CS 5430:

Formal Analysis of a

 Hierarchical Certification AuthorityFred B. Schneider
Samuel B Eckert Professor of Computer Science
Department of Computer Science
Cornell University
Ithaca, New York 14853
U.S.A.

Cornell CIS

CAL

Language:

C ::= F (F a formula of First-order Predicate Logic)
| P says C
| P^{\prime} speaksfor P
| P^{\prime} speaks $x: C$ for P
| C^C'
| CvC'
$\mathrm{C} \Rightarrow \mathrm{C}^{\prime}$
N.b. $\neg \mathrm{C}: ~(\mathrm{C} \Rightarrow$ false)

Models for CAL

$\omega(P)$ is the set of beliefs principal P has.

- P says C iff $C \in \omega(P)$
- P^{\prime} speaksfor P iff $\quad \omega\left(\mathrm{P}^{\prime}\right) \subseteq \omega(\mathrm{P})$
$\omega(\mathrm{P})$ called the worldview of P

CAL Inference Rules: says

$$
\frac{C}{P \text { says } C} \quad \frac{P \text { says } C}{P \text { says }(P \text { says } C)} \quad \frac{P \text { says }(P \text { says } C)}{P \text { says } C}
$$

$$
\frac{P \text { says }\left(C \Rightarrow C^{\prime}\right)}{(P \text { says } C) \Rightarrow\left(P \text { says } C^{\prime}\right)}
$$

Example CAL Proof (1)

P says C,

$$
P \text { says }\left(C \Rightarrow C^{\prime}\right)
$$

Example CAL Proof (2)

P says $C, \frac{P \text { says }\left(C \Rightarrow C^{\prime}\right)}{(P \text { says } C) \Rightarrow\left(P \text { says } C^{\prime}\right)}$

Example CAL Proof (3)

$\frac{P \text { says } C, \frac{P \text { says }\left(C \Rightarrow C^{\prime}\right)}{(P \text { says } C) \Rightarrow\left(P \text { says } C^{\prime}\right)}}{P \text { says } C^{\prime}}$

CAL Inference Rules: speaksfor

P says $\left(P^{\prime}\right.$ speaksfor P) P^{\prime} speaksfor P
P^{\prime} speaksfor P
$\left(P^{\prime}\right.$ says $\left.C\right) \Rightarrow(P$ says $C)$
$\underline{P \text { speaksfor } P^{\prime}, P^{\prime} \text { speaksfor } P^{\prime \prime}}$

$$
P \text { speaksfor } P^{\prime \prime}
$$

Credentials Can Convey Beliefs

k_{S} is a signing key; K_{S} is a verification key
k_{s}-sign(C): K_{S} says C

- Public keys are principals.
- K_{S} speaksfor S if principal S is the only agent with access to private key k_{s}.

A principal S can be a hash of the running code and data that was read.

Application

Public Key Infrastructure (PKI)

k_{s}-sign(C):

- Certificate: $\mathrm{K}_{\mathrm{S}}-\langle\mathrm{C}\rangle$
- CAL formalization: K_{S} says C

CAL formalization of delegation certificate:

- Certificate: $\mathrm{K}_{\mathrm{I}}-\left\langle\epsilon / \mathrm{com}: \mathrm{K}_{\text {com }}\right\rangle$
- CAL formalization: K_{I} says ($\mathrm{K}_{\text {com }}$ speaksfor ϵ / com)

Public Key Infrastructure (PKI)

PKI Excerpt

$\mathrm{K}_{\text {edu }}-\left\langle\epsilon / \mathrm{edu} / \mathrm{cu}: \mathrm{K}_{\text {cu }}\right\rangle$
$\mathrm{K}_{\text {edu }}-\left\langle\epsilon / \mathrm{edu} / \mathrm{mit}: \mathrm{K}_{\text {mit }}\right\rangle$ /edu

```
K_cu-\langle\epsilon/edu/cu/cs: K K cs 
/edu/cu
```

$$
\begin{array}{l|l}
\mathrm{K}_{\mathrm{cs}}\left\langle\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}: \mathrm{K}_{\mathrm{fb}}\right\rangle & \text { /edu/cu/cs } \\
\mathrm{K}_{\mathrm{cs}}\left\langle\left\langle\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{la}: \mathrm{K}_{\mathrm{la}}\right\rangle\right.
\end{array}
$$

CAL Model for PKI Excerpt

$\mathrm{K}_{\text {edu }}{ }^{-}\left\langle\epsilon / \mathrm{edu} /\right.$ mit : $\left.\mathrm{K}_{\text {mit }}\right\rangle \rightarrow \mathrm{K}_{\text {edu }}$ says ($\mathrm{K}_{\text {mit }}$ speaksfor $\epsilon /$ edu/mit)

$\mathrm{K}_{\mathrm{cs}}-\left\langle\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}: \mathrm{K}_{\mathrm{fbs}} \rightarrow \mathrm{K}_{\mathrm{cs}}\right.$ says $\left(\mathrm{K}_{\mathrm{fbs}}\right.$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$) $\mathrm{K}_{\mathrm{cs}}-\left\langle\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{la}: \mathrm{K}_{\mathrm{la}}\right\rangle \rightarrow \mathrm{K}_{\mathrm{cs}}$ says (K_{la} speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{la}$)

Sample Derivation

$\mathrm{K}_{\mathrm{fbs}}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$

CAL Model for PKI Except

$\mathrm{K}_{\mathrm{I}}-\left\langle\epsilon / \mathrm{com}: \mathrm{K}_{\text {com }}\right\rangle$
$\mathrm{K}_{\mathrm{I}}-\left\langle\epsilon /\right.$ edu : $\left.\mathrm{K}_{\text {edu }}\right\rangle \longrightarrow \mathrm{K}_{\mathrm{I}}$ says ($\mathrm{K}_{\text {edu }}$ speaksfor $\epsilon /$ edu)
$\dddot{\mathrm{K}}_{\text {edu }}-\left\langle\epsilon / \mathrm{edu} / \mathrm{cu}: \mathrm{K}_{\mathrm{cu}}\right\rangle \longrightarrow \mathrm{K}_{\mathrm{edu}}$ says $\left(\mathrm{K}_{\mathrm{cu}}\right.$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu}$)
$\mathrm{K}_{\text {edu }}-\left\langle\epsilon / \mathrm{edu} / \mathrm{mit}\right.$: $\left.\mathrm{K}_{\text {mit }}\right\rangle$

Sample Derivation (1)

$\mathrm{K}_{\mathrm{fbs}}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$

Sample Derivation (2)

K_{cs} says $\mathrm{K}_{\mathrm{fbs}}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$
K_{CS} speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$
$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$ says $\mathrm{K}_{\text {fbs }}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$
$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$
$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$ says $\mathrm{K}_{\text {fbs }}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$
$\mathrm{K}_{\mathrm{fbs}}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$

Sample Derivation (3)

K_{CS} speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$
K_{cs} says $\mathrm{K}_{\mathrm{fbs}}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$

- K_{CS} speatesfor c/eder
$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$ says $\mathrm{K}_{\text {fbs }}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$
$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$
$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$ says $\mathrm{K}_{\text {fbs }}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$
$\mathrm{K}_{\text {fbs }}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$

Sample Derivation (4)

K_{cu} says K_{cs} speaksfor $\epsilon /$ edu/cu/cs
K_{cu} speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu}$
$\epsilon / \mathrm{edu} / \mathrm{cu}$ says K_{cs} speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$
$\epsilon / \mathrm{edu} / \mathrm{cu}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$
$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$ says K_{cs} speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$
K_{CS} speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$
K_{cs} says $\mathrm{K}_{\mathrm{fbs}}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$

$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$ says $\mathrm{K}_{\mathrm{fbs}}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$ $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$
$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$ says $\mathrm{K}_{\text {fbs }}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$ $\mathrm{K}_{\text {fbs }}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$

Sample Derivation (5)

K_{I} speaksfor ϵ...
K_{cu} says K_{cs} speaksfor $\epsilon /$ edu/cu/cs
K cu chanlicfor f/odulot
$\epsilon / \mathrm{edu} / \mathrm{cu}$ says K_{cs} speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$
$\epsilon / \mathrm{edu} / \mathrm{cu}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$
$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$ says K_{cs} speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$
K_{CS} speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$
K_{cs} says $\mathrm{K}_{\mathrm{fbs}}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$

$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$ says $\mathrm{K}_{\text {fbs }}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$
$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$
$\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$ says $\mathrm{K}_{\text {fbs }}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$ $\mathrm{K}_{\mathrm{fbs}}$ speaksfor $\epsilon / \mathrm{edu} / \mathrm{cu} / \mathrm{cs} / \mathrm{fbs}$

