says $

% says $
% says (% says $)

% says (% says $)
% says $

% says ($ ⇒ $))
% says $ ⇒ (% says $))

3

CAL Inference Rules: speaksfor

) *+,* ().*/0+1*234))
).*/0+1*234) hand-off

).*/0+1*234)
).*+,* 6 ⇒) *+,* 6

) */0+1*234).,).*/0+1*234)..
) 9:;<=9>?@)..

4

Unrestricted Delegation

!′ #$%# &, !′ #()$*#+,- !
!′ #$%# & ⇒ ! #$%# &
! #$%# &

● Warning: P inherits beliefs from any principal that was
delegated to.

● P trusting P’ means
– P		 adopts all beliefs of P’
– P		also adopts beliefs of any principal P’ trusts (transitive).

5

Why Delegate?

Transitivity of delegation allows clients to be
ignorant of the implementation details of services
the clients invoke.

– Transitive delegations are made by implementation of
service to lower-level services.

– Transitive delegations are hidden from clients.

6

Restricted Delegation

!"#$%&'# (: * +,- !
!"#&.# * (≔ 0 ⇒ ! #&.# * (≔ 0

Example:
*2 #&.# 34567 89:;<
*2 #&.# ¬34567 89:;<
*> #&.# *2 #$%&'#+,- *> !

*> #&.# *2 #$%&'# (:34567 (+,- *> "
… *> does not inherit ¬34567 (from *2

7

Compound Principals

● Every principal ! has a worldview " ! .

● Compound principals combine worldviews from
multiple principals to obtain a worldview for the
compound principal.

● Example:
– ! ∧ %: " ! ∧ % : " ! ∩ " %

8

Useful Compound Principals

● Subprincipals of !: !. #
● Groups $ = {$% , $' , … $(}

9

Subprincipals

For any term !:

" #$%&'#()* ". !
! = !′

". ! #$%&'#()* ". !′

10

Use of Subprincipals

● Any belief of P is attributed to P.x for any x.
– Hack: Employ $. % for beliefs by P	 that should not be

attributed to other sub-principals of P .
● If ' implements (then (is a subprincipal of '.

– Example: HW implements OS, so HW.OS is the
principal that corresponds to the operating system.

11

Implements: CAL Analysis

L		implements H,		so H		is a subprincipal of L.
– ' ()*(+ ()*(,
– ' (-.)/(012 +

' ()*(+ ()*(, , ' (-.)/(012 +
' ()*(+ ()*(, ⇒ (+ ()*(+ ()*(,
+ ()*((+ ()*(,)

+ ()*(,

12

Implements: CAL Analysis

L		implements H,		so H		is a subprincipal of L.
– ' ()*(+ ()*(,
– ' (-.)/(012 +

' ()*(+ ()*(, , ' (-.)/(012 +
' ()*(+ ()*(, ⇒ (+ ()*(+ ()*(,
+ ()*((+ ()*(,)

+ ()*(,

13

Group Principals

A group is defined by a finite enumeration of its
member principals. ! = { $% , $' , …$) }
● Conjunctive Groups

$+ ,-., /, 012 3432. $+ ∈ !
$6 ,-., /

78 ,-., 9
7 ,-., 9 78 ,:3-;,012 7

for $ ∈ !

14

Group Principals

● Disjunctive Groups. Hold beliefs that any
member principal holds plus deductive closure!

! "#$" %
!& "#$" % ! "'(#)"*+, !&

for - ∈ /

-0 "#$" 1 , -0 "#$" (1 ⇒ 15)
-0 "#$" 15

15

Credentials Can Convey Beliefs

kS-sign(C): KS says C
– Public keys are principals.
– KS speaksfor S if principal S is the only agent with

access to private key kS.

A principal S can be a hash of the running code
and data that was read.

16

Access to a Joint Project

● A works for Intel and is known as A@Intel.
– Public key KA; private key kA

– Laptop
– Member of Atom group

● MS has web page Spec
– ACL allows access to Spec for members of Atom
– CAL models as: Atom speaksfor Spec

§ Therefore: Atom says (access Spec) ⊢ Spec says (access Spec)

Suppose A requests access a Spec web page…

17

Application:
Accessing a Joint Project

1. read page: Spec

2. challenge: r

3. kA-sign(r, A)

4. A?

5. kintel-⟨ KA , A@Intel ⟩
6. A@Intel in Atom?

7. kMS-⟨ A@Intel, Atom ⟩
8. MS web server authorizes access by Atom: Atom ∈ Spec.ACL

18

…

Atom: …

A@Intel

…

….

…

Spec: …

ACL:

…

Atom

…

…
A

kA

A’s smartcard

A’s laptop

MS’s web server

MS’s Project database

…

A: KA

….

Intel’s HR database

1

2

3

4

5

6

7

SSL connection KSSL

SSL connection KSSL

8

CAL Model for Spec Access

1. KSSL says (A@Intel says (read page: Spec))
2. KSSL says r
3. KSSL says (KA says (r,A))

KSSL speaksfor KA since KA is a subprincipal of KSSL

Conclude: KA says (r,A)
5. Kintel says KA speaksfor A@Intel

Kintel speaksfor *@Intel, so: Kintel speaksfor A@Intel
Conclude: KA speaksfor A@Intel

7. KMS says (A@Intel speaksfor Atom)
MS speaksfor Atom since Atom is a subprincipal of MS
KMS speaksfor MS defn of KMS
Conclude: A@Intel speaksfor Atom

19

CAL Model for Spec Access

1. KSSL says (A@Intel says (read page: Spec))
2. KSSL says r
3. KSSL says (KA says (r,A))

KSSL speaksfor KA since KA is a subprincipal of KSSL

Conclude: KA says (r,A)
5. Kintel says KA speaksfor A@Intel

Kintel speaksfor *@Intel, so: Kintel speaksfor A@Intel
Conclude: KA speaksfor A@Intel

7. KMS says (A@Intel speaksfor Atom)
MS speaksfor Atom since Atom is a subprincipal of MS
KMS speaksfor MS defn of KMS
Conclude: A@Intel speaksfor Atom

A@Intel says (read page: Spec), A@Intel speaksfor Atom

20

CAL Model for Spec Access

1. KSSL says (A@Intel says (read page: Spec))
2. KSSL says r
3. KSSL says (KA says (r,A))

KSSL speaksfor KA since KA is a subprincipal of KSSL

Conclude: KA says (r,A)
5. Kintel says KA speaksfor A@Intel

Kintel speaksfor *@Intel, so: Kintel speaksfor A@Intel
Conclude: KA speaksfor A@Intel

7. KMS says (A@Intel speaksfor Atom)
MS speaksfor Atom since Atom is a subprincipal of MS
KMS speaksfor MS defn of KMS
Conclude: A@Intel speaksfor Atom

A@Intel says (read page: Spec)
A@Intel speaksfor Atom

21

Access Authorization

A@Intel says (read page: Spec)
A@Intel speaksfor Atom
Atom speaksfor Spec due to Atom ∈ Spec.ACL
⊢
Spec says (read page: Spec)

22

