
CS 5430 2/5/2018

Lecture 4: Threats

The Big Picture

Attacks
are perpetrated by

threats
that inflict

harm
by exploiting
vulnerabilities

which are controlled by
countermeasures.

Once Upon a Time…

Bugs
"bug": suggests something just wandered in

[IEEE 729]
• Fault: result of human error in software system

• E.g., implementation doesn't match design, or design doesn't
match requirements

• Might never appear to end user
• Failure: violation of requirement

• Something goes wrong for end user

Human error Fault Failure

Vulnerability
An unintended aspect of a system (design, implementation,
or configuration) that can cause the system to do
something it shouldn't, or fail to do something it should

• E.g., buffer overflows, code injection, cross-site scripting,
missing authentication or access control, misconfiguration

• National databases: CVE, NVD
• Ignoring vulnerabilities is risky

• Too often: "no one would/could ever exploit that"
• Weakest link phenomenon
umptions are vulnerabilities
• Timing, failure modes, message delivery,

input format, etc.

Memory: A Quick Review

Globals

Code

Stack

Heap

0x00000000

The Stack

Buffer Overflows

Stack Smashing

Conficker

Standard Countermeasures

Attacks Defenses

x86
• Intel Instruction Set Architecture (ISA)
• Introduced 1978, still supported
• As of 2018, most common architecture on servers, PCs,

and laptops
• dense instruction set
• variable length instructions
• not word aligned

Gadgets

f7 c7 07 00 00 00
0f 95 45 c3

test $0x00000007, %edi
setnzb -61 (%ebp)

c7 07 00 00 00 0f
95
45
c3

movl $0x0f0000000, (%edi)
xchg %ebp, %eax
inc %ebp
ret

Gadgets

Return Oriented Programming

Image By: Dino Dai Zovi

Return-Oriented Shellcode

Testing
• Goal is to expose existence of faults, so that they can be

fixed
• Unit testing: isolated components
• Integration testing: combined components
• System testing: functionality, performance, acceptance

Testing
When do you stop testing?
• Bad answer: when time is up
• Bad answer: what all tests pass
• Fun fact: Pr[undetected faults] increases with # detected

faults [Myers 1979, 2004]
• Better answer: when methodology is complete (code

coverage, paths, boundary cases, etc.)
• Future answer: statistical estimation says Pr[undetected

faults] is low enough (active research)

Testing for security?

Penetration testing
• Experts attempt to attack

• Internal vs. external
• Overt vs. covert

• Typical vulnerabilities exploited:
• Passwords (cracking)
• Buffer overflows
• Bad input validation
• Race conditions / TOCTOU
• Filesystem misconfiguration
• Kernel flaws

Fuzz testing
[Barton Miller, 1989, 2000, 2006]
• Generate random inputs and feed them to programs:

• Crash? hang? terminate normally?
• Of ~90 utilities in '89, crashed about 25-33% in various Unixes
• Crash implies buffer overflow potential

• Since then, "fuzzing" has become a standard practice for
security testing

• Results have been repeated for X-windows system,
Windows NT, Mac OS X
• Results keep getting worse in GUIs but better on command line

Fuzz testing
Testing strategy:
• Purely random no longer so good, just gets low-hanging

fruit
• Better:

• Use grammar to generate inputs
• Or randomly mutate good inputs in small ways

• especially for testing of network protocols
• Research: use analysis of source code to guide mutation of inputs

FindBugs
• Looks for patterns in code that are likely faults and that

are likely to cause failures
• Categorizes and prioritizes bugs for presentation to

developer
• Watch video of Prof. Bill Pugh, developer of FindBugs,

present it to a Google audience:
https://www.youtube.com/watch?v=8eZ8YWVl-2s

Web Vulnerabilities by Year

0

500

1000

1500

2000

2500

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

DoS Sql Injection XSS CSRF

Threat Models

Threats
A principal that has potential to cause harm to
assets
• Adversary or attacker: a human threat, motivated and

capable
• Sometimes humans aren't malicious: accidents happen
• Sometimes non-humans cause harm: floods,

earthquakes, power outage, hardware failure

Threat Models
• Identify threats of concern to system

• Especially malicious, human threats
• What kinds of attackers will system resist?
• What are their motivations, resources, and capabilities?

• Best if analysis is specific to system and its functionality
• Non threats?

• Trusted hardware
• Trusted environment
• e.g., physically secured machine room reachable only by

trustworthy system operators

Threats (DoD)

Threats (DoD)

Classifying Threats
[S1, based on U.S. Defense Science Board]

• Inquisitive people, unintentional blunders
• Hackers driven by technical challenges
• Disgruntled employees or customers seeking revenge
• Criminals interested in personal financial gain, stealing services, or

industrial espionage
• Organized crime with the intent of hiding something or financial gain
• Organized terrorist groups attempting to influence policy by isolated

attacks
• Foreign espionage agents seeking to exploit information for economic,

political, or military purposes
• Tactical countermeasures intended to disrupt specific weapons or

command structures
• Multifaceted tactical information warfare applied in a broad orchestrated

manner to disrupt a major military missions
• Large organized groups or nation-states intent on overthrowing a

government

Threat Model = Capabilities
• privilege levels

Threat Model = Capabilities
• privilege levels
• memory access

Heartbleed

Heartbleed

Frame Access

Physical
Memory

Page Table

Processor

Frame 0
Frame 1

Frame M

Page # Offset

Virtual
Address

Page # Offset

Virtual
Address

Frame Offset

Physical
Address

Frame Offset

Physical
Address

Memory Management

Speculative Execution
int i1, i2;
boolean b1,b2;
boolean[] a1,a2;

if (i1 < a1.length()) {
boolean bval= a1[i1];
if(bval){i2= 1;} else{i2= 0;}
if(i2 < a2.length()){

b2 = a2[i2];
}

}

Timing

Threat Model = Capabilities
• privilege levels
• memory access
• physical access

Stuxnet

Threat Model = Capabilities
• privilege levels
• memory access
• physical access
• key access

FileVault

The iPhone Case

Threat Model = Capabilities
• privilege levels
• memory access
• physical access
• key access
• network access

Network Adversaries

Attacker Properties
Membership insider outsider
Method active passive
Adaptability dynamic static
Organization cooperative individual
Scope global extended local
Motivation malicious rational opportunistic

Dyn DDoS

Threat Models

