
Part V
Isolation

In the physical world, walls are often erected when isolation is sought. A prison
has walls to keep people in; a fortress has walls to keep people out. Some
walls have windows and doors (perhaps covered with screens), thereby allowing
certain activity on one side to influence and/or be influenced by activity on the
other side. But even solid walls do not hide all activity—apartment dwellers
with noisy neighbors learn this.

For security in a computing system, various mechanisms are available to
isolate a system from its environment when neither fully trusts the other. One
important case is where the system is an operating system and its environment
comprises clients it is executing; another is where the system is a specific client
and its environment comprises other clients. But in all cases, use of an isolation
mechanism is intended to restrict the environment from

• improperly influencing the system’s operation and

• improperly being influenced by reading the system’s state or by observing
usage of system resources.

Different isolation mechanisms embody different interpretations of “influ-
ence” and, therefore, enforce different guarantees. Isolation mechanisms pro-
vided by system software typically equate “influence” with possible effects of
invoking system operations and/or accessing system state; other influences are
dismissed because their bandwidth is too low to be problematic.

Independent of the specific guarantees enforced, an isolation mechanism can
prevent an environment from violating certain assumptions on which the secu-
rity of a system might depend. So the isolation mechanism allows a system to
be designed for a less hostile environment. Note, however, we are just relocating
what must be trusted—trust that the environment satisfies certain assumptions
is being replaced by trust that some isolation mechanism works.
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Chapter 10

Mapping and Multiplexing

Processes, virtual machines, and containers are system abstractions intended
to isolate computations by restricting access to shared resources. Their imple-
mentations have much in common: (i) the interposition of mappings for access
and (ii) time multiplexing. Those common building blocks are thus a natural
place to start our discussion. Implementation of processes, virtual machines,
and containers are then explored in detail.

10.1 Building Blocks for Isolation

10.1.1 Address-Translation Mappings

An address-translation mapping relocates some set of memory addresses and
causes interrupts1 for accesses to all others. Formally, it has a domain that is
the set N of addresses that principals use and a range M ∪{⊥}, where M is a set
of memory locations and ⊥ (satisfying ⊥/∈M) indicates that an interrupt should
be generated instead of an access. When a principal P executes an assignment
statement x ∶=x+ y while using address-translation mapping NMmapP then the
CPU would store at memory address NMmapP (x) the sum of the values at
memory addresses NMmapP (x) and NMmapP (y).

Per-principal address-translation mappings NMmapP with domain N and
range MP ∪{⊥} suffice to isolate memory accessed by each principal if, for every
pair P and Q of principals, MP ∩MQ = ∅ holds. This is because MP ∩MQ = ∅
implies that memory location NMmapP (n) ∈MP a principal P references using
name n will necessarily be different from memory location NMmapQ(m) ∈MQ

that another principal Q can access using any name m.

1Some texts use the term interrupt only for talking about asynchronous transfers of control
and they use the terms fault or trap for synchronous transfers of control. This text uses the
single term interrupt for both, since processor hardware follows the same protocol in either
case.
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264 Chapter 10. Mapping and Multiplexing

Implementation Considerations. Typical hardware realizations for address-
translation mappings use a processor register MmapReg (say) to specify the map-
ping that is in effect. To enforce per-principal memory isolation, the value in
MmapReg is changed whenever the processor switches from executing instructions
from one principal to executing instructions from another.

Address-Translation Context Switch Protocol. While a principal
P is executing, register MmapReg specifies mapping NMmapP . Between
executing an instruction from a principal P and an instruction from a
different principal Q, register MmapReg is updated to specify NMmapQ.

Note, changing the value in MmapReg typically will cause a processor to flush
pipelines and purge caches, so executing Address-Translation Context Switch
Protocol could have performance implications.

Any mapping µ from finite sets N to M can be represented by a finite table
where the entry for n ∈ N contains µ(n). If N is the set of all addresses for
a virtual memory, then storing this table would consume, if not exceed, the
capacity of a processor’s main memory, leaving no room for programs or data.
However, smaller tables can be used to describe mappings if every entry in the
table maps many elements from N rather than just mapping a single element.

Such a representation is employed in instruction set architectures that inter-
pret a virtual address as comprising two parts: a segment name and an offset
into that segment.2 The elements of N are virtual addresses, and each segment
is a block of consecutive memory words.3 A segment descriptor gives a triple
⟨b, len,m⟩, with 0 ≤ len, and defines a mapping between the two subsets

{b, b + 1, . . . , b + len − 1} ⊆ N
{m,m + 1, . . . ,m + len − 1} ⊆M

where every virtual memory address n ∈ N satisfying b ≤ n < b + len is mapped
to memory location m + (n − b). Therefore, a set Segs of segment descriptors,
where each descriptor corresponds to a disjoint block of N , can be interpreted as
defining a mapping NMmap from names n ∈ N to memory addresses, as follows.

NMmap(n)∶ { mi + (n − bi) if ⟨bi, leni,mi⟩ ∈ Segs and bi ≤ n < bi + leni

⊥ otherwise

How Segs is represented depends on the instruction set architecture, as do
the details of how MmapReg specifies that mapping. MmapReg is called the segment
table register on some computers; it contains the memory address for a table

2Figure 7.8 (page 115) depicts a typical segmented virtual memory.
3By further dividing each segment into fixed-size pages, a contiguous region of main mem-

ory is not needed for holding the contents of a segment, nor is it necessary for all pages
comprising a segment to be resident. A virtual address now comprises three parts: a segment
name, a page name, and an offset into the page. And an additional mapping, supported by
hardware, translates each page name to the main memory address of the page frame that
holds this page. The existence of paging should be transparent, and thus it is ignored in this
chapter.
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of segment descriptors (with that table itself a segment). Other computers
eliminate a level of indirection by providing a small number (typically 2 or 4)
of registers MmapReg[i], each storing a segment descriptor. Here, Segs is the
(small) set of segment descriptors contained in those registers. A third scheme,
found in early computers, supported name mappings where Segs was defined
by using two registers: base register Base and limit register Lim. This pair of
registers defined a set Segs that contained the single segment descriptor ⟨0, L,B⟩
for L the value contained in Lim and B the value contained in Base. An address
n ∈ N satisfying 0 ≤ n < L was relocated to n+B; if L ≤ n then an interrupt was
generated.

Incorporating Access Control. Just as screens limit what size objects can
pass through a window, having a separate per-principal address-translation
mapping for each kind of access can be used to limit what kinds of accesses
principals can make to the different memory locations.

A common implementation is to have each segment descriptor include the set
Ops of permitted operations. Segment descriptor ⟨b, len,m,Ops⟩ would define
the address-translation mapping for a region of memory that could be accessed
using operations in op ∈ Ops but no other operations. A set Segs of segment de-
scriptors would then define a separate address-translation mapping NMmapop(⋅)
for use with each operation op.

NMmapop(n)∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

mi + (n − bi) if ⟨bi, leni,mi,Opsi⟩ ∈ Segs
and bi ≤ n < bi + leni and op ∈ Opsi

⊥ otherwise

For example, using r to indicate a read operation, an attempt to read a (vir-
tual memory) location n would fetch the contents of memory location m if
NMmapr(n) =m holds and would generate an interrupt if NMmapr(n) =⊥ holds.

Notice, although different mappings are being extracted for each operation
op, if NMmapop(n) ≠⊥ holds then NMmapop(n) obtained from a set Segs of
segment descriptors equals the same memory location for all operations:

(NMmapop(n) ≠⊥ ∧ NMmapop′(n) ≠⊥)⇒ (NMmapop(n) = NMmapop′(n))

10.1.2 Time Multiplexing

When a bank of registers or region of storage mem is being time multiplexed
among a set of principals (i) periods of exclusive access to mem rotate among
those principals, and (ii) between periods of exclusive access by each princi-
pal P , the value of mem is saved and restored from isolated storage (say)
memSaved[P ].

Various mechanisms are unspecified in this account, and they could differ
across realizations of the approach:

• a means to ensure that only one principal has access to mem during each
period. On a uniprocessor, this exclusion often is achieved by defining the
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periods when a principal P is allowed access to be the time slices during
which the processor is allocated to executing P .

• a scheduler P ′ ∶=sched() to select a principal P ′ that next gets exclusive
access to mem. The scheduling policy might be round-robin, where each
principal receives access for a fixed period and in a rotation. Or, to satisfy
performance requirements, a scheduler might make selections according to
past resource consumption and/or system state.4

Also, an implementation of time multiplexing must provide a context switch
protocol. This protocol is executed to start each period of exclusive access to
mem.

Time-Multiplexing Context Switch Protocol.

1. Withdraw access from the principal P with access to mem;

2. memSaved[P ] ∶=mem;

3. P ′ ∶=sched();
4. mem ∶=memSaved[P ′];
5. Grant access for mem to principal P ′.

10.2 Processes

The environment for a program executing on a computer includes (i) a pre-
defined instruction set implemented by hardware and (ii) a state comprising
processor registers and memory. So multiple programs executed together on
the same computer can affect each other’s environments if they share memory
and/or registers. A process is an executing program whose memory and regis-
ters are unaffected by the actions of other processes. Such isolation is attractive
for enforcing security in a computer where programs are executing on behalf of
different principals.

10.2.1 Memory and Register Isolation

Isolation for a process’s main memory can be enforced by using per-process
address translation mappings. Isolation for the rest of the process’s state is
achieved by time-multiplexing the processor registers. Notice that provided
MmapReg is a processor register, steps 2 and 4 of Time-Multiplexing Context
Switch Protocol (page 266) implement Address-Translation Context Switch Pro-
tocol (page 264). Also, because the program counter is a processor register,
step 4 of Time-Multiplexing Context Switch Protocol causes that register to be
loaded and, therefore, each process resumes execution where it left off when it
last was suspended.

4Note, a scheduler that makes choices according to resource usage could create a covert
timing channel if principals have access to a time source and they can modulate their resource
usage.
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10.2.2 Implementing Time Multiplexing

Time-Multiplexing Context Switch Protocol has a straightforward implemen-
tation on any processor that supports timer interrupts. We start by sketching
typical processor support for interrupts, followed with a discussion of typical
processor support for timer interrupts.

Interrupts. On a processor that supports interrupts,5 an interrupt handler
for each class I of interrupts is specified by storing its address in IntHndlr[I].new,
and a Boolean flag IntHndlr[I].enbl indicates whether class I interrupts are
enabled or disabled.

Interrupt Processing. Once an interrupt of class I has been raised, it
remains pending until the value of IntHndlr[I].enbl signifies that inter-
rupts of this class are enabled. While enabled, interrupts in a class are
delivered in the order raised; the instruction set architecture defines an
ordering (say) I1, I2, ..., In for interrupt delivery across different classes.
And a processor delivers an interrupt of class I as follows.

– The current processor state is pushed onto a stack IntOldStates

stored in main memory.6

– Values are loaded into the processor registers from IntHndlr[I].new,
causing the code for an interrupt handler to start executing because
of the new values in the program counter, general-purpose registers,
etc.

Timer Interrupts. A processor that supports timer interrupts usually will
have a Timer processor register. T seconds after Timer is loaded with an integer
value T , a timer interrupt is raised.

Time-Multiplexing Protocol Implementation. Timer is loaded with a value
that bounds the interval of exclusive access. For step 2 of Time-Multiplexing
Context Switch Protocol, interrupt handler TimerHndlr for timer interrupts
pops the top entry on IntOldStates to ProcState[P ], where P is the identity
of the process that was executing. TimerHndlr also performs step 3 through
step 5. Specifically, TimerHndlr (or system software it invokes) selects some
process P ′ to next execute, loads Timer with some integer value, and restores
the processor registers from ProcState[P ′]. Execution of P ′ is thus resumed,
with the appropriate address translation mapping in place along with values

5To simplify the exposition, we consider IntHndlr[⋅] to be a processor register, even though
this information actually might be stored by a table located at a pre-specified and fixed
memory location or at the address contained in some a pre-defined processor register. When
IntHndlr[⋅] is stored in memory, that region would be excluded from the range of all address-
translation mappings.

6Depending on the instruction-set architecture, IntOldStates might be stored at some
pre-specified address in main memory or stored at a location designated by the contents of a
fixed processor register.
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for the program counter and other processor registers that were saved when
execution of P ′ was last suspended.

Protection by using Processor Modes. A process that updates MmapReg,
Timer, IntHndlr[⋅], or ProcState could compromise isolation being enforced
by address translation (§10.1.1) and time multiplexing (§10.1.2). Therefore,
modern instruction set architectures distinguish between:

• User-mode instructions. Instructions in InstU access only a subset of
the processor registers, and they access main memory using an address-
translation mapping.7

• System-mode instructions. InstS adds to InstU instructions to read/write
all of the processor registers and main memory, as well as instructions
concerned with performing input/output operations.

Such an instruction set architecture then facilitates isolation by (i) providing
a mode register to control whether instructions from InstU or InstS are avail-
able for execution, (ii) signaling a privilege interrupt when an instruction ι is
executed unless mode = InstS or ι ∈ InstU hold, and (iii) excluding from InstU
any instruction that can cause changes to MmapReg, Timer, IntOldStates, or
IntHndlr[⋅]. A process executing with mode = InstU only can execute instruc-
tions from InstU and, thus, is unable to compromise the integrity of address
translation or time multiplexing by updating MmapReg, Timer, IntOldStates,
or IntHndlr[⋅] or compromise isolation by initiating an input/output operation
that stores into ProcState or the memory of another process.

But restricting execution to instructions from InstU is too restrictive for
interrupt handlers and certain other system software. TimerHndlr, for exam-
ple, updates Timer and MmapReg prior to resuming a process, so TimerHndlr

must execute with mode = InstS . To have assurance that isolation still will be
maintained, we must have some basis for trust that any software executing with
mode = InstS will not misbehave. This trust could derive from an analysis of that
code, from the presence of mechanisms to restrict execution, or a combination.
Obviously, assurance is easier to establish if only certain software can execute
with mode = InstS—a small fragment of the operating system, for example.

Extending the User-mode Instruction Set. Attempting to execute a system-
mode instruction when mode = InstU holds will cause a privilege interrupt. How-
ever, system software can be written to provide safe versions of any function-
ality needed for user-mode software. That system software would incorporate
the necessary checks on arguments it is passed and elsewhere to ensure that its
execution of system-mode instructions cannot violate the assumptions identified
above as necessary for the integrity of address translation and time multiplexing.

7Input/output devices typically do not use address-translation mappings when accessing
memory and, therefore, instructions to control input/output operations are not user-mode
instructions.
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Processors typically provide a user-mode supervisor call instruction svc for
allowing user-mode execution to invoke system software. Execution of svc by a
process P causes an interrupt of class svcInt. That interrupt handler executes
with mode = InstS ; it parses the operands associated with the svc, and then it
invokes system code to perform the requested service. Once the requested service
has been completed: a process Q is selected to next execute, Timer is loaded
with some integer value, and the processor state is loaded from ProcState[Q],
thereby causing execution of Q to be resumed.

10.2.3 Deciding on Kernel Functionality

A side effect of using svc to extend functionality that InstU provides could be
to undermine process isolation. To illustrate, here are typical functions that an
operating system kernel might make available though svc’s.

• Interprocess communication and synchronization primitives. Such prim-
itives facilitate cooperation among processes and, therefore, they allow
one process to influence the execution of another. But processes that can
influence each other are no longer completely isolated from each other.

• Dynamic allocation primitives. Resource usage by one process becomes
visible to other processes through any delays that arise from allocation
requests when there is contention for resources. Isolation is thus compro-
mised.

How much might a given svc compromise process isolation? To answer
would require analyzing any code that gets executed after the svc is invoked as
well as any code that reads the updated state—in short, potentially a large body
of code. So a formal analysis is unlikely to be feasible, and an informal analysis
might overlook things. Furthermore, the weakening of process isolation that
svc’s cause could be offset if user-mode software becomes simpler because of
the added kernel functionality. We should be more inclined to trust user-mode
software that is simpler, a benefit that might outweigh the weaker isolation.

Design and implementation flaws in a kernel are another way that process
isolation could be compromised. For example, a bug in an interrupt handler
might allow system code invoked by one process to contaminate ProcState be-
ing stored for some other process. With processes likely to serve as a system’s
principals, a kernel will be part of the system’s trusted computing base. That
argues for making design trade-offs in favor of assurance and, therefore, argues
that we prefer small and simple kernels over kernels that are rich in function-
ality. However, kernels for popular operating systems tend to have large user
communities, so their developers often can justify making the larger investments
needed for establishing assurance in a larger kernel.

The trade-offs associated with deciding what functionality to put in a ker-
nel have led to various design philosophies. Two important views are discussed
below. They differ in (i) assumptions about the feasibility of imposing a single
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security policy on an entire user community (ii) the relative importance of as-
surance over functionality. Both embrace the position that the kernel’s design,
if not its code, should be amenable to a formal analysis.

Separation Kernels. A separation kernel implements processes and inter-
process communication, but provides no additional functionality. So the envi-
ronment it creates is indistinguishable from a distributed system where (i) each
process executes on a separate processor, and (ii) message passing facilitates
communication between processes. Because it offers only limited functionality,
a separation kernel can be small and simple.

A justification for trust is one motivation here, with the cost of assurance
believed to increase when software size and complexity do. But the limited
functionality a separation kernel provides also reflects the widely held belief
that policy should be separable from mechanism. Mechanisms a kernel might
provide for accessing resources would have to enforce some class of security
policies, yet no single class is well suited for all applications. A separation
kernel sidesteps the issue—it doesn’t implement operations for resource access,
so it avoids the need to choose access control policies.

Security Kernel. For computing systems intended to store and process ob-
jects, the trusted computing base comprises all of the software that (i) imple-
ments process isolation and (ii) controls access to objects according to some
policy. A security kernel provides exactly this functionality (and no more). It
implements processes and it implements a tamper-proof reference monitor that
mediates all accesses those processes make to objects.

When a security kernel is used, assurance for the entire trusted computing
base follows from the assurance argument for the security kernel. That is at-
tractive because a security kernel can be small, which facilitates establishing its
assurance. In addition, when a security kernel is in use, a single implementation
of isolation is protecting both the reference monitor and the implementation of
process isolation. So less total mechanism is involved, and there is less to trust.

Use of a security kernel, however, does mean that a single security policy
must suffice for mediating accesses by all processes to all objects. This is a mixed
blessing, because it precludes hosting processes or applications that should be
governed by different policies. Yet, a security kernel where the reference monitor
simply enforces a weak policy could be useful. For example, for applications
where principals are being governed by discretionary access control, the security
kernel might simply enforce the semantics of access control lists or capabilities.

10.2.4 *Hardware Rings of Protection

In a hierarchically-structured system, each layer maintains state and provides
operations for use by higher layers but not by lower layers. The lowest layer,
implemented as hardware, provides machine language instructions; these oper-
ate on registers and main memory. Other layers are implemented in software.
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They hide, redefine, and/or augment operations exported by lower layers. A
defining characteristic for all layers in a hierarchical systems is:

Trust in Hierarchical Systems. In a hierarchical system, higher layers
may trust lower layers, but lower layers do not trust higher layers.

Thus, correct operation of a layer is allowed to depend on correct operation of
lower layers. But the trust assumptions for hierarchical systems are not violated
when a layer attempts to subvert lower layers. One way to rule out such attacks
is to deploy additional mechanism. That is what we next discuss.

Enforcing Isolation from Higher Layers. Because lower layers are trusted
by higher layers, execution in a given layer is (i) authorized to read and write
state being maintained by higher layers but (ii) not authorized to read or write
state maintained by lower layers. That is, for any layers L and L′,

L′ ≺ L ⇒ (read(L′) ⊇ read(L) ∧ write(L′) ⊇ write(L)) (10.1)

where relation, L′ ≺ L on layers holds8 when layer L′ is below (hence, may
be trusted by) layer L, set read(L) enumerates state components that code in
layer L is authorized to read, and set write(L) enumerates state components
that code in layer L is authorized to write.

CPU hardware for address translation often will directly enforce (10.1) by
embracing a metaphor of nested or concentric rings and providing

• a register curRing to associate a ring with current execution, and

• a means to assign access restrictions for execution in each given ring.

Each layer L is associated with a non-negative integer value ring(L) that cor-
responds to the ordering of layers:

L′ ≺ L ⇒ 0 ≤ ring(L′) < ring(L). (10.2)

Access restrictions on the code being executed are imposed according to the
value of curRing and two fields we add to segment descriptors. Specifically, a
segment descriptor ⟨bi, leni,mi⟩ for mapping names n satisfying bi ≤ n < bi+ leni

(as discussed on page 264) is extended with fields

• rbi an integer specifying a read bracket comprising the set of layers L
satisfying 0 ≤ ring(L) ≤ rbi, and

• wbi an integer specifying a write bracket comprising the set of layers L
satisfying 0 ≤ ring(L) ≤ wbi.

8In a hierarchically structured system, relation ≺ is total, irreflexive, asymmetric, and
transitive. So it is impossible to have both L′ ≺ L and L ≺ L′ hold. And for every pair of
layers L and L′, either L′ ≺ L or L ≺ L′ holds.
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A read access to a name in segment ⟨bi, leni,mi, rbi,wbi⟩ is authorized only if
0 ≤ curRing ≤ rbi holds, because then the currently executing layer is in the read
bracket for the segment being accessed; an access violation occurs otherwise. If
rbi is negative then, reading from this segment is never allowed. Writes are
analogous, but restricted by the write bracket.9 Typically, wbi and rbi are
defined in such way that wbi ≤ rbi holds, so that code can read what it has
written.

Notice that (10.1) is satisfied by a segment ⟨bi, leni,mi, rbi,wbi⟩ no matter
what values are used to define the read and write brackets. Here is a proof.
Consider a name n satisfying bi ≤ n < bi + leni, and suppose that L′ ≺ L holds
too. We can prove that read(L′) ⊇ read(L) in the consequent of (10.1) holds
by showing that if n ∈ read(L) holds then so does n ∈ read(L′). If a read
to some name n succeeds while layer L is executing (so curRing = ring(L)
and n ∈ read(L) hold) then 0 ≤ ring(L) ≤ rbi must be satisfied. We have
0 ≤ ring(L′) < ring(L) from L′ ≺ L and (10.2), so 0 ≤ ring(L′) ≤ rbi follows from
0 ≤ ring(L) ≤ rbi. Thus, reading n while executing in layer L′ does not cause
an access violation: n ∈ read(L′) holds, as we needed to show. The argument to
prove conjunct write(L′) ⊇ write(L) in the consequent of (10.1) is analogous.

Operation Invocation. In hierarchically-structured systems, a call instruc-
tion executed by code at layer L is allowed to proceed only if (i) the destination
is the gate for an operation op exported by some lower layer L′ and (ii) op is
not being hidden or redefined by any interposed layer L′′ where L′ ≺ L′′ ≺ L.
Processor enforcement of these restrictions can be controlled by incorporating
information into descriptors. The descriptor for each segment i now would also
include:

• nGatesi, the number of gates that segment i contains. Entry points are
enumerated in the first nGatesi words of segment i: word 1 contains the
address in segment i of the entry point for operation 1, word 2 contains
the address in segment i of the entry point for operation 2, and so on
through word nGatesi.

• xbi, a non-negative integer that the processor loads into curRing whenever
an instruction from segment i is being executed. So in order to specify
that segment i stores code for a layer L then xbi is set equal to ring(L).

• cbi, the largest value of curRing from which a call is permitted to a gate
in segment i. By setting cbi = xbi + 1, operations defined by gates in
segment i are hidden or redefined by the layer immediately above; and if

9So curRing can be seen as a generalization of mode, with smaller values for curRing au-
thorizing access to additional state rather than to additional instructions. The distinction
between state and instructions can be ignored here, because the effect of executing any in-
struction is to perform reads and writes to main memory and processor state—restricting
access to state is thus equivalent to disallowing execution of certain instruction instances.

Revised  July 4, 2020 Copyright   Fred B. Schneider All rights reserved



10.3. Virtual Machines 273

cbi > xbi + 1 then higher layers can themselves directly invoke operations
defined by gates in segment i.10

Execution of “call op” then proceeds as follows, where op is presumed to be
given as a segment name i and offset p in words. To start, the hardware checks
that p ≤ nGatesi and xbi < curRing ≤ cbi hold, thereby establishing that (i) op
identifies a gate in segment i and (ii) op is visible to the layer executing the
call. If these checks succeed then execution of the call pushes onto a stack the
return address and the value of curRing, loads xbi into curRing, and loads into
the program counter the value found in word p of segment i (thereby branching
to the entry point of op). When execution of the operation completes, that code
is responsible for restoring the program counter and curRing by popping the
stack, thereby returning control to the caller.

Care is required when referencing arguments from within the body of op—
otherwise, confused deputy attacks (see page 97) are possible. Of concern is
a caller that (i) is executing in some layer not in the read (write) bracket for
the segment named in an argument arg and (ii) passes arg to an operation
in some lower layer L that is in the read bracket. So the caller is not itself
authorized to read (write) arg but, by exploiting a confused deputy in layer
L, effects access to arg nevertheless. The obvious defense is for operations
to check whether arguments are accessible to their callers. This check can be
performed in software by inspecting the corresponding segment descriptor for
each of the arguments. Some processors offer a separate addressing mode to
facilitate such checks. This addressing mode allows accesses to be made under
a temporarily increased value for curRing, such as the value in curRing when
the call executed.

Layers versus Processes. Layers and processes are both concerned with
system structure. They are orthogonal constructs: a process might be layered,
or a layer might itself be implemented by a set of processes. Both constructs
facilitate decomposing a larger system into smaller units that each can be under-
stood and analyzed separately. So both constructs help in assurance arguments.
The two types structures do differ in what isolation they enforce, each allow-
ing different assumptions to be made about the environment. However, each
construct helps with the Principle of Least Privilege by enforcing isolation that
restricts what parts of the overall system each individual component can access.
So, in both cases, structure is being leveraged for defense.

10.3 Virtual Machines

An instruction set architecture that is partly or entirely implemented by soft-
ware is known as a virtual machine. Execution of an instruction on a virtual

10This scheme does not offer the flexibility to specify that only certain specific operations
that a layer exports should be hidden or redefined in higher layers. Such flexibility would be
attractive, but it is not part of the processor support existing modern CPUs typically provide
for rings.
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machine will be fast if it involves executing only a single instruction on the un-
derlying processor. Opportunities for such direct execution are more frequent if
a virtual machine’s instruction set resembles the instruction set for the under-
lying processor. A second benefit of supporting an identical instruction set is
that existing programs written for the underlying processor do not have to be
modified or even recompiled for execution by the virtual machine.

A virtual machine manager (VMM), also known as a virtual machine moni-
tor or hypervisor, is a software layer that executes on some underlying processor
to provide one or more virtual machines. A type I VMM runs on bare hardware;
a type II VMM runs above a software layer (typically, an operating system);
and a real or virtual machine V is considered self-virtualizing if V can run a
VMM that implements virtual machines having the same instruction set as V .

A VMM enforces isolation for the memory, registers, and input/output de-
vices associated with each virtual machine, as well as isolating resources used
internally by the VMM. Input/output devices are the only means for one vir-
tual machine to communicate with another virtual machine or to interact with
the environment. In comparison, an operating system typically will provide
primitives (e.g., svc’s) so that processes can share resources, communicate, and
synchronize, thereby providing many ways for the activities of one process to in-
fluence the activities of another. Virtual machines thus enjoy stronger isolation
than processes.

The strong isolation that VMMs provide has proved useful in a broad range
of settings.

• Cloud providers employ VMMs to give each customer an illusion of being
assigned sole tenancy on some computers. The customer often can select
an operating system and even an entire software stack to be loaded and
run on each of those computers.11

• In enterprise datacenters, VMMs enable server consolidation, whereby a
single computer runs multiple virtual machines that each hosts a server. If
(as usually is the case) the servers are not busy most of the time, then this
configuration avoids the overheads of lightly loaded dedicated machines.
Moreover, with server consolidation, each server runs on a (virtual) proces-
sor configured to best suit that server. Were the servers instead executed
as processes under a single operating system then they all would be sched-
uled according to the same policy, likely resulting in worse performance.

• On the desktop, running a VMM can compensate for weak operating sys-
tem security, because the isolation of virtual machines limits what attacks
are possible by an operating system that has become compromised. For
example, if one virtual machine hosts applications to support personal

11This kind of cloud computing is know as infrastructure as a service (IaaS). With platform
as a service (PaaS), the customer is offered a computer that runs some pre-configured software
stack. And software as a service (SaaS) provides customers with specific applications and/or
databases that run in a datacenter.
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banking and another is used for web-browsing then content that is down-
loaded during browsing would be prevented by the VMM from subverting
the applications that access your a bank account.

Monitoring and debugging also are facilitated with virtual machines. A typical
VMM provides a virtual console for each virtual machine it implements. The
virtual console allows an executing virtual machine to be paused by a human
operator, who then can inspect or change that virtual machine’s memory and
(virtual) processor registers. Application software, an operating system, or even
a VMM itself now can be debugged simply by running that software in some
virtual machine and using the associated virtual console.

10.3.1 A VMM Implementation

Isolation for virtual machines can be enforced by using the same building blocks
as employed above to enforce per-process isolation:

• address translation (§10.1.1) ensures that no virtual machine can retrieve
or alter main memory allocated to another virtual machine or to the VMM,
and

• time multiplexing (§10.1.2) ensures that no virtual machine can retrieve
or alter the (virtual) processor registers of other virtual machines.

Address Translation for Virtual Machines. To ensure that the main
memory for different virtual machines resides in non-overlapping memory re-
gions of the underlying processor’s main memory, the VMM establishes an
address-translation mapping VMapV for each virtual machine V . VMapV is
a mapping from set M of the addresses in the virtual machine V ’s memory to
set MV ∪ {⊥}, where MV are addresses for a region of the underlying proces-
sor’s memory, ⊥ signifies that an interrupt should be raised, and the following
disjointness condition holds:

V ≠ V ′ ⇒ (MV ∩MV ′ = ∅).

To protect itself, memory used by the VMM is excluded from MV for every
virtual machine V .

An operating system or other software executing in a virtual machine V
must be able to install its own mapping NMmapV (say) by loading V ’s (virtual)
MmapReg register. Thereafter, a reference by V to address n should access mem-
ory location VMapV (NMmapV (n)). To achieve that effect, it suffices if, during
execution of V , the underlying processor’s MmapReg register specifies strict com-
position12 NMmapV ○ VMapV of address-translation mappings NMmapV and

12A function F is defined to be strict iff F (⊥) =⊥ holds. And composition F ′ ○ F ′′ of two
functions F ′∶D′ → R′ and F ′′∶D′′ → R′′, where R′ ⊆ D′′ holds, is defined to be function
F ∶D′ → R′′ such that F (x) = F ′′(F ′(x)).
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VMapV :

(NMmapV ○VMapV )(n)∶ { VMapV (NMmapV (n)) if NMmapV (n) ≠⊥
⊥ otherwise

The expense to compute NMmapV ○ VMapV from NMmapV and VMapV

at every context switch would be prohibitive. But it is feasible for VMM to
maintain a local data structure NMVmapV that equals NMmapV ○ VMapV and
for VMM to update NMVmapV each time virtual machine V updates NMmapV .
It suffices that the VMM maintain a shadow copy SNMmapV of the representation
for NMmapV being stored in V ’s memory.

To keep SNMmapV current, the VMM must learn about updates to V ’s rep-
resentation for NMmapV . That is easily arranged on a processor that has a
translation cache that stores mapping information for recent accesses. VMM
can infer the address of V ’s representation for NMmapV , because VMM receives
control whenever V attempts to load MmapReg—the address of V ’s representa-
tion for NMmapV will be an argument SegsV (say) to the load instruction. So
translation cache entries can be marked in a way that causes the VMM’s in-
terrupt handler thus gets control whenever the VMM must update SNMmapV so
that shadow remains consistent with SegsV in V ’s virtual memory.

Time Multiplexing for Virtual Machines. As discussed with implement-
ing processes, restricting execution to user-mode instructions suffices to protect
the integrity of the address-translation and time-multiplexing implementations.
Therefore, virtual machines are executed with mode = InstU on the underly-
ing processor. Time multiplexing also requires that, for each virtual machine
V , VMM maintains VM [V ].procState containing fields to store that virtual
machine’s registers (e.g., program counter, general-purpose registers, MmapReg
register, mode register, and IntHndlr[⋅]) as well as other fields used to derive
the values loaded into the underlying processor’s registers for running V .

System-mode Instructions. The VMM traps and then emulates system-
mode instructions that a virtual machine V executes.

• Trap. Virtual machines are executed with mode = InstU , causing instruc-
tions ι from InstS to raise a privilege interrupt.13

• Emulate. A VMM-installed handler for privilege interrupts emulates ι by
updating information being stored by VMM in VM [V ].procState and/or
by executing system-mode instructions (with mode = InstS) on the under-
lying processor.

13An assumption is being made here about the instruction set architecture. On some pro-
cessors, however, a privilege interrupt is not raised when an attempt is made to execute an
instruction ι ∉ InstU when mode = InstU holds. Methods to handle that case are discussed in
§10.3.2.
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Some system-mode instruction have straightforward emulations. For exam-
ple, a virtual machine V ’s update to its MmapReg register is emulated by VMM
updating the value for that register stored in VM [V ].procState. Other emula-
tions are more complicated. For example, when the Timer register of virtual
machine V is loaded with a value T , then emulation of the subsequent timer
interrupt is facilitated if a field VM [V ].NextTimerInt is being maintained to
store the earliest possible time14 TimeNow + T for that timer interrupt.

Interrupts. Emulation also is used to implement a virtual machine’s in-
terrupts. For the interrupt processing sketched earlier (page 267), VMM would
maintain queues VM [V ].IntPending[I] that contain, in order of occurence, class
I interrupts that have been raised at virtual machine V but not yet delivered.
In addition, VMM emulates stack IntOldStates at a virtual machine by main-
taining a separate stack VM [V ].IntOldStates of processor states for each virtual
machine V .

The VMM emulation for interrupt delivery is described by the following
code.

for Int ∶= I1, I2, . . . , In do
if VM [V ].IntHndlr[I].enbl ∧ ¬empty(VM [V ].IntPending[I])

then pushVM [V ].procState onto VM [V ].IntOldStates
VM [V ].procState ∶= VM [V ].IntHndlr[ ].new

An interrupt would be raised at a virtual machine V (i) because V is ex-
ecuting some instruction ι or (ii) because some external event has occurred in
response to an instruction ι that V executed earlier. Both cases require the
VMM to receive control when certain kinds of instructions execute. The hy-
pothetical processor we have been discussing supports this, because we require
that mode = InstU hold while executing a virtual machine, svc causes an svcInt

interrupt, and other instructions (e.g., instructions to initiate input/output15)
that spawn activity leading to future interrupts are system-mode, so their exe-
cution immediately causes a privilege interrupt. A VMM handler that receives
control for an interrupt directly attributed to execution of an instruction can
then proceed as follows.

• A privilege interrupt being raised because a system-mode instruction ι was
attempted. In addition to emulating the effects of ι, the VMM records any

14TimeNow is assumed to be a register that always contains the current time. Most hardware
processors have such a register. If such a register is not available then it can be emulated by a
variable TimeOfDay maintained by the VMM. The VMM records in another variable LastIT
the value it last loaded into the interval timer. And whenever the VMMs handler for timer
interrupts is invoked, LastIT is added to TimeOfDay.

15Memory-mapped input/output often requires a series of memory accesses to set specific
control parameters before the input/output operation can start. The VMM emulation of that
will be time consuming, because each of those memory accesses causes a privilege interrupt and
a context switch into the VMM. Paravirtualization and privileged virtual machines, discussed
later, provide ways to avoid that expense.
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anticipated external event whose later occurence should cause an interrupt
to be raised at V . Examples of such system-mode instructions include
instructions for loading Timer or for initiating input/output.

• Some other interrupt being raised because a user-mode instruction ι was
attempted. Append a suitable record to VM [V ].IntPending[I] and ex-
ecute the code given above for delivery of interrupts. Examples include
address-translation interrupts, divide by zero, svc instructions, and at-
tempts to execute a system-mode instruction while the virtual machine is
executing in virtual user mode.

The final aspect of our VMM emulation for interrupts at a virtual machine V
concerns emulation of external events that should occur because of instructions
V already executed. An example is the input/output interrupt that marks the
completion of an input/output operation that previously was instigated. These
external events must cause VMM to receive control. This activation of the
VMM is easily arranged if those external events are tied to interrupts on the
underlying processor. Now, the VMM-installed interrupt handler for class I
interrupts could append an element to VM [V ].IntPending[I] for each virtual
machine V where an interrupt for class I should be raised due to the external
event.

Note that interrupts due to external events on the underlying processor
might have to be directed to multiple virtual machines. Delivery of a timer
interrupt by the underlying processor, for example, might require the VMM
to raise timer interrupts at more than one virtual machine, depending on the
values in their Timer registers. Interrupts from input/output devices also can
be challenging, if virtual input/output devices share a single real input/output
device and the VMM combines operations to achieve efficiency. Moreover, a
sequence of interrupts might be generated after a single input/output operation
is initiated—the VMM must be prepared for that.

Resuming a Virtual Machine. Execution of a virtual machine V is resumed
by loading the underlying processor’s state from information managed by the
VMM. Specifics are given in the table that follows, where Q is the maximum
time-slice a single virtual machine may execute uninterrupted. Notice that the
underlying processor’s mode register does not reflect the virtual processor’s mode
while a virtual machine V is executing—that information is available only from
VM [V ].procState.

register source for value to load
program counter program counter in VM [V ].procState
general purpose register value in VM [V ].procState
mode InstU no matter what is stored in VM [V ].procState
MmapReg VM [V ].VMapV ○VM [V ].procState.MmapReg
Timer min(TimeNow + Q, min

W
(NextTimerIntW ))
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10.3.2 Binary Rewriting

On some processors, executing a system-mode instruction when mode = InstU
holds does not cause a privilege interrupt.16 These are called non-virtualizable
instructions because they are not trapped but they must be emulated if we
want to implement a virtual machine resembling the real hardware. That emu-
lation can be invoked if, in any code that a virtual machine executes, we have
replaced each non-virtualizable instruction with code that invokes the VMM.
That program rewriting requires:

(i) A means to identify each non-virtualizable instruction and replace that
instruction with other code.

(ii) A mechanism to invoke the VMM from within that replacement code.

Two approaches to (i) are prevalent in practice: binary translation (described
next) and paravirtualization (described in §10.3.3). For (ii), many processors
include a special hypervisor call instruction that, when executed, causes a trap
associated with a distinct interrupt class; the corresponding interrupt handler
is configured to invoke the VMM. Absent a hypervisor call instruction, the
supervisor call instruction (svc) discussed earlier can be made to work, provided
the VMM can distinguish svc executions intended to invoke operating system
services from svc executions intended to invoke a VMM instruction emulation.17

Binary Translation Implementation. The process by which an input exe-
cutable of a program in some input machine language is converted into an output
executable for an equivalent program in some output machine language is known
as binary translation.18 We might want to migrate software that runs on one
machine onto different hardware, or we might want existing hardware to execute
programs written for hardware that does not yet exist. By taking a liberal view
of what constitutes equivalent programs, binary translation also can be used to
add instrumentation to machine language programs so that run-time behavior
will be measured.

In static binary translation, a translator produces output executable B′ from
input executable B before execution of B′ starts. Static binary translation is
challenging if run-time information determines which parts of B constitute in-
structions and which are representing data values, since a translator would be
unable able to ascertain what fragments of an input executable should be con-
verted. Uncertainty about instruction boundaries arises when instruction for-
mats are variable-length, instruction alignment has few restrictions, computed
branch destinations are supported, and/or instructions are mixed with data.

16The Intel X86 instruction set architecture is a noteworthy example. It has a few in-
structions (e.g., IRET and POPF) whose execution does not cause a privilege interrupt but has
different effects depending on the value of mode.

17To distinguish an svc execution intended to invoke the VMM, a special operand value,
never used by the operating system to specify a service, would suffice.

18A machine language program is commonly called a binary. So a program to convert
between machine languages is doing translation from one machine’s binary to another’s, hence
the name “binary translation”.
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Dynamic binary translation avoids resolving uncertainty by converting in-
structions in the input executable only when those instructions are reached
during execution. By alternating between execution and translation of instruc-
tion blocks, the translator can use the processor state produced by execution of
the last block when converting the next. That processor state not only provides
the translator with the starting location for the first instruction in the block to
be converted but also provides values needed for calculating the destination of
a computed branch if that is the first instruction in the block.

Translation and Execution as Coroutines. Given is an input exe-
cutable B, an offset d indicating the location in B for the next instruction
to execute, and values to load into processor registers when execution
commences.

(1) Construct B′ by translating instructions in B, starting at offset d
and continuing until a branch instruction ι is encountered whose
destination is being computed during execution of B.

(2) Replace branch instruction ι with an instruction that transfers con-
trol to the translator. Use the offset for ι in B as the offset value
d passed to the translator; the processor register values passed are
whatever values those registers contain when the translation of ι is
reached.

(3) Execute B′.

When execution of B′ in step (3) reaches the translation of ι, control transfers
to the translator (thereby returning to step (1)), which resumes converting B,
starting with instruction ι.

VMM use of Dynamic Binary Translation. Dynamic binary translation
enables virtual machines to be implemented on a processor whose machine lan-
guage contains non-virtualizable instructions and some form of hypervisor call.

Implementing Virtual Machines by using Binary Translation.

– Implement a dynamic binary translator that replaces system-mode
instructions with hypervisor calls. By definition, non-virtualizable
instructions are system-mode instructions, so all non-virtualizable
instructions will be replaced by the translator.

– Implement an interrupt handler for hypervisor calls. This handler
should contain code for emulating each system-mode instruction.

– Modify the VMM code for Resuming a Virtual Machine (page 278) so
that it transfers control to the dynamic binary translator, providing
as arguments the values in the registers of the virtual machine. The
value in the program counter serves as offset d for Translation and
Execution as Coroutines, above.
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Dynamic binary translation increases the size of the trusted computing base
(by adding the binary translator) and increases run-time overhead (since per-
forming the translation takes time and likely involves making a context switch).
The larger trusted computing base seems unavoidable. But we can reduce the
run-time overhead by (i) limiting how much of the code gets translated during
execution, and (ii) not translating the same block of instructions anew every
time that block is to be executed. We now consider implementation of these
optimizations.

When the following condition holds for the instruction set, dynamic binary
translation is not necessary in order to obtain a binary to execute in user mode—
the input executable is equivalent to the output executable.

Binary Translation Elimination Condition. Execution of any non-
virtualizable instruction while in user-mode advances the program counter
but does not make any other changes to the state (memory or registers)
of the virtual machine.

This condition holds for many of the commercially-available processors that have
non-virtualizable instructions. In addition, the preponderance of code running
on computers is user-mode; only operating system code executes in system-
mode. So when a VMM is implemented using dynamic binary translation on a
processor where Binary Translation Elimination Condition holds, then only the
operating system code in a virtual machine must incur the run-time overhead
of dynamic binary translation.

We show that when Binary Translation Elimination Condition holds, exe-
cuting the input executable in user mode is equivalent to executing the out-
put executable. The interesting case is system-mode instructions, given that
Implementing Virtual Machines by using Binary Translation does not replace
user-mode instructions. There are two cases.

Case 1: A system-mode instruction ι that is non-virtualizable. According
to Binary Translation Elimination Condition, execution of ι on a processor
in user-mode will advance the program counter but change no other aspect
of the processor’s state. That behavior is equivalent to what would be
observed if ι were replaced by a hypervisor call and the hypervisor call
interrupt handler emulated the user-mode execution of ι. So execution of
ι in the input executable already exhibits equivalent behavior to execution
of the output executable.

Case 2: Other system-mode instructions. Such an instruction ι will cause
a privilege interrupt when executed, because virtual machines are exe-
cuted by an underlying processor in user-mode. So, an interrupt handler
installed by the VMM receives control and executes a routine to emulate
ι. This behavior is equivalent to what would be observed if ι were re-
placed by a hypervisor call, because the hypervisor call interrupt handler
in Implementing Virtual Machines by using Binary Translation (above)
emulates execution of ι.
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A second means for reducing run-time overhead from binary translation is
to introduce a VMM-maintained translation cache, which stores (i) output ex-
ecutables for previously executed (and, therefore, previously translated) blocks
of instructions, along with (ii) the values of any registers that affected the trans-
lation.

Use of a Translation Cache. For a block of instructions that starts at
offset d, a binary translator need not produce an output executable for
execution, provided

(i) the required output executable O was previously produced and is
available from the translation cache, and

(ii) output executable O available from the translation cache is what the
binary translator would produce if invoked now.

Provided (i) and (ii) are cheap to check, Use of a Translation Cache lowers
overhead—executing a block from the translation cache does not require trans-
lating it again. When Binary Translation Elimination Condition holds too, the
translation cache would store only those parts of the virtual machine’s oper-
ating system that execute in system-mode; the full performance benefit of a
translation cache thus is achieved by incurring only modest storage costs.

To check condition (ii) in Use of a Translation Cache, we can leverage address
translation hardware to intercept those writes that could cause cache entries to
become stale.

Translation Cache Invalidation.

– When an output executable O is inserted into the translation cache.
Disable writes for a region of memory that includes all fragments of
the input executable that the translator read when producing O.

– When a write is attempted to a region of memory where writes have
been disabled by the translation cache. Delete the corresponding out-
put executable from the translation cache; then allow the write to
proceed.

Condition (ii) is satisfied if the output executable is in the translation cache
and if current register values equal cached values for registers that affected the
translation.

A performance problem arises with this scheme because address-translation
hardware typically works at the granularity of memory pages. Far less than a
page is read in producing an output executable for a single block of instructions.
So writing to a page could cause many output executables to be deleted from
the translation cache. Some of those deletions would be unwarranted if only
a small part of the page is being updated or if state (but not instructions)
is what changed. However, the unwarranted deletions can be avoided if the
implementation of condition (ii) saves in each cache entry the translator’s input
and uses that value for later comparison with the contents of memory. This
checking of the binary translator’s input can be incorporated into the output
binary.
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10.3.3 Paravirtualization

Transfers of control between a virtual machine and the VMM disrupt instruc-
tion pipelining and require memory caches to be purged. So performance suffers
when a VMM implements system-mode instructions by emulating them in soft-
ware. Moreover, the transparency that makes VMMs attractive leads to further
performance problems.

• The operating system in a virtual machine duplicates work performed
by the VMM. For example, input/output from an application running
in a virtual machine involves executing a driver in the VMM as well as
executing a driver in the operating system.

• Work done in the VMM can negate work done in the operating system. Re-
ordering of transfer requests that a VMM’s disk driver does to enhance disk
performance might undermine request re-ordering done by the operating
system’s driver to enhance disk performance.

Such performance problems suggest favoring virtual machines where the instruc-
tion set does not often involve software-emulation by the VMM.

Virtual machines implemented using paravirtualization support (i) the same
user-mode instructions as the underlying processor, (ii) a subset of its system-
mode instructions, and (iii) a hypervisor call. The set of supported system-
mode instructions typically excludes system-mode instructions that are expen-
sive to emulate in software and also excludes all non-virtualizable instructions.19

VMM-serviced hypervisor calls replace the system-mode instructions that no
longer are available.

Software built exclusively from user-mode instructions does not have to be
changed to run in a virtual machine implemented by paravirtualization. So
paravirtualization is transparent to application software. But operating system
routines invoke system-mode instructions; that code must be changed for execu-
tion under paravirtualization. In practice, those changes are typically localized
to a handful of routines.

Leverage from Hypervisor Calls. Paravirtualization offers the flexibility to
define virtual machines having hypervisor calls that do not replicate the func-
tionality of system-mode instructions. Abstractions well suited to virtualization
now can be offered by a VMM. For instance, an abstract input/output device
could well be easier to emulate in software than a real device is. And par-
avirtualization would enable a VMM to offer that simpler input/output device,
resulting in a VMM that is smaller than one that incorporates emulations for
real input/ouptut devices; operating system drivers in virtual machines now
can be simpler, too. An abstract input/output device’s interface also can be
designed to discourage putting into operating system drivers functionality that
is duplicated or negated by a VMM’s software emulation of the device.

19Recall, non-virtualizable instructions are, by definition, system mode.
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In addition, if virtual machines employ hypervisor calls to interact with
VMM-implemented resources then functionality can be relocated from a VMM
into separate, designated virtual machines.

Privileged Virtual Machines. A designated virtual machine V can im-
plement a given service for the VMM (and thus for other virtual machines)
provided the VMM offers the following.

– The VMM identifies a specific subset of its hypervisor calls as pro-
viding a control interface for the service.

– The VMM identifies virtual machine V as being privileged for the
service. V might be, for example, (i) the first virtual machine that
the VMM boots or (ii) a virtual machine that boots some specific
operating system.

– The VMM ensures that hypervisor calls in the control interface for
a service can be invoked only by a virtual machine that is privileged
for that service.

Virtual machines would still use ordinary hypervisor calls for requesting services
from the VMM or for retrieving corresponding responses. But instead of the
VMM incorporating all of the code to perform that service, the VMM would
forward the request to a privileged virtual machine; hypervisor calls in the corre-
sponding control interface are what allows that virtual machine to communicate
with the VMM and with client virtual machines. Ordinary virtual machines can-
not interfere, because ordinary virtual machines cannot invoke hypervisor calls
from a control interface and, therefore, they cannot receive or reply to service
requests from clients.

This architecture expands the trusted computing base to include the oper-
ating system and other code that runs in a privileged virtual machine. All else
equal, establishing assurance for this larger code base would be more costly.
The architecture does offer some benefits, though. First, by moving functional-
ity from the VMM into virtual machines, the VMM involves less code, providing
a basis for increased assurance in the VMM. Second, code that runs in a vir-
tual machine along with an operating system (with all of its functionality) can
be simpler than code that, being within the VMM, cannot use operating sys-
tem services. Finally, the architecture allows an existing operating system with
existing I/O drivers to provide virtual machines with access to input/output de-
vices. We run this existing operating system in a privileged virtual machine, and
doing so avoids the need to write or rewrite input/output drivers for execution
in the VMM. Software emulation to create virtualized versions of input/output
devices is also now straightforward—virtualized devices can be implemented as
servers, benefiting from existing input/output drivers and other functionality
that an operating system offers.

Revised  July 4, 2020 Copyright   Fred B. Schneider All rights reserved



10.4. Containers 285

10.4 Containers

Isolation can be undermined whenever resources are being shared. For example,
one process can interfere with others by abusing files, network ports, or locks.
Even a shared processor could be problematic if one process is able to initiate
activities that deprive others of processor cycles, causing missed deadlines. A
container is an environment in which specified system resources are accessible
only to a given set of processes, so that processes outside a container cannot
use these resources to influence processes within the container and vice versa.
Thus, for processes in a container, isolation of resources the operating system
is providing is enforced in addition to isolation of memory and registers.

10.4.1 Implementation of Containers

A run-time environment for supporting containers typically is located20 in or
above the system layer that is implementing the resources and processes to
be isolated. The run-time environment would provide the full set of system
operations, intercepting invocations that should be blocked or where arguments
must be checked or modified before executing the container support software’s
implementation of these same operations. Overhead is reduced by locating
container support software in the kernel, but then each container must include
software libraries for functionality needed beyond what the kenel provides.21

Isolation by Namespace Mappings. A namespace mapping translates a
name used within a container to the name used by the operating system for
accessing that resource. Per-container isolation cannot be violated by accessing
resources with names from a given namespace if

(i) the only way for a process to affect or be influenced by a resource requires
naming that resource in a system operation that is being intercepted,

(ii) the same namespace mapping is used by processes within a container, and

(iii) namespace mappings used in different containers have disjoint ranges.

Namespace mappings are also useful in connection with system operations where
the set of affected objects is implicit rather than being explicitly given as ar-
guments. This is because the ranges of the namespace mappings identify those
system objects that are accessible within a given container, so an implicit ref-
erence now can be adjusted to be the appropriate subset.

Namespace mappings can be effective for creating isolation within any name-
space. Hierarchical namespaces warrant special attention, both because they are
common in computing systems and because they admit namespace mappings

20See Figure 10.1 on page 288.
21A container that includes its own libraries can be run on any system that exports a given

(standardized) kernel interface—additional software need not be installed. Moreover, after
the container has been installed, processes running on that host but outside the container can
continue using other libraries for the same functionality.
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with simple implementations. In a hierarchical namespace, set Π(t) of names
is the set of paths starting at the root t of some tree. Per-container isolation
follows if each container uses only resources with names from a disjoint subtree
since, by definition, Π(t) ∩ Π(t′) = ∅ holds when t and t′ are roots of disjoint
subtrees. And a rather simple namespace mapping suffices for names that come
from such subtrees. That mapping HNM for a container C being associated
with a subtree having root tC would be the identity mapping for names in
Π(tC) and would return ⊥ for other names:

HNM (τ, π)∶ { π if π ∈ Π(τ)
⊥ otherwise

(10.3)

Hierarchical namespaces are especially attractive for use in layered systems.
This is because any individual partition of a namespace (if not too small) can
itself be partitioned. So a software layer can allocate some of its resources to
the next higher layer and even partition those resources among functions that
higher layer implements. As an example, a container C that is associated with
some tree tC of a hierarchical namespace could host a set of (sub-)containers by
partitioning tC into disjoint subtrees, one per (sub-)container.

Namespace Mappings for Containers. Each type of resource that an oper-
ating system supports will have a namespace for identifying resource instances
of that type. Different resource types (e.g., files, network ports, locks, pro-
cesses) typically have different namespaces.22 A process uses names from these
namespaces as arguments when making system calls; a single namespace for
each resource type is typically shared by all processes in the system.

An obvious route to getting per-container isolation for system resources is
to interpose namespace mappings that satisfy isolation conditions (ii) and (iii)
above. For each resource type, the same namespace mapping would be as-
sociated with all processes within a given container but mappings associated
with different containers would have disjoint ranges. So per-container isolation
is facilitated by having a way to interpose per-process state that specifies a
namespace mapping to use for each namespace the operating system defines.
We would want the effects of such mappings, once in place, to be irreversible
and to be inherited when a new process is spawned. That suggests a names-
pace mapping installed by a child should compose with the namespace mapping
associated with its parent rather than replacing the parent’s mapping.

A file system chroot (change root) operation will illustrate. Execution of
chroot(π) redefines the root of the current file system to be the directory at
path π. The current file system is now a sub-tree of what it was, so only a subset
of files are still accessible to the process or to any processes it spawns (assuming
a process inherits the filesystem root from its creator). The new restriction on
access to files means that executing chroot can further restrict what files are

22Some operating systems, however, include all resources in the namespace for the file
system. For example, each process would be associated with an entry in a proc subdirectory,
each lock by an entry in a locks subdirectory, etc.
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accessible but cannot reverse the effect of a previous chroot and restore access
to files. Filesystem isolation for containers then follows by associating with each
container C a disjoint subtree πC and having the process that creates C invoke
chroot(πC) prior to spawning processes to populate C.

Performance Isolation. For most system resources, a scheduler determines
which process next gets access and for how long. The goal is to guarantee
statistical measures for time, space, and/or bandwidth each process consumes of
some resource that is being managed. Nothing about this architecture requires
that consumption be attributed to processes—attribution could be to containers.
When attribution is to containers, then performance guarantees would be for
aggregated activity by processes within a container rather than for activity by
an individual process.

Per-container performance isolation is just a set of stringent performance
guarantees, so performance isolation can be realized through a choice of schedul-
ing policies. Limits and entitlements can ensure resource availability; fair-share
schedulers can implement guarantees for time-multiplexed resources. Enforce
these policies, and it is no longer possible for an attacker to perpetrate a denial
of service attack on one container by compromising another container.

Moreover, modest system support suffices for enforcing per-container per-
formance isolation:

• The system would associate with each process a label identifying the con-
tainer (if any) that hosts this process.

• Use of a resource by a process would be attributed to the container that
contains the process. Capacity allocated to a container would be available
for use by any process in that container.

• The system would associate with each container a label that the system’s
scheduler uses for assigning capacity of each resource to processes within
the container.

Container Attributes. A container can be viewed abstractly as a vehicle
for associating a set of parameter values with a set of processes.23 To say that
a system supports containers, then, is an assertion about types and levels of
services that subsystems provide—specifically, the assertion that what a sub-
system delivers to each process will be consistent with the parameter values
associated with the container hosting that process. A given parameter might
affect only one subsystem or might affect many subsystems. Obviously, per-
container namespace mappings and performance characteristics are examples of
per-container parameters. But parameters associated with a container might
also be used to limit which subset of operations are available to processes in the
container or to limit execution of those processes in other ways.

23A set of Linux processes associated with some parameter values had been called a cgroup
for control group.
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Figure 10.1: Architectures for Isolation

10.4.2 Comparing Virtual Machines

Containers are virtual machines. They virtualize the interface an operating sys-
tem kernel provides to processes, thereby creating an environment where the
processes in one container are isolated from the processes in other containers—
even though all might share underlying processors, their memories, and an op-
erating system kernel. Isolation also is the goal when virtualizing a processor’s
instruction set architecture. It is natural to wonder about the strengths and
weakness that come with each type of virtual machine. When should we use
one or the other?

Figure 10.1 compares the structure of a system that supports containers with
a system that supports virtual machines. In that figure, the height of each layer
was chosen to reflect common beliefs about that software:

• Virtual machines incorporate an entire operating system, so virtual ma-
chines are large. Containers only include application code and needed
software libraries, so containers are much smaller.

• A type I hypervisor that does not use binary translation can be comparable
in size to an operating system kernel, making that hypervisor small relative
to the size of an operating system.

• Container support (i.e., namespace mappings, performance isolation, and
management of other attributes) is comparable in size to an operating
system kernel.

These common beliefs do not always hold, though. Large hypervisors are becom-
ing more common in order to incorporate performance optimizations, employ
binary translation, and/or include a full operating system to avoid duplicating
input/output functionality or for type II hypervisors. Container support soft-
ware is also starting to become bloated with features to extend the functionality
of an underlying kernel.
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Performance Comparison. Being part of a container should not slow execu-
tion of a process, since the processor will directly execute all of its instructions
as well as the instructions for any system software it invokes. In comparison, a
virtual machine does not directly execute system-mode instructions, resulting
in increased execution times. Even processes that do not include system-mode
instructions are slowed when executing on a virtual machine if those processes
invoke operating system services, because such services are slower when they
execute system-mode instructions.

Because process creation involves system-mode instructions, the overhead
of trap and emulate or binary translation for virtual machines also means that
starting a new process within a container is likely to be considerably faster
than starting a new process within a virtual machine. The difference is not
significant if new processes are started infrequently. But a common design
when implementing a network service is to start a new process for each request
that is received. That design performs considerably better in a container than
in a virtual machine. For deployment in a virtual machine, the better design
is to have a fixed pool of server processes. Each server process loops, with
each iteration removing a request from a shared queue, parsing the request, and
delivering the indicated service.

To start a new virtual machine requires booting its operating system, which
typically is time-consuming. Therefore, starting a new virtual machine cannot
be frequent and cannot be on the critical path for generating interactive re-
sponses. So one wouldn’t start a new virtual machine to service each request,
for example, even though that architecture brings strong isolation. In contrast,
starting a new container involves only a small delay—time is required only to
set up some tables (e.g., for namespace mappings) and to add entries or change
other tables in the kernel (e.g., to record parameters for performance isolation
and other things).

Isolation Comparison. The environment of a process includes abstractions
that are provided by the operating system kernel. Some of these abstractions
(e.g., files, locks, network ports, other processes) are accessed by making system
calls; others (e.g., the processor) are accessed implicitly. Either way, by access-
ing these abstractions, one process might influence the environment of another
process. By comparison, a virtual machine has only one way to influence its
environment—input/output operations. So we conclude that processes per se
provide weaker isolation guarantees than virtual machines.

Containers change the picture. The goal is to have the environment for
a process executing in a container be affected only by other processes within
that container, so processes executing within containers benefit from a stronger
isolation guarantee than processes that are not within containers. That isolation
guarantee, however, is weaker than what virtual machines provide. First, even if
a container were to mediate access to all operating system resources, containers
do not isolate one process in the container from other processes within that
container. Second, container support software usually does not mediate access to
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all system resources, so avenues will typically remain for influence from outside
a container.

Another basis for comparing isolation guarantees is to consider assurance.
All else equal, the complexity of a software component is correlated with its size.
Since more complex artifacts are thought to be easier to attack, component size
can be used to predict assurance about isolation guarantees. We first consider
such an analysis for virtual machines.

• A type I hypervisor that does not use binary translation is considerably
smaller than an operating system. So its size would predict isolation
guarantees that a type I hypervisor enforces for virtual machines should
be harder to compromise than the guarantees that an operating system
enforces for processes executing within the virtual machine.

• A process might elevate its privilege or corrupt state by exploiting a bug in
an operation that an operating system implements. This justifies predict-
ing lower assurance for the isolation an operating system provides within a
virtual machine than for the isolation that a hypervisor provides between
virtual machines.

By running an operating system in a virtual machine, then, we would predict
that an attacker executing in one virtual machine is more likely able to influence
other activity on that virtual machine than able to influence activity in another
virtual machine.

An assurance-based analysis for isolation with containers is subtle. The size
of an operating system kernel with added container support software is com-
parable to the size of a type I hypervisor that does not use binary translation.
But system operations accessible within a container are an avenue for perpe-
trating attacks that might not only influence other execution in the container
but execution outside the container, too (though not extending beyond a vir-
tual machine). That suggests there would be a weaker isolation guarantee for
containers than for virtual machines. However, a type II hypervisor includes a
full operating system (and thus considerably more code than required for run-
ning containers), justifying a lower degree of assurance in the isolation being
provided for virtual machines; use of binary translation has the same effect.

Notes and Reading

Processes. Early computers executed one job at a time; enforcing isola-
tion was not a concern. As technology improved, processors got faster but
input/output devices didn’t. A desire to maximize processor utilization then
led to the advent of multiprogramming [47] and interrupts [5], whereby a pro-
cessor executed instructions in parallel with (still, relatively slow) input/output
operations. By having multiple jobs co-resident in main memory, if one job had
to wait for an input/output operation to complete then the processor could ex-
ecute another job. Isolation now was needed, however, to prevent a bug in one
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job from corrupting memory occupied by another [9]. So processors included a
base and a limit register, and system software used these to associate a disjoint
memory region with each job.

Batch processing is not conducive to program debugging; timesharing [31, 56]
is. Compatible Time Sharing System (CTSS) [11, 59] led the way24 in the imple-
mentation of this form of multiprogramming, which gives each user a terminal
and the illusion of exclusive access to a computer. In CTSS, timer interrupts
enabled system software to time-multiplex the processor’s registers and main
memory. A user had exclusive access to this session state for a time slice, in
rotation with other users. Between time slices, the user’s session state would
be stored on an external magnetic drum. Input/output operations for swap-
ping session states to/from the drum could run in parallel with the processor
delivering time slices, because session states for multiple users occupied main
memory concurrently. Base and bounds registers prevented execution by one
user from corrupting memory being used by another. The base register also fa-
cilitated relocation, resulting in better memory utilization since holes now could
be avoided when a session state was swapped into main memory.

The success of CTSS and promise of timesharing justified ARPA funding
MIT’s project25 MAC (Multiple Access Computing) to explore the design and
construction of Multics (Multiplexed information and computing system), a
timesharing system that could serve as a public utility [10]. Because users of a
public utility might not necessarily trust each other, system security was now
a first-class concern. The designers of Multics proposed using a segmented
(and paged) virtual memory [14] to enforce isolation for main memory. General
Electric’s GE-645 processor developed to host Multics was a modified version of
the GE-635, which was similar to the IBM 7094 that had been running CTSS.
Segment descriptors on the GE-645 were derived from the Burroughs B5000 [8],
but with support added for hardware rings of protection [20, 55, 53]. Multics
not only became a commercial product,26 but the mechanisms and principles
it contributed to the field of computer security are still having an impact [50].
The Multicians web site [36] gives a history of Project MAC and Multics, along
with links to publications.

Operating systems grew larger and more complex, as patches, features, and
performance optimizations were added. The larger system invariably would have
more bugs and, therefore, be easier to attack. So Roger Schell proposed [64, 51,
22] an operating system architecture where security would depend only on the
operating system kernel. This “security kernel” would only implement processes
and a reference monitor. Because a security kernel would be small, assurance
could be established by using formal methods. And because all accesses by

24CTSS first became operational in 1961 on a modified IBM 709. By 1964, a version was in
production use at MIT, running on an IBM 7094 that included an interval timer and two 32K
banks of memory. The label “compatible” was included in the name because the system also
handled batch jobs using IBM’s FMS (FORTRAN Monitor System), a widely used operating
system for the IBM 709 and IBM 7094.

25Bell Telephone Laboratories was a collaborator from 1965 to 1969.
26The number of commercial installation peaked at about 80 by the early 1980’s, with the

last site shut down on October 30, 2000.
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processes were mediated in the security kernel, bugs elsewhere in the operating
could not be exploited to compromise system security.

A number of implementation efforts were undertaken to validate the archi-
tecture Schell had been advocating. Most of those chose to enforce a security
model based on DoD’s system of security classifications and user clearances—
DoD was funding the efforts—and many at least started to construct some
sort of formal arguments to establish correctness of their designs: a prototype
built at MITRE for the DEC PDP-11/45 [52, 35], the Ford Aerospace KSOS
(Kernelized Secure Operating System) secure UNIX system [32], Honeywell’s
STOP operating system for Scomp (secure communications processor) [17], a
redesign of Multics [62, 54], and UCLA Data Secure Unix [60].

But by incorporating a reference monitor into the kernel, a system was lim-
ited to enforcing a single security policy. That restriction turned out to be
problematic for real deployments. First, the multilevel security policy being
enforced by existing security kernels required having certain so-called “trusted
processes” that would be exceptions to the policy. Second, different security
policies made sense for different applications. These problems led Rushby [49]
to invoke “less is more” and suggest separation kernels as an alternative to
security kernels.

Virtual Machines. Virtual machines were developed at IBM—albeit, sur-
reptitiously [57, 58]. Atlas [27], a computer built at the University of Manch-
ester, had introduced demand paging, which created a larger virtual memory
by time-multiplexing pages of physical memory. Demand paging freed program-
mers from the headaches of implementing storage management. It also facili-
tated timesharing, because the processor would automatically load and relocate
session state, incrementally and as needed. To explore virtual memory, IBM
researchers built the IBM M44 [37] by modifying an IBM 7044 so it supported
dynamic address relocation; an associated operating system MOS (Modular
Operating System) [38] implemented timesharing by providing M44x “virtual
machines” (the first use of this term) that each was connected to a terminal and
resembled an IBM 7044.

IBM interest and energy was focused elsewhere, though. The company was
creating System/360, a family of processors that implemented the same instruc-
tion set architecture but delivered different levels of performance. Previously,
IBM had marketed one instruction set to commercial users and an incompatible
one to scientific users. The System/360 instruction set would serve all of IBM’s
markets. Support for timesharing, however, was not seen by IBM as important,
and System/360 processors did not support virtual memory. So when IBM bid
on providing the processor for Multics, no System/360 processor was suitable.
IBM had to propose building hardware for address translation to augment a
System/360 processor. Project MAC’s management rejected that, fearing non-
standard hardware would discourage other sites from running Multics.

IBM had established the Cambridge Scientific Center27 to foster relations

27The center was housed in the same building (575 Technology Square) as Project MAC.
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with MIT and academia. Loss of the Multics bid and IBM’s indifference to
timesharing undermined that mission. However, Norm Rasmusssen, founding
director of the Cambridge Scientific Center, did understand the importance of
time-sharing, so he launched an effort there to build a time-sharing system. The
system would run on a System/360 model 40 that had been augmented with
custom hardware [28] for address translation. Operational in January 1967, the
system comprised CP-40 [1], which implemented virtual System/360’s, and the
Cambridge Monitor System (CMS), a new single-user System/360 operating
system that supported timesharing for one user.28 This software was subse-
quently rewritten to run on a System/360 Model 6729 and became available to
IBM customers as CP-67/CMS [34]. A port to System 370 processors produced
VM/370 [13]; a port of VM/370 to IBM’s Z servers later became available as
z/VM.

Once virtual machines were shown to be viable for timesharing, security
researchers investigated trade-offs with using a hypervisor (i) to enforce isola-
tion [30] and (ii) to serve as a security kernel [45].30 To evaluate having a hy-
pervisor be a security kernel, UCLA built the UCLA-VM system [42] for a DEC
PDP-11/45, and System Development Corporation built the KVM/370 [18]
retrofit to IBM’s VM/370. Further evidence that hypervisors should be trusted
came from an IBM penetration study [2] of VM/370, where only a few dozen
vulnerabilities were discovered, and most were connected to the idiosyncratic
System 360 input/output architecture. However, the most compelling case for
using a hypervisor to enforce security is the DEC VAX Security Kernel [24],
which met all DoD requirements for the highest levels of assurance, demon-
strated tolerable levels of performance (i.e., factor of 2 degradation), and could
run DEC’s VMS and ULTRIX-32 operating systems on commercial hardware
(albeit with microcode modifications to enable virtualization of the VAX archi-
tecture).

Not all instruction set architectures can be virtualized by emulating a small
subset of the instructions and running the rest directly on the underlying pro-
cessor. Goldberg’s Ph.D. dissertation [19] discusses what makes instructions
problematic for such trap and emulate implementations on so-called third gen-
eration processors—processors having two-modes of operation and base/bounds
registers to relocate addresses. Terms type I, type II, self-virtualizing, and recur-
sive virtual machines were also introduced in that dissertation. Subsequently,
Goldberg and Popek [40] formalized conditions and proved that satisfying them
suffices for implementing virtual machines by using trap and emulate on third-

28Most time sharing systems are multi-user, which requires them to incorporate mechanisms
for sharing resources. As a single-user system, CMS avoided that complexity and, thus, it
represented a novel point in the design space.

29Announced August 1965, System/360 Model 67 brought address translation to the Sys-
tem/360 family. It and TSS (an ambitious multi-user timesharing system) were IBM’s re-
sponse to losing the Multics bid and realizing that timesharing would become more than a
niche market.

30For enforcing multilevel security, a fixed security label is associated with each user, vir-
tual machine, and virtual input/output device. A reference monitor incorporated into the
hypervisor then enforces the usual access restrictions according to these labels.
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generation processors.
Outside of IBM’s offerings, third-generation processors typically have not

satisfied the Goldberg-Popek conditions. A VMM for one of those computers
cannot just employ trap and emulate; it must use other approaches. One such
approach is to change the instruction set architecture. Popek and Kline [41]
report on commissioning such changes to a DEC PDP 11/45, though few con-
sumers today would (or could) undertake to modify a processor. But producers
of processors do have both the incentive and the means to introduce modifica-
tions if those changes could bring significant increases to sales. That motivated
DEC to undertake the microcode modifications to the VAX for supporting the
DEC VAX Security Kernel. It also led Intel to develop the VT-x extensions
(available November 2005) and AMD to develop the AMD-V extensions (avail-
able May 2006) to help with virtualization of the x86 architecture31 because
servers deployed in a cloud often run a VMM and the market for those servers
is large.

There are software alternatives to trap and emulate for implementing a VMM
when an instruction set architecture does not satisfy the Goldberg-Popek condi-
tions. VMWare’s virtualization [7, 15] for the x86 was first to employ dynamic
binary translation [16] for unvirtualizable instructions, using trap and emulate
for other instructions. The VMWare developers leveraged their experience with
the Embra [63] binary translator for building the SimOS [48] machine emulator.

The term paravirtualization was coined32 for describing Denali [61], a VMM
to support an x86 variant having a simplified virtual memory and interrupt
architecture. That variant was devised intending to facilitate hosting large
numbers of virtual machines running unmodified x86 applications as network
services in a cloud. Xen [3], developed around the same time, also used paravir-
tualization. The goal for Xen was hosting commodity x86 operating systems
Linux and Windows (albeit with some modifications to the code) that ran com-
modity applications (with no modifications to that code). Xen subsequently
added support for full x86 virtualizations by leveraging VT-x and AMD-V.

Examples of paravirtualization, however, predate Denali and Xen. Disco [6]
had implemented virtual machines for MIPS but changing the interrupt flag
from being stored in a processor register to being stored in a special memory
location. Long before that, however, IBM’s CP-67 and VM/370 had repur-
posed the System/360’s diagnose instruction to provide direct communication
between a virtual machine’s operating system and the VMM, thereby enabling
the operating system to avoid duplicating activities that the VMM would per-
form. And the DEC VAX Security Kernel had used paravirtualization to avoid
having to virtualize device I/O.

Containers. Containers package security mechanisms that were developed
to facilitate using Unix as a host for web servers and other network applica-

31Robin and Irvine [46] enumerate ways x86 does not satisfy the Popek-Goldberg condi-
tions [40].

32Steve Gribble, the faculty member who directed the Denali effort, credits graduate student
Andrew Whitaker with coining the term “paravirtualization” [21].
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tions.33 What follows is an abbreviated history; a more complete account is
given by Randal [44], which also gives the history of virtual machines and com-
pares containers with virtual machines.

Bell Labs researchers had added the chroot command to Unix in 1979 [26].
A decade later, the Bell Labs Plan 9 [39] operating system featured a single
hierarchical namespace that not only included directories and files but contained
names for other system resources, too. However, stronger isolation and support
for delegating administration would be needed for a system to host independent
network servers and applications.

These requirements motivated the development of jails [23] in FreeBSD Unix
version 4.0 (released in 2000). Each jail provided a disjoint set of processes with
exclusive access to a sub-tree of the file system and to an IP address. Processes
in a jail could use both unprivileged system operations and privileged (“root” in
Unix terminology) system operations—but these operations could access only
those system resources allocated to the jail. So processes in a jail could interact
with each other, could use and administer resources allocated to the jail, but
had no means to interact with or even ascertain the existence of other processes
or other system resources.

The zones [43] construct was introduced in 2004 to support server consol-
idation under Solaris 10 (another Unix successor). FreeBSD jails lacked two
capabilities needed for hosting such workloads. First, performance isolation is
important when servers share a computing system and, therefore, zones (unlike
jails) supported per-zone entitlements, limits, and partitions of certain system
resources into resource pools, as well as fair-share CPU scheduling [25] for allo-
cation of CPU capacity across (and within) different zones. Second, each zone
(unlike a jail) had its own namespace mappings for certain system resources
(e.g., semaphores and message queues used for communications and synchro-
nization, and IP addresses). Given these mappings, configuration changes were
not needed to avoid resource-name conflicts when a server running on its own
computer was moved to a computer that was hosting multiple servers (each in
a separate zone).

Developed by the LXC (LuniX Containers) project [29] and available starting
in 2008, the underlying mechanisms for Linux containers [33] are a generalization
of jails and zones. Biederman [4] had done an analysis and identified the name-
spaces for all system resources exported by the Linux kernel; a Linux container
would have a separate copy of each namespace. Menage and Seth, working at
Google, generalized Linux cpusets, and obtained cgroups as a mechanism for
defining parameters to control each subsystem and for associating these param-
eters with a group of processes and their progeny [12]; Linux containers incor-
porated cgroups to support having per-container associated attributes. Some
evolution was still to come—notably integration of authorization to restrict sys-
tem operations—but the biggest changes would concern support for assembling

33Unlike the other isolation abstractions discussed in this chapter, containers are noteworthy
for also serving as a widely used software distribution vehicle. Prominent examples of com-
mercial technologies for development and deployment of containers include Docker (derived
from Linux containers) and Kubernetes (developed at Google).
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the contents of containers, as exemplified by the Docker ecosystem.
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[10] F. J. Corbató and V. A. Vyssotsky. Introduction and overview of the
Multics system. In Proceedings of the November 30–December 1, 1965, Fall
Joint Computer Conference, Part I, AFIPS 65 (Fall, part I), pages 185–196,
New York, NY, USA, 1965. Association for Computing Machinery.

Revised  July 4, 2020 Copyright   Fred B. Schneider All rights reserved



BIBLIOGRAPHY 297
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