
Certificate Authorities: Reasoning about cross-linked CA's

Lecturer: Professor Fred B. Schneider
Lecture notes by: Militsa Sotirova, Sam Hinson, Caroline Lui, Lorenzo Scotto di Vettimo, Harry Dang, Rachel Brotherton, Bryan
Tantisujjatham, Aliva Das, Kunal Vaishnavi, Dubem Ogwulumba, Grace Jia, Linda Huang

A certificate authority () stores bindings from principal names to public keys (certificates) in a database that might look like:𝐶𝐴

⟨𝐴, 𝐾
𝐴

⟩𝑘
𝐶𝐴

⟨𝐺, 𝐾
𝐺

⟩𝑘
𝐶𝐴

...

Note that each certificate in the database is digitally signed with the certificate authority’s private key (as indicated by the syntax). This⟨... ⟩𝑘
𝑥

means that anyone with access to ’s public key can check the signature. If we trust signer , then we should trust this binding of a𝐶𝐴 𝐶𝐴
principal’s name to a public key.

Public key of is assumed to be available on every machine, so software running on a machine can verify the signature on any certificate𝐾
𝐶𝐴

𝐶𝐴

it gets from the . Note that no means is being provided for changing , so we are assuming that is never compromised.𝐶𝐴 𝐾
𝐶𝐴

𝑘
𝐶𝐴

We also assume that there is an isolated air-gapped machine (but with access to a power source). This machine stores the sole copy of private
key and has a mechanism to sign a certificate by using . An authorized operator would access the machine, generate a certificate using𝑘

𝐶𝐴
𝑘

𝐶𝐴

the private key stored on the machine, transfer the certificate to some storage device or dongle, and carry that storage device (with the certificate)
to the machine storing the database. Thus, private key remains isolated on the air-gapped machine.𝐶𝐴 𝑘

𝐶𝐴

From a Single CA to Multiple Cross-linked CA’s:

It is unrealistic to expect everyone to trust a single . But we still must provide means for people in different countries (say, who presumably𝐶𝐴
trust different ’s) to communicate securely.𝐶𝐴

Suppose there exist multiple ’s, each storing certificates that have been signed with separate private keys. For example, say we have two𝐶𝐴
’s, one run by and the other by , with the following entries (and private keys and respectively):𝐶𝐴 𝐶𝐼𝐴 𝐾𝐺𝐵 𝐶𝐴 𝑘

𝐶𝐴–𝐶𝐼𝐴
𝑘

𝐶𝐴–𝐾𝐺𝐵

:𝐶𝐼𝐴

⟨𝐴, 𝐾
𝐴

⟩𝑘
𝐶𝐴–𝐶𝐼𝐴

...

:𝐾𝐺𝐵

⟨𝐵, 𝐾
𝐵

⟩𝑘
𝐶𝐴–𝐾𝐺𝐵

...

Suppose wants to learn ’s public key, but ’s public key is not in the certificate database (it is only in the database). If can𝐴 𝐵 𝐵 𝐶𝐼𝐴 𝐾𝐺𝐵 𝐴
retrieve from the database, how will know whether to trust that is really ’s public key?⟨𝐵, 𝐾

𝐵
⟩𝑘

𝐶𝐴–𝐾𝐺𝐵
𝐾𝐺𝐵 𝐴 𝐾

𝐵
𝐵

mailto:fbs@cs.cornell.edu

Solution: might store a certificate that gives a binding for𝐶𝐼𝐴 ⟨𝐾𝐺𝐵, 𝐾
𝐶𝐴–𝐾𝐺𝐵

⟩𝑘
𝐶𝐴–𝐶𝐼𝐴

𝐾
𝐶𝐴–𝐾𝐺𝐵

:𝐶𝐼𝐴

⟨𝐴, 𝐾
𝐴

⟩𝑘
𝐶𝐴–𝐶𝐼𝐴

...

⟨𝐾𝐺𝐵, 𝐾
𝐶𝐴–𝐾𝐺𝐵

⟩𝑘
𝐶𝐴–𝐶𝐼𝐴

:𝐾𝐺𝐵

⟨𝐵, 𝐾
𝐵

⟩𝑘
𝐶𝐴–𝐾𝐺𝐵

...

Now, if wanted to learn ’s public key, would obtain the following chain of certificates:𝐴 𝐵 𝐴

has𝐴 𝐾
𝐶𝐴–𝐶𝐼𝐴

retrieves from the CIA database (because has , she knows she can trust this certificate)𝐴 ⟨𝐾𝐺𝐵, 𝐾
𝐶𝐴–𝐾𝐺𝐵

⟩𝑘
𝐶𝐴–𝐶𝐼𝐴

𝐴 𝐾
𝐶𝐴–𝐶𝐼𝐴

retrieves from the database𝐴 ⟨𝐵, 𝐾
𝐵

⟩𝑘
𝐶𝐴–𝐾𝐺𝐵

𝐾𝐺𝐵

uses to check that she can trust𝐴 𝐾
𝐶𝐴–𝐾𝐺𝐵

⟨𝐵, 𝐾
𝐵

⟩𝑘
𝐶𝐴–𝐾𝐺𝐵

Now can use𝐴 𝐾
𝐵

(Note that still must trust to be correctly reporting ’s public key.)𝐴 𝐾𝐺𝐵 𝐵

Such a chain of certificates can seem complicated. Therefore, we might seek some formal way of justifying that, given some collection of known
information, we should trust the conclusions we’re being asked to draw from the certificate chain.

How do we know we can trust the result of this chain of certificates?

The important insight is that we will associate a principal with each public key. Some definitions:

- Principals can say things, e.g. says . Principals only say things that they believe, so we posit a set defined to be the set of𝑃 𝑚 ω(𝑃)
statements (propositions) that P believes. is also known as the worldview of P. So says holds if and only ifω(𝑃) 𝑃 𝑚 𝑚 ∈ ω(𝑃)
holds.

- Principals may “speak for” (sfor) other principals (e.g. a keyboard on which is typing is a principal and that principal speaks for).𝐴 𝐴
Henceforth let sfor mean that “speaks for” B (although note that in some literature, the notation is used instead)𝐴 𝐵 𝐴 𝐴 ⇒ 𝐵
Formally, we will say that sfor holds if and only if holds. Intuitively, this means that cannot say things that𝐴 𝐵 𝑤(𝐴) ⊆ 𝑤(𝐵) 𝐴 𝐵
cannot say (but may say things that cannot). So, anything that says, says, too.𝐵 𝐴 𝐴 𝐵

- Slightly modifying our keyboard example, a keyboard in practice will say things that are completely independent of , and𝐴
thus, not a part of ’s worldview. In this more realistic setting, the set of beliefs within a keyboard’s worldview would not be a𝐴
subset of those of , and thus cannot speak for .𝐴 𝐴

- Finally, denote the following notation will be used to give the inference rules that allow us to reason about formulas involving says
and sfor:

If we have proved or can assume hypotheses , then we can conclude :𝐻
1
, ..., 𝐻

𝑛

𝐻
1
, ..., 𝐻

𝑛

𝐶

Uses of inference rules formalize logical reasoning, in a way that enables assurance about a conclusion. Such rules are not only used in
formal logics (e.g., propositional logic and predicate logic) but they are used as typing rules for compilers, statistical learning, etc.

Formal Inference Rules for says and sfor:

R1.

If a message is signed by , then (by convention) says holds. So the crypto key-pair (,) is being viewed as defining a𝑚 𝑘 𝐾 𝑚 𝐾 𝑘
principal, and this principal is identified by its public key .𝐾

R2.

This follows from the transitivity of the operator. If (speaks for) and (speaks for⊆ ω(𝐴) ⊆ ω(𝐵) 𝐴 𝐵 ω(𝐵) ⊆ ω(𝐶) 𝐵 𝐶
), then transitivity of the impliest be that (speaks for).⊆ ω(𝐴) ⊆ ω(𝐶) 𝐴 𝐶

R3.

This rule can be justified as follows. From hypothesis sfor we have that holds. From hypothesis𝐴 𝐵 ω(𝐴) ⊆ ω(𝐵)
says , we have that . So it follows that , which is the meaning (see above) of says .𝐴 𝑋 𝑋 ∈ ω(𝐴) 𝑋 ∈ ω(𝐵) 𝐵 𝑋

R4.

Intuitively, is being considered the authority on the contents of . If says that someone () speaks for her, then we𝐴 ω(𝐴) 𝐴 𝐵
believe , and we conclude that speaks for . Concrete example: let and . If says that speaks for𝐴 𝐵 𝐴 𝐴 = 𝐹𝐵𝑆 𝐵 = 𝑇𝐴 𝐹𝐵𝑆 𝑇𝐴

, then because believes that , we assume that should know whether this is really true or𝐹𝐵𝑆 𝐹𝐵𝑆 ω(𝑇𝐴) ⊆ ω(𝐹𝐵𝑆) 𝐹𝐵𝑆
not, and trust that the does in fact speak for .𝑇𝐴 𝐹𝐵𝑆

R5.

A subprincipal inherits the views of its uber-principal, and may have more views (formally,).ω(𝐴) ⊆ ω(𝐴. 𝑛)

Example Proof

Let’s return to the example from before, where is trying to learn the public key of .𝐴 𝐵

To attach a story to this example: Alice is a CIA agent who has fallen in love with Boris, a KGB agent. Alice and Boris would like to
communicate with one another in an encrypted manner. Suppose that Alice wishes to send a message to Boris. She must learn Boris’s public
key . This key is not maintained by the CIA’s Certificate Authority but rather is managed by the KGB’s. Thus, Alice must communicate𝐾

𝐵

with the KGB’s Certificate Authority. As we have seen above, this requires learning . Since Alice works for the CIA, she only knows the𝐾
𝐶𝐴–𝐾𝐺𝐵

public key for the CIA’s Certificate Authority, . We assume, however, that the CIA maintains a record for .𝐾
𝐶𝐴−𝐶𝐼𝐴

𝐾
𝐶𝐴−𝐾𝐺𝐵

Alice knows:

● sfor (aka, is the public key for)𝐾
𝐶𝐴−𝐶𝐼𝐴

𝐶𝐴–𝐶𝐼𝐴 𝐾
𝐶𝐴−𝐶𝐼𝐴

𝐶𝐴–𝐶𝐼𝐴

Alice receives:
● From the CIA’s Certificate Authority: ⟨ 𝐶𝐴–𝐾𝐺𝐵, 𝐾

𝐶𝐴–𝐾𝐺𝐵
 ⟩𝑘

𝐶𝐴–𝐶𝐼𝐴

● From the KGB’s Certificate Authority: ⟨ 𝐵, 𝐾
𝐵

 ⟩𝑘
𝐶𝐴–𝐾𝐺𝐵

First, assume that we can treat as a subprincipal of the with the notation: . Then, formally, we can create a proof tree using the𝐵 𝐾𝐺𝐵 𝐾𝐺𝐵. 𝐵
above inference rules as follows:

Note the Assumption in the proof tree, in order to conclude that means that must speak for⟨ ⟩ ⟨𝐾𝐺𝐵, 𝐾
𝐶𝐴−𝐾𝐺𝐵

⟩𝑘
𝐶𝐴−𝐶𝐼𝐴

𝐾
𝐶𝐴−𝐾𝐺𝐵

. Essentially, we decide that we trust the CIA to be an authority on the public keys of entities. We will revisit this assumption later.𝐾𝐺𝐵

To explain the above proof tree:
1. Alice receives: ⟨ ⟩𝐾𝐺𝐵, 𝐾

𝐶𝐴–𝐾𝐺𝐵
𝑘

𝐶𝐴–𝐶𝐼𝐴

a. This is equivalent to: says “ sfor ”𝐾
𝐶𝐴–𝐶𝐼𝐴

𝐾
𝐶𝐴–𝐾𝐺𝐵

𝐾𝐺𝐵

2. Next, Alice goes to the KGB’s CA and asks for Boris’s public key. She receives: ⟨ ⟩ (R1)𝐾𝐺𝐵. 𝐵, 𝐾
𝐵

𝑘
𝐶𝐴–𝐾𝐺𝐵

a. Note in this notation that we are treating Boris as a subprincipal of KGB. This will allow us to apply R5 later.
b. Similar to before, this is equivalent to: says “ sfor ”𝐾

𝐶𝐴–𝐾𝐺𝐵
𝐾

𝐵
𝐾𝐺𝐵. 𝐵

3. We would like to show that sfor , as that implies that what says/believes is what also believes (aka, is Boris’s𝐾
𝐵

𝐾𝐺𝐵. 𝐵 𝐾
𝐵

𝐾𝐺𝐵. 𝐵 𝐾
𝐵

public key). Unfortunately it is not obvious how to proceed. However, we will make an assumption and that will allow us to make
progress. We will later revisit the implication(s) of this assumption.

4. For now, let us assume:
a. sfor (assumption)𝐾

𝐶𝐴–𝐾𝐺𝐵
𝐾𝐺𝐵

5. If we have this we can use R3 to substitute for in any statements makes, specifically statement 2b. This gives:𝐾𝐺𝐵 𝐾
𝐶𝐴–𝐾𝐺𝐵

𝐾
𝐶𝐴–𝐾𝐺𝐵

a. says “ sfor ” (R3) (Comes from says “ sfor ”)𝐾𝐺𝐵 𝐾
𝐵

𝐾𝐺𝐵. 𝐵 𝐾
𝐶𝐴–𝐾𝐺𝐵

𝐾
𝐵

𝐾𝐺𝐵. 𝐵

6. Since we are treating Boris as a subprincipal of we know via R5 that:𝐾𝐺𝐵
a. sfor (R5)𝐾𝐺𝐵 𝐾𝐺𝐵. 𝐵

7. Again, we use R3 to substitute for in the result from step 5 (says “ sfor ”).𝐾𝐺𝐵. 𝐵 𝐾𝐺𝐵 𝐾𝐺𝐵 𝐾
𝐵

𝐾𝐺𝐵. 𝐵

a. says “ sfor KGB.B” (R3)𝐾𝐺𝐵. 𝐵 𝐾
𝐵

8. We currently have: “Boris says that speaks for Boris”. We now have a simple application of R4:𝐾
𝐵

a. sfor (R4)𝐾
𝐵

𝐾𝐺𝐵. 𝐵

So our assumption paid off! Why is this conclusion useful? Because when Alice receives some message signed by she can use the following𝐾
𝐵

reasoning:

1. Alice received . This is equivalent to says (R1)⟨𝑚⟩𝑘
𝐵

𝐾
𝐵

𝑚

2. If sfor we have: says (R3), as desired𝐾
𝐵

𝐾𝐺𝐵. 𝐵 𝐾𝐺𝐵. 𝐵 𝑚

https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5Cfrac%7B%5Cfrac%7B%5Clangle%20KGB.B%2C%20K_B%5Crangle%20k_%7BCA%5Ctext%7B-%7DKGB%7D%5Ctext%7B%20%20%7D(R1)%7D%7BK_%7BCA%5Ctext%7B-%7DKGB%7D%5Ctextbf%7B%20%20says%20%20%7DK_B%5Ctextbf%7B%20sfor%20%7DKGB.B%7D%5Ctext%7B%20%20%7D%5Cfrac%7B%5Clangle%20KGB%2CK_%7BCA%5Ctext%7B-%7DKGB%7D%5Crangle%20k_%7BCA%5Ctext%7B-%7DCIA%7D%5Ctext%7B%20%20%7D(%5Clangle%20%5Ctext%7BAssumption%7D%5Crangle)%7D%7BK_%7BCA%5Ctext%7B-%7DKGB%7D%5Ctextbf%7B%20sfor%20%7DKGB%7D%5Ctext%7B%20%20%7D(R3)%7D%7BKGB%5Ctextbf%7B%20says%20%7DK_B%5Ctextbf%7B%20sfor%20%7DKGB.B%7D%5Ctext%7B%20%20%7D%5Cfrac%7B(R5)%7D%7BKGB%5Ctextbf%7B%20sfor%20%7DKGB.B%7D%5Ctext%7B%20%20%7D(R3)%7D%7B%5Cfrac%7BKGB.B%5Ctextbf%7B%20says%20%7DK_B%5Ctextbf%7B%20sfor%20%7DKGB.B%5Ctext%7B%20%20%7D(R4)%7D%7BK_B%5Ctextbf%7B%20sfor%20%7DKGB.B%7D%7D#0

Finally, let us revisit the assumption. We assumed sfor , aka that the key pair Alice received from the CIA’s CA is accurate. From𝐾
𝐶𝐴–𝐾𝐺𝐵

𝐾𝐺𝐵

the first thing that Alice knows, we have: says “ sfor ”.𝐾
𝐶𝐴–𝐶𝐼𝐴

𝐾
𝐶𝐴–𝐾𝐺𝐵

𝐾𝐺𝐵

Let us assume that is a subprincipal of . Then, by (R5), sfor . So we have “ says sfor ”, we can conclude𝐾𝐺𝐵 𝐶𝐼𝐴 𝐶𝐼𝐴 𝐾𝐺𝐵 𝐶𝐼𝐴 𝐾
𝐶𝐴–𝐾𝐺𝐵

𝐾𝐺𝐵

that this means “ says sfor ”.𝐾𝐺𝐵 𝐾
𝐶𝐴–𝐾𝐺𝐵

𝐾𝐺𝐵

To elaborate:
1. Alice Receives:⟨𝐾𝐺𝐵, 𝐾

𝐶𝐴–𝐾𝐺𝐵
⟩𝑘

𝐶𝐴–𝐶𝐼𝐴

a. Which means says “ sfor ”𝐾
𝐶𝐴–𝐶𝐼𝐴

𝐾
𝐶𝐴–𝐾𝐺𝐵

𝐾𝐺𝐵

2. And since Alice knows that is the public key for the CIA (aka that sfor), we can use (R3) to get:𝐾
𝐶𝐴–𝐶𝐼𝐴

𝐾
𝐶𝐴–𝐶𝐼𝐴

𝐶𝐴–𝐶𝐼𝐴

a. says “ sfor ”𝐶𝐼𝐴 𝐾
𝐶𝐴–𝐾𝐺𝐵

𝐾𝐺𝐵

3. If we can assume that is a subprincipal of , then we can use (R5) to transform this statement into:𝐾𝐺𝐵 𝐶𝐼𝐴
a. says “ sfor ”𝐾𝐺𝐵 𝐾

𝐶𝐴–𝐾𝐺𝐵
𝐾𝐺𝐵

4. Then, by (R4), we have:
a. sfor𝐾

𝐶𝐴–𝐾𝐺𝐵
𝐾𝐺𝐵

5. So we have succeeded in showing that sfor if is a subprincipal of . However, if wasn’t a subprincipal of𝐾
𝐶𝐴–𝐾𝐺𝐵

𝐾𝐺𝐵 𝐾𝐺𝐵 𝐶𝐼𝐴 𝐾𝐺𝐵

and couldn’t speak for , then this proof wouldn’t work.𝐶𝐼𝐴 𝐶𝐼𝐴 𝐾𝐺𝐵

Thus, this analysis has revealed a crucial assumption that might otherwise have gone unnoticed if ’s analysis of the keys and certificates she𝐴
received, in order to decide whether she trusts that speaks for , was more informal.𝐾

𝐵
𝐵

