10.4. Virtual Machines 281

10.4 Virtual Machines

An instruction set architecture implemented in software is known as a virtual
machine. Programs executed by a virtual machine will experience only minor
slowdowns if most of the instructions executed are among those implemented
by the underlying hardware rather than by software simulation. So there is
good reason for a virtual machine’s instruction set to include instructions im-
plemented by the underlying hardware. In addition, with such an instruction
set, existing programs written for the underlying hardware do not have to be
modified or even recompiled for execution by a virtual machine.

A virtual machine manager (VMM), also known as a hypervisor, is a software
layer that time multiplexes a (hardware or virtual) processor to create one or
more virtual machines. The VMM enforces isolation that protects memory,
processor state, and input/output devices associated with each virtual machine
from actions by other virtual machines, and it also enforces isolation to protect
the VMM itself from actions by virtual machines. Whereas operating system
primitives and shared input/output device allow processes to communicate and
synchronize with each other, VMMs typically offer no means for one virtual
machine to communicate directly with another. Virtual machine isolation thus
is a stronger guarantee than process isolation.

VMDMs are popular, in part, because they offer strong isolation guarantees
in a form that is useful across a broad range of settings.

e Cloud providers employ VMMs to give each customer an illusion of being
assigned sole tenancy on some computers. The customer then can select
an operating system and entire software stack to be loaded and run on
each of those computers.'*

e In enterprise datacenters, VMMs enable server consolidation, whereby a
single computer runs multiple virtual machines that each hosts a server.
Less effort is involved in managing the one computer (with only a single
console and associated set of peripherals) than would be required if each
server were run on separate hardware.

e On the desktop, running a VMM compensates for weak operating system
security if distinct virtual machines are assigned different tasks (e.g., one
virtual machine for personal banking, one for working on your job from
home, and one for casual web-browsing). The isolation of virtual machines
here limits the potential impact of a compromised virtual machine and also
impedes the spread of malware.

Software monitoring and debugging also is facilitated when that software is
executed by a virtual machine. A typical VMM provides a wvirtual console for

14 This kind of cloud computing is know as infrastructure as a service (IaaS). With platform
as a service (PaaS), the customer is offered a computer that runs some pre-configured software
stack. And software as a service (SaaS) connects customers with specific applications and/or
databases that run in a datacenter.

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

282 Chapter 10. Isolation

each virtual machine it implements. The virtual console allows an executing
virtual machine to be paused and allows that virtual machine’s memory and
(virtual) processor state to be inspected and/or changed—a powerful debugging
tool. Application software, an operating system, or even a VMM itself now can
be debugged simply by running that software in some virtual machine and using
the associated virtual console.

10.4.1 A VMM Implementation

We next sketch a VMM for the hypothetical CPU introduced above in §10.2.2.
In this implementation:

e Address translation is employed by the VMM to ensure that no virtual
machine can retrieve or alter memory allocated to the VMM or to other
virtual machines.

e Time multiplexing is employed by the VMM to ensure that no virtual
machine can retrieve or alter the processor state of others.

So no virtual machine should be able to change the MmapReg or IntVector
registers. User-mode instructions cannot change the MmapReg or IntVector
registers, which suggests a design where virtual machines—whether in (virtual)
user or system mode—run on a processor that is in user mode. The VMM
then would execute in system-mode; it intercepts and simulates interrupts and
system-mode execution for each virtual machine.

Memory Isolation. Our VMM has a separate memory map VMap, for the
memory of each virtual machine V. These memory maps (by design) will have
disjoint ranges, thereby relocating the memory of different virtual machines
to non-overlapping memory regions in the underlying processor. In addition,
VMapy, is defined in a way that blocks acccesses by V to memory that is
allocated to the VMM.

Software executing in a virtual machine V' might itself install a mapping
Mmap by loading Mmap into the V’s (virtual) MmapReg register. To ensure
that execution in a virtual machine is like execution on the bare hardware, the
memory map used for a program executing in a virtual machine V relocates
memory accesses according to both VMap,, and Mmap— an access by V to
address n is relocated to memory location VMap (Mmap(n)).

Two functions will be convenient in connection'® with defining the combined
memory maps that a VMM constructs and manipulates:

15We adopt a standard convention from programming languages. Identifiers on the left-
hand side of an assignment statement are interpreted as specifying addresses; identifiers on
the right-hand side of an assignment statement are interpreted as the specifying the value
stored at the indicated address. So, for example, MapApply(Mmap,n):=23 changes the value
stored at address Mmap(n) to 23; y:= MapApply(Mmap,n) stores into y the value in memory
location Mmap(n).

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

10.4. Virtual Machines 283

var VMTable[l .. NumVMs|: virtMach
LastRun: 1 .. NumVDMs

type virtMach =record
ps: processor state
VMode: {S, U}
VMap: memory map
VIntPend[1 .. NumiIntClass] : list of processor state
nxtlIT: integer
end record

Figure 10.4: VMM State for Virtual Machines

MapComb(M', M") is the mapping that is the composition of mappings M
and M’. After executing M := MapComb(VMap,, Mmap), we would have
M(n) = VMap, (Mmap(n)) for all n.

MapApply(M,n) is an identifier for the memory location to which mapping M
relocates n.

Therefore, to resume execution of a virtual machine V', it suffices for the VMM
to load the processor’s MmapReg register with MapComb(VMap,, Mmap) if Vs
MmapReg register had last been loaded with memory map Mmap.

Time Multiplexing. Our VMM uses entry VMTable[V'] (see Figure 10.4) to
store processor state and other information associated with a virtual machine
V. Interrupts and system-mode execution in virtual machines are efficiently
simulated if the VMM is given exclusive control over the subset Reg g of registers
that determine processor mode, memory mappings, and interrupt handling. For
our hypothetical CPU, Regg includes mode, MmapReg, IntVector, Enabled, and
the interval timer.

Exclusive VMM control of registers in Regg is easily achieved if (i) any
instruction for accessing these registers is system-mode (on our hypothetical
CPU they are) and (ii) the processor is in user-mode whenever a virtual machine
is being executed (something we already assume). Conditions (i) and (ii) suffice
because they ensure that a virtual machine’s attempt to update any register in
Regg will cause a trap (which transfers control to a VMM interrupt handler).

The following invariant characterizes where the current processor state of
each virtual machine V' can be found:

e While V is not executing instructions on the underlying processor, its
current processor state is stored in VMTable[V].ps.

e While V is executing instructions on the underlying processor:

— VMTable[V].ps.r contains the current value of each register r € Regg.

— Register r on the underlying processor contains the current value of
each register r ¢ Regg.

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

284 Chapter 10. Isolation

Hndlr;: procedure
let vm = VMTable[LastRun]
MReal = vm.VMap
in
for r ¢ Regg do vm.ps.r:=IntVector[i].old.r end
enq(vm. VIntPend[i], vm.ps)
ifum.ps.Enabled[i] = true then
vm.ps := MapApply(MReal, vm.ps.IntVector[i].new)
MapApply(MReal, vm.ps.IntVector[i].old) := deq(vm.VIntPend[i]))
call Dispatcher
end Hndlr;

Figure 10.5: Sketch of VMM Generic Interrupt Handler

To preserve this invariant, the value in each register r ¢ Regg must be copied
by the VMM to VMTable[LastRun].ps whenever an interrupt causes virtual
machine LastRun to relinquish control of the underlying processor:

forr ¢ Regg do VMTable[LastRun].ps.r := Intrpt[i].old.r end (10.3)

Therefore, this code appears at the start of every VMM interrupt handler. Pre-
serving the invariant also requires that a VMM’s Dispatcher, which is invoked
at the end of every interrupt hander and resumes some previously executing
virtual machine V', loads registers r ¢ Regg using values in VM Table[V].ps.r.

Virtual Machine Interrupts. The response to an interrupt of class Int; de-
pends on the processor’s Enabled register. If Enabled[i] equals true (so inter-
rupts of class Int; are enabled) then the current processor state is saved and a
new processor state is loaded; otherwise, execution continues and the interrupt
is queued for later delivery. The VMM simulates this behavior in its interrupt
handlers.

Figure 10.5 outlines a generic VMM handler for class Int; interrupts. The
handler first updates VMTable[LastRun].ps, using (10.3) with the state saved
by the underlying processor when interrupted. Next, the handler records the
pending interrupt by appending!® that state to vm.VIntPend[i]—a queue of
class Int; interrupts awaiting delivery on virtual machine LastRun. Finally,
if class Int; interrupts are enabled on virtual machine LastRun then a new
processor state is loaded from its Intrpt[i].new, and the interrupted processor
state is removed!” from the head of queue vm.VIntPend[i] and copied into
Intrpt[i].old. Virtual machine LastRun’s IntVector[i] register identifies the
address of regions Intrpt[i].new and Intrpt[i].old.

L6 Qperation enq appends the value specified by its second argument onto the queue spec-
ified in its first argument.
17Operation deq performs a dequeue operation on the queue specified in its argument.

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

10.4. Virtual Machines 285

System-Mode Instructions. A straightforward VMM simulatation of system-
mode instructions is possible provided they satisfy:

System-Mode Instruction Restriction. The underlying processor sig-
nals a trap—here called a privilege trap—whenever execution of a system-
mode instruction is attempted while mode = U holds. O

Now, a VMM-provided handler for privilege traps can be used to simulate exe-
cution of an attempted system-mode instruction.

Figure 10.6 sketches that handler. Hndlr,, does not contain code to queue
pending interrupts, whereas the generic interrupt handler of Figure 10.5 does.
Such a queue in Hndlry,;, would store at most one element, because traps are
always enabled, a privilege trap cannot be signalled by a virtual machine that
is not executing, and no virtual machine can be executing while Hndlry;, is.
For brevity, Figure 10.6 gives code to simulate only a few of the virtual ma-
chine’s system-mode instructions: loadpc to load the program counter (pc),
loadintrpt to load interrupt vector registers IntVector[i] for all ¢, loadmmap
to change the MmapReg register, and loadtmr to load the interval timer. Fig-
ure 10.6 does include code (toward the end of Hndlrp,,) to simulate the privilege
trap that should occur when a virtual machine LastRun attempts to execute a
system-mode instruction while in (virtual) user mode.

Interval Timers. Each virtual machine has its own interval timer. The
VMM simulates these by using two registers from the underlying processor: its
interval timer and a register TimeNow that maintains the current time.'® The
VMM simulation of a virtual machine Vs interval timer works as follows.

o VMTable[V].natIT stores the time when the next interval timer interrupt
should be signalled on virtual machine V; a constant MaxTime, larger
than any value ever found in TimeNow, indicates that no interval timer
interrupt currently is scheduled.

e Dispatcher, prior to resuming execution of any virtual machine, invokes
SimTimers (Figure 10.7). SimTimers simulates the occurence of an in-
terval timer interrupt at every virtual machines where sufficient time has
elapsed since that virtual machine’s interval timer was loaded.

Note that, with this simulation, delivery of an interval timer interrupt at a
virtual machine could be delayed by other activity.

Dispatcher. Each virtual machine is executed periodically, for a short time
slice, on the underlying processor. The time slice begins when Dispatcher se-
lects and resumes execution of a virtual machine; the time slice ends when an

18Most hardware processors have a register like TimeNow. But if such a register is not
available then it can be simulated by a variable T@meOfDay maintained by the VMM. The
VMM records in another variable LastIT the value it last loaded into the interval timer. And
whenever the VMMs handler for timer interrupts is invoked, LastIT is added to TimeOfDay.

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

286 Chapter 10. Isolation

Hndlr,rw: procedure
let vm = VMTable[LastRun]
MReal = vm.VMap
MVirt = MapComb(MReal, vm.ps.MmapReg)
in
for r ¢ Regg do vm.ps.r:=IntVector[priv].old.r end
if vm.ps.mode = S
then {simulate system-mode instruction}
case MapApply(MVirt,vm.ps.pc) {instruction being simulated}
when loadpc val: {load program counter with val}
um.ps.pc = val
call Dispatcher
end when

when loadintrpt val: {load IntVector[i] with val[i] for all i}
vm.ps.IntVector := val
call Dispatcher
end when

when loadmmap MMap: {load MmapReg with MMap}
vm.ps.MmapReg:= MMap
call Dispatcher
end when

when loadtnr val: {load interval timer with val}
vm.nxtI T :=TimeNow + val
call Dispatcher
end when

end case
else {simulate privilege trap at virtual machine LastRun}
vm.ps := MapApply(MReal, vm.ps.IntVector[i].new)
MapApply(MReal, vm.ps.IntVector[i].old) = vm.ps
call Dispatcher
end Hndlrprq,

Figure 10.6: Code for Privilege Interrupt Handler

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

10.4. Virtual Machines 287

SimTimers: procedure
forvel.. NumVMs do
let vm = VMTable[v]
MReal = vm.VMap
in
if vm.natIT < TimeNow A vm.ps.Enabled[IT] = true then
vm.nztIT = MaxTime
MapApply(MReal, vm.ps.IntVector[IT].old) := vm.ps
vm.ps := MapApply(MReal, vm.ps.IntVector[IT].new)
end SimTimers

Figure 10.7: VMM Simulation for Interval Timers

interrupt is signalled, so the VMM again gets control. To guarantee that such
interrupts will occur, Dispatcher loads the interval timer on the underlying pro-
cessor just prior to resuming a virtual machine.

To resume execution of a given virtual machine V', Dispatcher loads values,
as follows, into the underlying processor’s registers.

register value loaded for resuming virtual machine V'
T ¢ Regg VMTable[V].ps.r
mode U
MmapReg MapComb(VMTable[V].VMap, VM Table[V].ps.MmapReg)
IntVector addresses for VMM’s interrupt handlers
Enabled Enabled[i] = ¢rue for all 4, so all interrupts enabled
interval timer | min(7, min(VM Table[i].natIT — TimeNow))

Here is the rationale:

e The values being loaded into a processor register r ¢ Regg are prescribed
by the invariant given earlier (page 283) for the processor state of a virtual
machine V.

e By loading mode with U, a register r € Regg cannot be changed by V'’s
execution. V is then prevented from changing the interrupt handlers or
address translation that VMM installs.

e MmapReg is loaded with a composition of mappings VMTable[V]]. VMap
and VMTable[V].ps.MmapReg. Consequently, V' cannot access memory
used by other virtual machines (because VM Table[V']. VMap is part of the
composition). Also, addresses in the memory V can access are translated
according to whatever memory mapping was last loaded into MmapReg by
software executing on V (because VMTable[V].ps.MmapReg is part of the
composition).

e The values Dispatcher loads into IntVector and Enabled ensure that a
VMDM-installed interrupt handler receives control whenever an interrupt

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

288 Chapter 10. Isolation

is signalled by the underlying processor. An execution of that interrupt
handler, in turn, might change VM Table[V] to cause subsequent execution
by the interrupted virtual machine V' to resume with an interrupt handler
that V installed.

e The value that VMM loads into the interval timer bounds the elapsed
time until some VMM interrupt handler next executes. That value is
calculated, as follows. The length of a time slice for uninterrupted virtual
machine execution is 7; the time until the next interval timer interrupt is
scheduled to occur at a virtual machine V' is VM Table[V'].natIT-TimeNow.
So Dispatcher loads the interval timer with the minimum of these, for all
virtual machines.

Input/Output. Each virtual machine is provisioned with it’s own comple-
ment of virtual input/output devices. Virtual input/output devices range from
slower or lower-capacity variants of existing hardware to devices having new
functionality and/or new interfaces. Either way, the operating system in a vir-
tual machine would include a driver for each virtual input/output device that
it supports. Virtual input/output devices that closely resemble existing real
devices often don’t require new drivers to be written; new devices do.

Initiation of Input/Output Operations. With direct I1/0, the processor pro-
vides a system-mode startI0 (say) instruction that, when executed, initiates an
input/output operation; operands give details of the operation and are stored
in registers and/or memory. The alternative is memory-mapped I/0, where
each input/output device is associated with a few co-opted memory addresses
(that no longer access storage). Here, an input/output operation is initiated by
writing to the addresses associated with the device; the values written to those
associated addresses specify details of the operation.

On most processors, unmapped (not virtual) memory addresses must be
communicated to input/output devices. So system software must mediate trans-
fers between an input/output device and a region of virtual memory. To effect
the transfer, a collection input/output buffers are allocated and system software
executes with a memory map Mmap where

e every memory address L in the scope of an input/output buffer satisfies
Mmap(L) = L.19

e Mmap(L) = Mmapp(L) holds for L a virtual address in the region of
Mmapp that is the source/destination for the input/output operation.

Input/output to/from virtual memory involves two steps: (i) the input/output
device transfers data to/from a designated input/output buffer, and (ii) sys-
tem software copies (using ordinary load and store instructions but subject to

9Tn fact, it is not unusual to have Mmap(L) = L for all locations used by the system
software rather than just memory being used as input/output buffers.

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

10.4. Virtual Machines 289

address translation using Mmap) between that input/output buffer and the
source/destination in virtual memory.

A VMM supports input/output device by intercepting input/output instructions—
startI0 or memory-mapped I/O—that virtual machines execute.

e Because virtual machines always executes in user-mode, a privilege inter-
rupt will be signalled whenever a virtual machine executes startI0. So
the VMM'’s privilege interrupt handler will be invoked in response to the
startIO.

e By excluding memory-mapped I/0O addresses from the domain of the mem-
ory map (VMap) of every virtual machine, any virtual machine’s access
to memory-mapped locations will signal an address-translation interrupt.
So the VMM’s address translation interrupt handler is invoked.

Once the VMM gets control, it executes code to perform the input/output
operation being initiated by the virtual machine. That VMM code is likely to
perform input/output operations on I/O devices connected to the underlying
processor. Drivers in the VMM initiate these operations.

Termination of Input/Output Operations. Whenever an input/output op-
eration terminates, an I/O interrupt is signalled; information about the op-
eration’s success are conveyed in specified registers or in pre-defined memory
locations. The interrupt causes an I/O interrupt handler to be invoked. For
some input/output devices, operations do not necessarily terminate in the order
they are initiated; here, information conveyed with the interrupt will identify
which input/output has terminated.

When a VMM is present then the VMM’s input/output interrupt handler
will receives control upon completion of an input/output operation. The handler
notifies the appropriate VMM driver, which then simulates an input/output in-
terrupt in the virtual machine that initiated the virtual input/output operation
in the first place.

Ezample of Input/Output with a VMM. To illustrate, we sketch a VMM im-
plementation for a virtual disk VD. It employs a mapping BlkMap from the
blocks comprising VD to blocks on some set of underlying disks that the VMM
controls.?’ The code for emulating an input/output operation op to block b on
VD works by issuing op to block BlkMap(b) on some underlying disk. When
op terminates, the corresponding I/O interrupt causes the VMM’s I/O inter-
rupt handler to run. That interrupt handler determines which virtual machine
to notify by using information conveyed with the interrupt in conjunction with
information recorded by the VMM when it first received virtual input/output
request for block b on VD. The appropriate virtual machine is then notified
by simulating an I/O interrupt for it—code for such a simulation would be an
instance of Figure 10.5.

20Tsolation of different virtual disks follows if each block in any virtual disk is mapped to
a unique block on one of the underlying disks.

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

290 Chapter 10. Isolation

10.4.2 Binary Rewriting

The VMM described above requires a processor in which executing a system-
mode instruction causes a privilege trap when mode = U holds.?! This require-
ment ensures that control transfers to the VMM whenever one of its virtual
machines executes an instruction that should be simulated in software. But on
some commercially available processors, executing a system-mode instruction
while mode = U holds does not cause a trap.?? Instead, the program counter
advances, perhaps after instruction-specific changes to memory or registers are
performed. These non-virtualizable instructions must be handled if we want to
implement a virtual machine resembling that real hardware.

Non-virtualizable instructions cease to be problematic if, in any code that a
virtual machine executes, we first have replaced each non-virtualizable instruc-
tion with code that invokes the VMM. That program rewriting requires:

(1) A means to identify each non-virtualizable instruction and replace that
instruction with other code.

(i1) A mechanism to invoke the VMM from within that replacement code.

Various schemes have been devised for (i) and (ii).

Two realizations of (i) are prevalent in practice: binary translation (de-
scribed next) and paravirtualization (described in §10.4.3). For (ii), many pro-
cessors include a special hypervisor call instruction that, when executed, causes
a trap associated with a distinct interrupt class; the corresponding interrupt
handler is configured to invoke the VMM. Absent a hypervisor call instruction,
the supervisor call instruction (svc) discussed earlier would work, provided the
VMM can distinguish svc executions intended to invoke operating system ser-
vices from svc executions intended to invoke a VMM instruction simulation.??

Binary Translation. The process by which binary representation B (the
input executable) of a program in some input machine language is converted
into binary representation B’ (the output executable) for an equivalent program
in some output machine language is known as binary translation.?* We might
want to migrate software that runs on one machine onto new hardware, or we
might want existing hardware to execute programs written for hardware that
does not yet exist. By taking a liberal view of what constitutes equivalent
programs, binary translation can be used to add instrumentation to machine
language programs so that run-time behavior will be recorded or measured.

In static binary translation, a translator produces output executable B’ from
input executable B before execution of B’ starts. Static binary translation is

21System-Mode Instruction Restriction (page 285) introduces this restriction.

22The Intel X86 instruction set architecture is a noteworthy example.

23 A distinguished operand value, never used by the operating system to specify a service,
would suffice to distinguish a svc execution intended to invoke the VMM.

24A machine language program is commonly called a binary. So a program to convert
between machine languages is doing translation from one machine’s binary to another’s, hence
the name “binary translation”.

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

10.4. Virtual Machines 291

hard to implement if run-time information determines where instructions start,
since the translator would be unable able to ascertain what fragments of an input
executable should be converted (because they are instructions) and what frag-
ments should be left alone (because they are data). Uncertainty about instruc-
tion boundaries arises when instruction formats are variable-length, instruction
alignment has few restrictions, computed branch destinations are supported,
and/or instructions are mixed with data.

Dynamic binary translation circumvents uncertainty about instruction loca-
tions by converting a block of instructions in the input executable only when
that block is reached during execution. By alternating between execution and
translation, the translator can read the processor state produced by execution of
the last block before converting the next. This processor state not only provides
the translator with the starting location for the next block to convert but also
can provide values needed for calculating the destination of a computed branch.

Translation and Execution in Alternation. Given is an input exe-
cutable B, an offset d indicating the location in B for the next instruction
to execute, and values to load into processor registers when execution
commences.

(1) Construct B’ by translating instructions in B, starting at offset d
and continuing until a branch instruction ¢ is encountered whose
destination is being computed during execution of B.

(2) Replace branch instruction ¢ with an instruction that transfers con-
trol to the translator. For offset value d passed to the translator, use
the offset for ¢ in B; the processor register values passed are whatever
values those registers contain when the translation of ¢ is reached.

(3) Execute B'. O

Thus, when execution of B’ in step (3) reaches the translation of ¢, control trans-
fers to the translator (thereby returning to step (1)), which resumes converting
B, starting with instruction ¢.

VMM use of Dynamic Binary Translation. Dynamic binary translation en-
ables virtual machines to be implemented on a processor whose machine lan-
guage contains non-virtualizable instructions.

Implementing Virtual Machines by using Binary Translation.

— Implement a dynamic binary translator that replaces system-mode
instructions with hypervisor calls. (Recall, non-virtualizable instruc-
tions are system-mode instructions, so all non-virtualizable instruc-
tions will be replaced by the translator.)

— Implement an interrupt handler for hypervisor calls. This handler
should contain code for simulating each system-mode instruction.
(That simulation code is already present in VMM privilege interrupt
handler Hndlrp,, of Figure 10.6.)

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

292 Chapter 10. Isolation

— Modify Dispatcher for the VMM (page 285) so that its final step
transfers control to the dynamic binary translator, providing as ar-
guments the values in the registers of the virtual machine. (The
value in the program counter serves as offset d for Translation and
Execution in Alternation, above.) O

Dynamic binary translation increases the size of the trusted computing base
(by adding the binary translator) and increases run-time overhead (since per-
forming the translation takes time and likely involves making a context switch).
A larger trusted computing base seems unavoidable. But we can reduce the
run-time overhead by (i) limiting how much of the code is translated during
execution, and (ii) not translating the same block of instructions anew every
time that block is executed. We now turn to implementing these optimizations.

Dynamic binary translation is not necessary when the following holds.

Binary Translation Elimination Condition. When a non-virtualizable
instruction is executed in user-mode its effect is to advance the program
counter but not to cause other changes to memory or registers. O

This condition holds for many commecially-available processors. Moreover, the
preponderance of code running on a computer will be user-mode; only operating
system code executes in system-mode. Thus, when a VMM is implemented using
dynamic binary translation on a processor where Binary Translation Elimination
Condition holds, then only the operating system code in a virtual machine must
incur the run-time overhead of dynamic binary translation.

We demonstrate that when Binary Translation Elimination Condition holds,
then executing the input executable is equivalent to executing the output exe-
cutable for a virtual machine executing in user mode. So producing the output
executable is unnecessary. The interesting case is system-mode instructions,
given that Implementing Virtual Machines by using Binary Translation does
not replace user-mode instructions. There are two cases.

Case 1: A system-mode instruction v that is non-virtualizable. According
to Binary Translation Elimination Condition, execution of ¢ only advances
the program counter when executed on a processor in user-mode. That
behavior is equivalent to what would be observed if ¢ were replaced by
a hypervisor call and the hypervisor call interrupt handler simulated the
user-mode execution of . Dynamic binary translation does exactly that
replacement, so execution of ¢ in the input executable exhibits equivalent
behavior to execution of the output executable.

Case 2: Other system-mode instructions. Such an instruction ¢ will cause
a privilege trap when executed, because virtual machines are executed by
an underlying processor in user-mode. So, when ¢ is executed, Hndlry,;,
of Figure 10.6 receives control and executes a routine to simulate ¢. This
behavior is equivalent to what would be observed if ¢ were replaced by
a hypervisor call, because the hypervisor call interrupt handler in Imple-
menting Virtual Machines by using Binary Translation (above) simulates
execution of ¢+ using code copied from Hndlrpy,.

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

10.4. Virtual Machines 293

A second means for reducing run-time overhead from binary translation is to
employ a VMM-maintained translation cache; it stores output executables for
previously executed (and, therefore, translated) blocks of instructions as well as
the values of any registers that affected the translation.

Use of a Translation Cache. For a block of instructions that starts at
offset d, a binary translator need not produce an output executable for
execution, provided

(i) the required output executable O was previously produced and is
available from the translation cache, and

(ii) output executable O in the translation cache is what the binary trans-
lator would produce if invoked now. O]

Provided (i) and (ii) are cheap to check, Use of a Translation Cache lowers
overhead—repeatedly repeatedly executing a block that resides in the trans-
lation cache no longer require repeatedly translating that block. When Bi-
nary Translation Elimination Condition holds too, the translation cache would
store only those parts of the virtual machine’s operating system that execute in
system-mode; the full performance benefit of a translation cache thus is acheived
by incurring only modest storage costs.

To check condition (ii) in Use of a Translation Cache, we can leverage address
translation hardware to intercept writes that could create cause cache entries
to become outdated.

Translation Cache Invalidation.

— When an output executable O is inserted into the translation cache:
Disable writes for a region of memory that includes all fragments of
the input executable that the translator read when producing O.

— When a write is attempted to a region of memory where writes have
been disabled by the translation cache: Delete the corresponding out-
put executable from the translation cache; then allow the write to
proceed (by invoking binary translation). O

Condition (ii) is satisfied if the output executable is in the translation cache
and if current register values equal cached values for registers that affected the
translation.

A performance problem with this scheme can arise, however, because address
translation hardware typically works at the granularity of memory pages. Far
less than a page is read in producing an output executable for a single block
of instructions. So writing to a page could cause many output executables
to be deleted from the translation cache. Some of those deletions would be
unwarranted if only a small part of the page is being updated or if state (but
not instructions) is what changed. Such unwarranted deletions can be avoided
if the implementation of condition (ii) saves in each cache entry the translator’s
input and uses that value for later comparison with the contents of memory.
This checking of the binary translator’s input can be incorporated into the
output binary.

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

294 Chapter 10. Isolation

10.4.3 Paravirtualization

Transfers of control between a virtual machine and the VMM slow execution by
disrupting instruction pipelining and by requiring memory caches to be purged.
So performance suffers when a VMM implements system-mode instructions by
emulating them in software. In addition, the transparency that makes VMMs
so attractive leads to performance problems.

e The operating system in a virtual machine duplicates work performed
by the VMM. For example, input/output from an application running
in a virtual machine involves executing a driver in the VMM as well as
executing a driver in the operating system.

e Work done in the VMM can negate work done in the operating system.
Re-ordering of transfer requests that a VMM'’s disk driver does to enhance
disk performance is likely to undermine request re-ordering done by the
operating system’s driver to enhance disk performance.

Such performance problems suggest that we favor virtual machines where the
instruction set does not require software-emulation by the VMM very often.

Virtual machines implemented using paravirtualization support (i) the same
user-mode instructions as the underlying processor, (ii) a subset of its system-
mode instructions, and (iii) a hypervisor call. The set of supported system-
mode instructions typically excludes system-mode instructions that are expen-
sive to emulate in software and also excludes all non-virtualizable instructions.?®
VMM-provided hypervisor calls replace the system-mode instructions that no
longer are available.

Software comprising user-mode instructions does not have to be changed to
run in a virtual machine implemented by paravirtualization. So paravirtual-
ization is transparent to application software. But operating system routines
invoke system-mode instructions; that code would have to be changed for execu-
tion under paravirtualization. In practice, those changes are typically localized
to a handful of routines.

Leverage from Hypervisor Calls. Paravirtualization offers the flexibility to
define virtual machines in which hypervisor calls do not simply replicate system-
mode instructions. Abstractions well suited to virtualization now can be offered
by a VMM. For instance, a clean abstract input/output device is easier to em-
ulate in software than a real device is. So paravirtualization allows a VMM to
offer clean abstract input/output devices, resulting in a VMM that is smaller
and simpler than one that incorporates emulations for real input/ouptut de-
vices; operating system drivers in virtual machines now can be simpler, too.
An abstract input/output device’s interface also can be designed to discourage
putting functionality in operating system drivers that is duplicated or negated
by a VMM’s software emulation of the device.

25Recall, non-virtualizable instructions are, by definition, system mode.

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

10.4. Virtual Machines 295

In addition, if virtual machines employ hypervisor calls to interact with
VMDM-implemented resources then functionality can be relocated from a VMM
into separate, designated virtual machines.

Privileged Virtual Machines. A designated virtual machine V' can
implement some service for the VMM (and thus for other virtual machines)
provided the VMM offers the following.
— The VMM identifies a specific subset of its hypervisor calls as pro-
viding a control interface for the service.

— The VMM identifies virtual machine V as being privileged for the
service. V might be, for example, (i) the first virtual machine that
the VMM boots or (ii) a virtual machine that boots some specific
operating system.

— The VMM ensures that hypervisor calls in the control interface for
a service can be invoked only by a virtual machine that is privileged
for that service. O

Virtual machines would still use ordinary hypervisor calls for requesting services
from the VMM or for retrieving corresponding responses. But instead of the
VMM incorporating all of the code to perform that service, a priviliged virtual
machine would be involved in processing requests for service; hypervisor calls in
the corresponding control interface allow that virtual machine to communicate
with its clients. Notice that ordinary virtual machines cannot interfere, because
ordinary virtual machines cannot invoke hypervisor calls from a control interface
and, therefore, they cannot receive or reply to service requests from clients.

This architecture might seem complicated, and it also expands the trusted
computing base to include the operating system and other code that runs in a
privileged virtual machine. But it has attractions. First, by relocating func-
tionality from the VMM into virtual machines, we have a basis for increased
assurance in the VMM. Second, code that runs in a virtual machine under the
auspices of an operating system (with all of its functionality) can be simpler
than code that will be incorporated into the VMM. Finally, the architecture
allows an existing operating system with existing I/O drivers to provide virtual
machines with access to underlying input/output devices. We run this existing
operating system in a privileged virtual machine, and doing so avoids the need
to write or rewrite input/output drivers for execution in the VMM. Software
emulation to create virtualized versions of input/output devices also is now
straightforward—virtualized devices can be implemented as servers, benefiting
from existing input/output drivers and other functionality that an operating
system offers.

Draft of April 28, 2019 Copyright 2019. Fred B Schneider. All rights reserved

