
CS 5430
Information-Flow Policies

Elisavet Kozyri

Spring 2019

2

Restrictions on data

• Confidentiality

– Who is trusted with information.

• Integrity

– Who trusts the information.

• Depends on trusting past writers.

3

Problem: Given restrictions on inputs,
what are the restrictions on outputs?

4

Program
Inputs Outputs

?

?

1st solution

5

Program
Inputs Outputs

• Manual assignment of restrictions to output data.
• Does not scale to rich data ecosystems.

2nd solution

6

Inputs Outputs

⊏

• Can be automated.
• Independent of the program code.
• Produces conservative restrictions.

Program

3rd solution: Information Flow Control

7

Program
Inputs Outputs

?

?

• Program analysis to deduce information flows
from inputs to outputs.

Information Flow Control

8

Program
Inputs Outputs

• Program analysis to deduce information flows from
inputs to outputs.

• Restrictions are propagated along the flow.
• More permissive than 2nd solution.

⊏

When does a program cause a flow?

9

𝑥 ≔ 𝑦 mod 2

𝑥 ≔ 𝑦 ∗ 0

𝑦 flows to 𝑥

Flow is not
always

transitive!

𝑧 ≔ 𝑦 + 2; 𝑥 ≔ 𝑧

no flow

𝑧 ≔ 𝑦 + 2; 𝑥 ≔ 𝑧 − 𝑦

When does a program cause a flow?

10

if 𝑦 > 0 then 𝑥 ≔ 1 else 𝑥 ≔ 2

if 𝑦 > 0 then 𝑥 ≔ 0 else 𝑥 ≔ 0

if 𝑦 > 0 then 𝑥 ≔ 1; 𝑥 ≔ 0
else 𝑥 ≔ 2; 𝑥 ≔ 0

When does a program cause a flow?

11

while 𝑦 > 0 do x ≔ x + 1; y ≔ y − 1 end

while 𝑦 > 0 do C end; 𝑥 ≔ 1

?

Information Flow Control

12

Program
Inputs Outputs

• Program analysis to deduce information flows from
inputs to outputs.

• Restrictions are propagated along the flow.

⊏

Information Flow (IF) Policies

• An IF policy specifies restrictions on the
associated data, and on all its derived data.

• IF policy for confidentiality:

– Value 𝑣 and all its derived values are allowed to be
read at most by Alice.

13

Information Flow (IF) Policies

• An IF policy specifies restrictions on the
associated data, and on all its derived data.

• IF policy for confidentiality:

– Value 𝑣 and all its derived values are allowed to be
read at most by Alice.

– Equivalently, 𝑣 is allowed to flow only to Alice.

14

Labels to represent IF policies

Examples for confidentiality:

• Classifications

– Unclassified (U), Confidential (C), Secret (S),
Top Secret (TS)

– Low confidentiality (L), High confidentiality (H)

• Sets of principals:

– {Alice, Bob}, {Alice}, {Bob}, {}

15

Information flow labels

• They form a lattice 𝐿,⊑ with join operation ⊔.

• For ℓ, ℓ’∈ 𝐿, if ℓ ⊑ ℓ’, then:

ℓ’ is at least as restrictive as ℓ, and thus,

information flow from ℓ to ℓ’ is allowed.

16

{}

{Alice} {Bob}

{Alice,Bob}

H

L

⊑

Is a flow allowed?

17

H

L

⊑

Program
Inputs Outputs

L

L

Is a flow allowed?

18

H

L

⊑

Program
Inputs Outputs

L

H

Is a flow allowed?

19

H

L

⊑

Program
Inputs Outputs

H

L

Is a flow allowed?

20

H

L

⊑

Program
Inputs Outputs

H

L L H⊔

Operator ⊔ for combining labels

• For each ℓ and ℓ’, there should exist label ℓ⊔ℓ’,
such that:

– ℓ ⊑ ℓ⊔ℓ’ , ℓ’ ⊑ ℓ⊔ℓ’, and

– if ℓ ⊑ ℓ’’ and ℓ’ ⊑ ℓ’’, then ℓ⊔ℓ’ ⊑ ℓ’’.

• ℓ⊔ℓ’ is called the join of ℓ and ℓ’.

• Examples: L ⊔ L= L, H ⊔ H= H, L ⊔ H= H

21

H

L

⊑

Is a flow allowed?

22

H

L

⊑

Program
Inputs Outputs

H

L L H⊔

Is a flow allowed?

23

H

L

⊑

Program
Inputs Outputs

H

L H

Given

• a lattice {L, H}, ⊑ of labels,

• a program 𝐶, and

• labels on program inputs and outputs,

are all the flows from inputs to outputs that are
caused by executing 𝐶 allowed?

24

Is a flow allowed?

Noninterference (NI)
[Goguen and Meseguer 1982]

Noninterference for a program 𝐶:

• Different H inputs, keeping L inputs fixed, should
not cause different L outputs.

If a program 𝐶 satisfies NI, then all flows from inputs
to outputs are allowed.

25

Noninterference: Example

26

ℎ′ ≔ ℎ + 𝑙;
𝑙′ ≔ 𝑙 + 2

ℎ ℎ′

𝑙 𝑙′

H H

L L

Noninterference: Example

27

1

2

3

4

3

2

5

4

ℎ
ℎ′ ≔ ℎ + 𝑙;
𝑙′ ≔ 𝑙 + 2

𝑙

ℎ′

𝑙′

ℎ
ℎ′ ≔ ℎ + 𝑙;
𝑙′ ≔ 𝑙 + 2

𝑙

ℎ′

𝑙′

The program satisfies noninterference!

H H

H H

L L

L L

Noninterference: Example

28

ℎ
ℎ′ ≔ ℎ + 𝑙;
𝑙′ ≔ 𝑙 + 2

𝑙

ℎ′

𝑙′

The program causes only allowed flows!

H H

L L

H

L

⊑

Noninterference: Example

29

1

2

3

6

ℎ

𝑙′

𝑙′ ≔ ℎ ∗ 2

ℎ

𝑙′

𝑙′ ≔ ℎ ∗ 2

The program does not satisfy noninterference!

H

H

L

L

Noninterference (NI)

• Consider a program 𝐶.

• Variables in the program can model inputs and outputs.

• Consider two memories 𝑀1 and 𝑀2, such that

– they agree on values of variables tagged with L:

– 𝑀1 =L 𝑀2.

30

𝑀1 and 𝑀2 may not agree on values of
variables tagged with H.

Noninterference

• Consider a program 𝐶.
• Variables in the program can model inputs and outputs.
• Consider two memories 𝑀1 and 𝑀2, such that

– they agree on values of variables tagged with L:
– 𝑀1 =L 𝑀2.

• 𝐶(𝑀𝑖) are the observations produced by executing 𝐶 to
termination on initial memory 𝑀𝑖 .
– Observations are assignments to variables that are modeling

outputs.

• For NI to hold, observations tagged with L should be the
same, even if H inputs might differ:
– 𝐶 𝑀1 =L 𝐶 𝑀2 .

31

Noninterference formalized

∀𝑀1, 𝑀2: if 𝑀1 =L 𝑀2, then 𝐶 𝑀1 =L 𝐶 𝑀2 .

32

For a program 𝐶 and a mapping from variables to labels in L, H :

Threat model

• Up until now an attacker could only observe
outputs tagged with L.

• What if the attacker can also sense
nontermination?

33

Termination sensitive noninterference

34

2

4

9

ℎ

𝑙′

while ℎ > 5 do
skip;

𝑙′ ≔ 4

while ℎ > 5 do
skip;

𝑙′ ≔ 4

ℎ

𝑙′

H

H

L

L

Termination sensitive noninterference

∀𝑀1, 𝑀2:

• If

–𝑀1 =L 𝑀2,

• then

– 𝑪 terminates on 𝑴𝟏 iff 𝑪 terminates on 𝑴𝟐, and

– 𝐶 𝑀1 =L 𝐶 𝑀2 .

35

Covert channels
[Lampson 1973, Sabelfeld and Myers 2003]

• Termination channel is a covert channel :
– not intended for information transfer, yet exploitable for

that purpose.

• Other covert channels:
– timing, heat emission, metadata.

• Information flow control can address covert
channels:
– treat covert channels as program outputs.

• Variations of noninterference can proscribe flows to
covert channels.

36

Threat model

• What if the attacker can also measure execution
time?

37

Timing channel

38

1

4

ℎ

𝑙′

if ℎ > 0 then
ℎ′ ≔ 3; ℎ′ ≔ 3

else
ℎ′≔ 3

𝑙′ ≔ 4

H

L

3ℎ′
H

0

4

ℎ

𝑙′

if ℎ > 0 then
ℎ′ ≔ 3; ℎ′ ≔ 3

else
ℎ′≔ 3

𝑙′ ≔ 4

H

L

3ℎ′
H

Timing channel: cache attack

39

0

4

ℎ

𝑙′

if ℎ > 0 then
ℎ3 ≔ ℎ1

else
ℎ3 ≔ ℎ2

ℎ′ ≔ ℎ1 ∗ 0;
𝑙′ ≔ 4

H

L

0ℎ′
H

1

4

ℎ

𝑙′

H

L

0ℎ′
Hif ℎ > 0 then

ℎ3 ≔ ℎ1
else
ℎ3 ≔ ℎ2

ℎ′ ≔ ℎ1 ∗ 0;
𝑙′ ≔ 4

Assume ℎ1, ℎ2, ℎ3 are high memory addresses that can be cached.

The stronger the threat model the more covert
channels need to be considered, to prevent
information leaking to attackers.

How can we ensure that a program causes only
allowed flows and no leaks?

40

