CS 5430 Expressive Information Flow Labels

Elisavet Kozyri

Spring 2019

A lattice for integrity

- Information is allowed to flow from data of high integrity (H) to data of low integrity (L).
- Low integrity (e.g., corrupted) data is not allowed to flow to high integrity data.

Lattices for confidentiality

Defining allowed flows based only on a lattice might be too conservative or too permissive!

Examples for confidentiality

Example for confidentiality	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
res:=maj(vote, vote',)			

vote is high, but result of maj can be low.

Example for confidentiality	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
res:=maj(vote, vote',)	YES		

vote is high, but result of maj can be low.

Declassification: A desirable flow from H to L.

Example for confidentiality	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
res:=maj(vote, vote',)	YES	NO	is too conservative

vote is high, but result of maj can be low.

Example for confidentiality	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
c:=Enc(msg,key)			

msg and key are high, but result of Enc can be low.

Example for confidentiality	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
c:=Enc(msg, key)	YES	NO	is too conservative

msg and key are high, but result of Enc can be low.

Allowing a flow may depend on state

Example for confidentiality	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
<pre>if end_of_semester() then out:=release(grade)</pre>			

grade can flow only to TA, but at the end of the semester it can also flow to std.

Allowing a flow may depend on state

Example for confidentiality	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
<pre>if end_of_semester() then out:=release(grade)</pre>	YES	NO	is too conservative

grade can flow only to TA, but at the end of the semester it can also flow to std.

Allowing a flow may depend on ownership

Example for confidentiality	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
<pre>if pgm_executed_by_FBI() out:=release(xfile)</pre>			

xfile is high and owned by FBI. Only the FBI can make it low.

Allowing a flow may depend on ownership

Example for confidentiality	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
<pre>if pgm_executed_by_FBI() out:=release(xfile)</pre>	YES	NO	is too conservative

xfile is high and owned by FBI. Only the FBI can make it low.

Example for confidentiality	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
a:=asgn(papers, reviewers)			

reviewers is low, but result of asgn should be high.

Example for confidentiality	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
a:=asgn(papers, reviewers)	NO	YES	is too permissive

reviewers is low, but result of asgn should be high.

Classification: A mandatory flow from L to H.

Examples for integrity

Example for integrity	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
entry:=sanitize(userIN)			

userIN is low, but
result of sanitize
can be high.

Example for integrity	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
entry:=sanitize(userIN)	YES	NO	is too conservative

userIN is low, but result of sanitize can be high.

Endorsement: A desirable flow from L to H.

Example for integrity	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
doc':=excerpt(doc)			

doc is high, but result of excerpt should be low.

Example for integrity	Is flow desirable?	Is flow allowed by lattice?	Defining allowed flows based on lattice
doc':=excerpt(doc)	NO	YES	is too permissive

doc is high, but result of excerpt should be low.

Deprecation: A mandatory flow from H to L.

Reclassifiers cause restrictions to change

Reclassifier	Restriction	Change
Operations	Confidentiality	Declassification Classification
State Ownership	Integrity	Endorsement Deprecation

Reclassifiers cause reclassifications!

We need information flow labels that specify reclassifications.

Reactive Information Flow (RIF) labels

- A RIF label maps sequences of operations to restrictions.
 - Restrictions are taken from a partially ordered set $\langle R, \sqsubseteq_R \rangle$.
 - For confidentiality, restrictions can be sets of principals allowed to read.
- Reclassifiers abstract operations applied on inputs:
 - $[op(e_1, ..., e_n)]_{f_1,..,f_n}$

Confidentiality example

```
res := [maj(vote, vote', ...)]_m
Reclassifier
```

RIF automaton for a vote

RIF automata: Confidentiality example

Reclassifier m triggers a declassification.

RIF automata

- An instantiation of RIF labels.
- A *RIF automaton* is a finite state automaton whose states correspond to restrictions and transitions correspond to reclassifiers.
- Formally, a RIF automaton λ_a is $\langle Q, F, \delta, q_0, r \rangle$:
 - Q is a finite set of automaton states,
 - F is the finite set of reclassifiers,
 - $\delta: Q \times F \to Q$ is a (deterministic) next-state transition function,
 - $q_0 \in Q$ is the current state of the RIF automaton,
 - $r: Q \to R$ gives the restrictions associated with each automaton state.

Function \mathcal{T} for transition

 $L, H \in R$ $H \sqsubseteq_R L$

Function \mathcal{T} for transition

Function \mathcal{R} , for current restrictions

$$\frac{1}{\operatorname{doc'}} := [\operatorname{excerpt}(\operatorname{doc})]_e$$

$$\mathcal{R}(L) = L$$

$$\mathcal{R}(H - L) = H$$

Reclassifier e triggers a deprecation.

Functions \mathcal{R} and \mathcal{T}

- \mathcal{R} maps $\lambda_a = \langle Q, F, \delta, q_0, r \rangle$ to the restrictions $r \in R$ that λ_a currently imposes:
 - $\mathcal{R}(\lambda_a) \triangleq r(q_0)$
- \mathcal{T} maps $\lambda_a = \langle Q, F, \delta, q_0, r \rangle$ and reclassifier $f \in \mathcal{F}$ to a RIF automaton that should be associated with the value produced by an operation abstracted by f:
 - $\mathcal{T}(\lambda_a) \triangleq \langle Q, F, \delta, \delta(q_0, f), r \rangle$
 - For sequence F of reclassifiers, $\mathcal{T}(\lambda_a, Ff) \triangleq \mathcal{T}(\mathcal{T}(\lambda_a, F), f)$.

RIF automata form a lattice

$$\lambda \sqsubseteq \lambda' \triangleq \forall F \in \mathcal{F}^* : \mathcal{R}(\mathcal{T}(\lambda, F)) \sqsubseteq_R \mathcal{R}(\mathcal{T}(\lambda', F))$$

RIF automata form a lattice

$$\lambda \sqsubseteq \lambda' \triangleq \forall F \in \mathcal{F}^* : \mathcal{R}(\mathcal{T}(\lambda, F)) \sqsubseteq_R \mathcal{R}(\mathcal{T}(\lambda', F))$$

When is a flow allowed?

Assume variable \underline{y} is tagged with \underline{L} and variable \underline{x} is tagged with \underline{L}

- $x := y \mod 2$

$$m: H \xrightarrow{Enc(k)} L$$

$$c := [Enc(m, k)]_{Enc(k)}$$

$$m: H \longrightarrow L$$

$$C := [Enc(m, k)]_{Enc(k)}$$

$$n := [Dec(c, k)]_{Dec(k)}$$

$$c := [Enc(m, k)]_{Enc(k)}$$

$$n := [Dec(c, k)]_{Dec(k)}$$

Can RIF automata handle the encryption

example?

$$c := [Enc(m, k)]_{Enc(k)}$$

$$c' \coloneqq [Enc(c,k)]_{Enc(k)}$$

$$n := [Dec(c', k)]_{Dec(k)}$$

$$n: \underbrace{H}_{Dec(k)}^{Enc(k)}$$

- Examples:
 - m is H
 - Enc(Enc(m, k), k) is L
 - Dec(Enc(Enc(m, k), k), k) is L
 - Dec(Dec(Enc(Enc(m, k), k), k), k) is H
- If the number of consecutive Dec equals the number of consecutive Enc, then the restriction is H; otherwise the restriction is L.
- RIF automata cannot be used to count an unbounded number of applied cryptographic operations.

к-labels

```
declassification
x = Enc(m, k)
H

Enc(k)
H
```

$$y = Enc(x, k'):$$
Enc(k')

H

$$^{\mathsf{H}}$$
m = $Dec(z,k)$:

$$z = Dec(y, k'):$$
Enc(k)
H

к-labels

- A κ -label λ_{κ} is a stack (i.e., a simplifies push-down automaton).
- Assume restrictions $\langle \{H, L\}, \sqsubseteq_R \rangle$.
- $\mathcal{R}(\lambda_{\kappa}) \triangleq$
 - H, if λ_{κ} is empty (stores no reclassifier)
 - L, otherwise.
- $\mathcal{T}(\lambda_{\kappa}, f) \triangleq$
 - $pop(\lambda_{\kappa})$, if f is the inverse of the top element in λ_{κ}
 - push(λ_{κ} , f), otherwise.

A class of RIF labels

RIF labels

