
CS5430 Homework 5: Information Flow Control

General Instructions. You are expected to work alone on this assignment.
Due: April 17 at 11:59pm. No late assignments will be accepted.
Submit your solution using CMS. Prepare your solution as a single .pdf.

For this set of problems:

• use lattice 〈{L,H}, ⊑〉 of labels, where L ⊑ H
• employ the following simpler definition of GM-Noninterference (NI):

o A program c satisfies NI iff for any two finite executions of c that start with memories
agreeing on values in low variables (i.e., variables tagged with L), both executions
terminate with memories agreeing on values in low variables.

Problem 1

Consider the following program:

 if x>0 then y:=z+1 else x:=w;
 w:=z

with a fixed environment Γ, such that Γ(w)=	H. Give the least restrictive labels for Γ(x), Γ(y), and Γ(z) such
that the program is type correct, with initial context label 𝑐𝑡𝑥=	L, based on the static type system
introduced in class. Include the proof tree that establishes the type-correctness of this program for the
chosen labels above.

Problem 2

Consider the syntax of a for-loop command

for x in 1:y do c

The operational semantics of this command is:

• If 1≤y holds, then x is initialized to 1 and there will be y iterations of c. At the beginning of the
𝑖th iteration, for 1≤𝑖≤y, the value of x will be 𝑖.

• Otherwise, c does not execute.

Justify your answers to the following questions. Feel free to introduce variables and declare their labels.

i. Give a for-loop command that satisfies noninterference NI, as defined above. Body c should not
be empty. Make sure to give labels for all variables that appear in the command you choose.

ii. Give a for-loop command that does NOT satisfy NI. Make sure to give labels for all variables that
appear in the command you choose.

iii. Give a rule that extends the static type system described in class to handle for-loop commands.
Explain why a for-loop command that is accepted by the proposed rule satisfies NI.

iv. Give an example that shows that your extended type-system is conservative because the for-loop
rule fails for a program that satisfies NI.

Problem 3

We might extend the syntax of the programming language by adding a break command. When a break
within a while-command is executed, execution jumps to the command following that while-command.
Assume for simplicity that while-commands are not enclosed within other while-commands.

i. Give a program that does not satisfy NI (as defined above) as a result of using a break in a while-
command, even though your program would satisfy NI if that break were replaced by skip.
Justify your answer and make sure to give labels to all variables that appear in the command you
choose.

ii. Assume that we extend the static type system introduced in class with the following type rule
for break:

 𝛤, 𝑐𝑡𝑥 ⊢ break

So, break is always type correct. Is the program proposed above accepted by the extended type
system?

iii. Propose a type rule for break such that the extended type system is sound: type-correct
programs satisfy NI. Is the program proposed in the first question now accepted by the extended
type system?

Problem 4

Consider a dynamic enforcement mechanism (for information flow) that uses a fixed environment 𝛤. This
enforcement mechanism works as follows:

When execution reaches assignment x:=e with context label 𝑐𝑡𝑥, check whether 𝑐𝑡𝑥 ⊔ 𝛤(e) ⊑
𝛤(x) holds. If the check succeeds, then the assignment is performed; otherwise execution is
blocked (without performing the assignment).

When execution reaches a conditional command, the context label is augmented with the label
of the guard of that command, and the taken branch is then executed.

Note, there is no “on-the-fly” analysis of an untaken branch.

i. Can labels on variables encode sensitive information during execution under this dynamic
mechanism?

ii. Information can be leaked by the decision of this dynamic enforcement mechanism. Give an
example.

iii. What restriction on guards could be applied to prevent leaks though blocking by this dynamic
mechanism?

Extra credit:

Justify your answers to each of the following.

i. We would like to modify the static type system introduced in class to handle a flow-sensitive
environment 𝛤 (instead of a fixed 𝛤). A flow-sensitive 𝛤 might change its assignment of labels to
variables after the analysis of each command and become 𝛤′. So, the judgment that seems to be
needed would be of the form:

𝛤, 𝑐𝑡𝑥 ⊢ c	, 𝛤′.

 Give a type rule for assignment, if-command, and sequence of commands.

ii. Give a program for which the new flow-sensitive rules proposed above deduce conservative
labels; variables could have been associated with less restrictive labels and the program would
still satisfy NI.

