
CS 5430
Dynamic Information-Flow Control

Elisavet Kozyri

Spring 2019

Lattice of information flow labels

2

ℓ

ℓ′

ℓ′′

Noninterference ∀ℓ

3

ℓ

ℓ′

ℓ′′

• Green labels are considered “low”
with respect to ℓ.

• Red labels are considered “high”
with respect to ℓ.

• Values tagged with red labels
should not flow to values tagged
with green labels.

⊑

ℓ’’

ℓ’

ℓ’’

ℓ’

Review: Static type system

G , 𝑐𝑡𝑥⊢ x:=e

G ⊢ e : ℓ ℓ ⊔ 𝑐𝑡𝑥 ⊑ G(x)

G , 𝑐𝑡𝑥⊢ if e then c1 else c2

G ⊢ e : ℓ G , ℓ ⊔ 𝑐𝑡𝑥⊢ c1 G , ℓ ⊔ 𝑐𝑡𝑥⊢ c2

G , 𝑐𝑡𝑥⊢ while e do c

G ⊢ e : ℓ G , ℓ ⊔ 𝑐𝑡𝑥⊢ c

G , 𝑐𝑡𝑥⊢ c1;c2

G , 𝑐𝑡𝑥⊢ c1 G , 𝑐𝑡𝑥⊢ c2

4

Soundness of type system

• Noninterference:
– ∀ℓ, 𝑀1, 𝑀2:𝑀1 =ℓ 𝑀2 ⇒ c 𝑀1 =ℓ c 𝑀2

– where 𝑀1 =ℓ 𝑀2 denotes equality on all variables tagged
with ℓ′ ⊑ ℓ, and

– c 𝑀1 =ℓ c 𝑀2 denotes equality on all outputs tagged
with ℓ′ ⊑ ℓ.

• G,𝑐𝑡𝑥 ⊢ c implies that c satisfies NI

• The same type system can enforce noninterference for
labels from an arbitrary lattice, for either
confidentiality or integrity!

5

Limitations of the type system

6

This type system is conservative.

It has false positives:

– There are programs that satisfy noninterference, but
they are not type correct.

– Example with Γ h = H and Γ l = L :

7

if 0=0 then l:=2 else l:=h

Can we build a mechanism with fewer
false positives?

Dynamic mechanisms: decrease false positives over
static mechanisms through the use of run-time
information.

8

From static to dynamic mechanisms

A dynamic mechanism checks/deduces labels along
the execution:

– When an assignment x:=e is executed,

• either check whether Γ e ⊔ 𝑐𝑡𝑥 ⊑ Γ(x) holds,
– The execution of a program is blocked when a check fails.

• or deduce Γ(x) such that Γ e ⊔ 𝑐𝑡𝑥 ⊑ Γ(x) holds.

– When execution enters a conditional command, the
mechanism augments 𝑐𝑡𝑥 with the label of the guard.

– When execution exits a conditional command, 𝑐𝑡𝑥 is
restored.

9

A dynamic mechanism: Example

Assume a dynamic enforcement mechanism with fixed Γ,

where Γ h = H and Γ l = L.

10

if h=0 then h:=2 else h:=3; l:=h

𝑐𝑡𝑥= H𝑐𝑡𝑥= L
Check:

𝑐𝑡𝑥 ⊔ Γ(2) ⊑ Γ h

𝑐𝑡𝑥= L
Check:

𝑐𝑡𝑥 ⊔ Γ(h) ⊑ Γ l

Execution blocks!

Comparing static to dynamic

Assume a dynamic enforcement mechanism with fixed Γ,

where Γ h = H and Γ l = L.

11

if 0=0 then l:=2 else l:=h

𝑐𝑡𝑥= L𝑐𝑡𝑥= L
Check:

𝑐𝑡𝑥 ⊔ Γ(2) ⊑ Γ l

𝑐𝑡𝑥= L

Comparing static to dynamic

• So, under dynamic analysis command

if 0=0 then l:=2 else l:=h

• is always executed to completion,

• because dynamic check Γ 2 ⊔ Γ(0=0) ⊑ Γ(l)
always succeeds,

• and because branch l:=h is never taken.

• The static type system rejects this program before
execution, even though the program is secure!

12

Accepting some executions

Assume a dynamic enforcement mechanism with fixed Γ,
where Γ h = H, Γ l = L.

13

if l<2 then l:=0 else l:=h

𝑐𝑡𝑥= L 𝑐𝑡𝑥= L
Check:

𝑐𝑡𝑥 ⊔ Γ(0) ⊑ Γ l

𝑐𝑡𝑥= L

𝑐𝑡𝑥= L 𝑐𝑡𝑥= L

Check:
𝑐𝑡𝑥 ⊔ Γ(h) ⊑ Γ l

Execution blocks!

Accepting some executions

• So, for program

if l<2 then l:=0 else l:=h

• If l<2 holds, then command is executed to
termination, because Γ 0 ⊔ Γ(l<2) ⊑ Γ(l) succeeds.

• If l<2 does not hold, then command is blocked before
executing l:=h, because Γ h ⊔ Γ(l<2) ⊑ Γ(l) does
not succeed.

• Is this program accepted by the static type system?

– The static type system rejects this program before execution.

– So, all executions of this program are rejected.

14

A dynamic mechanism can be more
permissive than a static mechanism.

15

Another way to increase permissiveness:
use flow-sensitive labels.

16

From fixed labels to flow-sensitive labels

• A flow-sensitive label on a variable can change
during the analysis of the program.

• Flow-sensitive labels can be used both in a static
or dynamic mechanism.

17

From fixed labels to flow-sensitive labels

x:=h; x:=0; l:=x

• Assume Γ h = H and Γ l = L.
• Is this program safe?
• If Γ x is fixed to H, then the program is rejected,

because the analysis of l:=x fails.
• If Γ x is flow-sensitive, then

– Γ x becomes H after x:=h,
– Γ x becomes L after x:=0,and
– the analysis of l:=x succeeds.

• So, flow-sensitive labels can enhance permissiveness
even further.

18

Combine dynamic mechanisms with
flow-sensitive labels

19

Purely dynamic flow-sensitive
mechanism

• Analyze only code that is being executed.

• A purely dynamic flow-sensitive mechanism will
either be more conservative than a static flow-
sensitive mechanism or unsound. [Russo &
Sabelfeld, 2010]

20

Example
Assume fixed Γ h = H and flow-sensitive Γ x .

21

x:=0; if h>0 then x:=2 else skip

𝑐𝑡𝑥= L

𝑐𝑡𝑥= L

Γ x = L

𝑐𝑡𝑥= H

Γ x = H

𝑐𝑡𝑥= L

Γ x = H

Γ x = L𝑐𝑡𝑥= L

Γ x = L

Example

So, for command

x:=0; if h>0 then x:=2 else skip

• If h>0 holds, then after x:=2,Γ x becomes H.

• If h>0 does not hold, then Γ x remains L.

– This label is not sound!

• Problem: Even though h flows to x, x is tagged
with H only when h>0; x is tagged with L when
h≱0.

22

How can we recover soundness?

23

1st solution

• Make purely dynamic flow-sensitive mechanism
more conservative:

– Block execution before entering conditional
commands with high guards.

• For previous example:

x:=0; if h>0 then x:=2 else skip

All execution would stop after x:=0.

24

2nd solution: Multi-execution

• Execute the program as many times as the labels
in the lattice.

• For the execution that corresponds to label ℓ,
replace all initial values of variables initially
tagged with ℓ’ with dummy values, if ℓ’ ⊑ ℓ does
not hold.

25

2nd solution: Multi-execution

26

x:=0; if h>0 then x:=2 else skip

Consider execution of this program with initialization h=3.
• H version of the execution will have initialization h=3.
• L version of the execution will have initialization h=0 (dummy

value).
• Final value of x is 0.

Consider execution of this program with initialization h=-1.
• H version of the execution will have initialization h=-1.
• L version of the execution will have initialization h=0 (dummy

value).
• Final value of x is 0.

• So, there is no flow from high h to low x.

3rd solution: Use on-the-fly static analysis

• An on-the-fly static analysis can update the
labels of target variables in untaken branches to
capture implicit flow.

• So, the mechanism is no longer purely dynamic.

27

Use on-the-fly static analysis to capture
implicit flow

x:=0;

if h>0 then x:=1 else skip

28

h>0 is
evaluated
to false.

Problem: x was tagged with H only when h>0 was true,
even though h always flows to x.
Goal: x should be tagged with H at every execution.

Use on-the-fly static analysis to capture
implicit flow

x:=0;

if h>0 then x:=1 else skip

29

Execute
taken
branch.

Use on-the-fly static analysis to capture
implicit flow

x:=0;

if h>0 then x:=1 else skip

30

Apply on-the-fly
static analysis to
the untaken
branch.

Οn-the-fly static analysis:
Γ x = Γ x ⊔ Γ h>0 = Η
Augment the label of x with
the label context.

Use on-the-fly static analysis

x:=0;

if h>0 then x:=1 else skip

31

Γ x = Η

Goal: x should be tagged with H at every execution.

So, a dynamic mechanism can now
deduce labels that correctly capture the
flow of information.

32

But, there is a caveat…

• A dynamic mechanism might leak information

– when deducing labels during execution, or

– when deciding to block an execution due to a failed
check.

• A static mechanism would not suffer from these
leaks.

33

Leaking through blocking execution

• Consider fixed Γ with Γ(l)=L and Γ(h)=H.
• Consider program:

l:=0;

if h>0 then l:=3 else h:=3;

l:=2

• If h>0 is true, then execution is blocked.
– No low output.

• If h>0 is false, then execution terminates normally.
– One low output.

• Thus, h>0 is leaked to low output.
• How can we solve this problem?

34

Leaking through blocking execution

• The entire secret might be leaked through
blocking.

• Example: consider secret h that takes values 1 to 4.

35

l:=1;

if h=1 then l:=0 else skip;

l:=2

if h=2 then l:=0 else skip;

l:=3

if h=3 then l:=0 else skip;

l:=4

The final value of
l equals to h!

• Flow-sensitive label of w always captures the correct
sensitivity.

• But m leaks to principals reading the flow-sensitive
label of w.

if m>0 then w:=h else w:=l end

H

M

true

false

3/26/2019 36

Strong
Threat
Model

Leak through flow-sensitive labels
H

M

L

⊑
⊑

1st solution

• Make flow-sensitive labels independent of guard.

• For our example:

if m>0 then w:=h else w:=l end;

tag w always with H at the end of the if-command.

• Prevents leak but introduces conservatism.

37

But, what is the label of the metalabel of w?

if m>0 then w:=h else w:=l end;

H,M

M,M

true

false

38

2nd solution: Metalabels

Leaking through metadata

• Labels, context label, metalabels, etc. are
metadata kept by the dynamic mechanism.

• Metadata might encode sensitive information.

• Under a threat model that allows attackers to
access metadata, this sensitive information might
leak.

39

Leaking through metadata

• A solution:
– Add more metadata to protect the existing

metadata.

– Additional metadata can capture information flow
with increased precision.
• Increased permissiveness.

• Because memory is finite, conservatism will be
eventually introduced.
– Some metadata has to conservatively approximate

information flow.

40

