Lecture 4: Threats

CS 5430 2/5/2018

L ——Lw—
The Big Picture

Attacks
are perpetrated by
threats
that inflict
harm
by exploiting
vulnerabilities
which are controlled by
countermeasures.

Once Upon a Time...

B" Microsoft Store ~ Products - Support Do sgnin

Search for help 0

Q= Manage my account P;zq Ask the community R Contact us \l, Find downloads

MS08-067: Vulnerability in Server = emi
service could allow remote code & Print
execution

. @‘\%*70 ?qq,_‘ F

-~ = \Mo'ﬁb.u\ f'v'L\ou.\-

Bugs T O q}:‘:’i:;q:t:*:}.cs °'{ b‘“’ Lcc'n1 {O\IV\J..

e M &,&-& .

'bug"”: suggests something just wandered Iin

[IEEE 729]

- Fault: result of human error in software system

- E.g., iImplementation doesn't match design, or design doesn't
match requirements

- Might never appear to end user

- Failure: violation of requirement
- Something goes wrong for end user

Human error Failure

Vulnerabllity

An unintended aspect of a system (design, implementation,
or configuration) that can cause the system to do
something it shouldn't, or fail to do something it should

E.g., buffer overflows, code injection, cross-site scripting,
missing authentication or access control, misconfiguration

National databases: CVE, NVD
Ignoring vulnerabilities is risky

Too often: "no one would/could ever exploit that"
Weakest link phenomenon

Timing, failure modes, message delivery,
input format, etc.

e ———_6m—
Memory: A Quick Review

1 Stack
I Heap

0x00000000

Globals

Code

e ————————————
The Stack

B Param 3
B Param 2 Procedure B
B Param 1
Procedure A Ret Addr Ptr A
Stack Ptr A
B Local Var 1
B Local Var 2
C Param 2 Procedure C
C Param 1
Ret Addr Ptr B
Stack Ptr B

call C

call B

Buffer Overflows

e ————_mmm—
Stack Smashing

B Param 3
Procedure A B Param 2 Procedure B
B Param 1
New Ret Addr Ptr .

New Stack Ptr —4— 7
Overflow Buffer Buffer{20];
B Local Var 2

call B

onficker

Check for Ukrainian Keyboard

-

Create mutex |

|

i Exit) ¥
Create mutex Check OS version Exit
“Global\X-7" —}
¥] Patch dnsrsivr APIS in Vista e
Check OS version I Eult Patch NetpwPathCanonicalize e
* ‘ﬁ
Attach to "service.sxs™ | Attach to a running process
] I
Create random name Sleep forever '}
in System32 directory Create random name
¥ in System32 directory
Enable backdoor ¥
through firewall Enable backdoor
and wireless devices through firewall
¥ and wireless devices
Download GEO IP ¥
database l Scan and infect
¢ I
Scan Td infect | I Infect removable drives
Sleep 30 minutes | ¢ 2
7 I Sleep 30 minutes
Download antispyware |
software after
December 1st 2008
/
Check connectivity]-ﬁ—
Sleep 3 hours (A) | Sleep 1 minute
Sleep 2 hours (B) !

Domain Generation
File Download
and File signature check

Standard Countermeasures

Attacks

B Param 3

Procedure A

B Param 2

B Param 1

New Stack Ptr —— 7

call B |:— New Ret Addr Ptr
- Overflow Buffer

B Local Var 2

INTERNAL_SIZE_T prev_size;
INTERNAL_SIZE_T size;

struct chunk * fd;
struct chunk * bw;

/* size of prev chunk (if free) */

/* size of chunk

/* double links -- used only if free */

Procedure A

\sh\0"

"\bin

W=

String Ptr

call B

? «—1Fake Ret Addr Ptr

Fake Stack Ptr —

exec J__ New Ret Addr Ptr

New Stack Ptr —J

OverFlow Buffer

B Local Var 2

Procedure B

Buffer[20];

*/

Procedure B

Buffer[20];

Defenses

X806

Intel Instruction Set Architecture (ISA)

Introduced 1978, still supported

As of 2018, most common architecture on servers, PCs,
and laptops

dense instruction set
variable length instructions

not word aligned

Gadgets

f7 c¢7 07 00 00 006
Of 95 45 c3

c/ 07 00 00 00 Of
95
45
C3

test $0x00000007, %edi
setnzb -61 (%ebp)

movl $0x0f0000000, (%edi)
xchg %ebp, %eax

inc %ebp

ret

Gadgets

Yoesp

0xbad00001

(a) Load constant gadget

N
pop %edx
ret

> . v
"movl 64(%eax), %eax
ret

Yoesp

+64

N
pop %eax
ret

0xbad00002 |

(b) Load from memory gadget

Return Oriented Programming
REilr1=0rEried
PLOGrdMagnG

SJALOHIKER: ﬁ@ﬁ:SEm
RORE, Bull (i SiEE D [ii cutimaG
Wi RtESS FYO MEZaZiNES
LU ELE cURtllG N

HAr USRS frOM MER:

S = GMENtS

Image By: Dino Dai Zovi

Return-Oriented Shellcode

\sh\0"

"\bin

| word to zero |

+24

leall Y%gs:0x10(,0)
ret

*pop Yoecx

pop Yedx
ret

ret

pop Y%ebx

Yoesp

0xObObObOb

"movl %eax, 24(%edx)

ret

add %ch, %al
ret

xor %eax, Yeax

ret

pop %ecx

pop Yoedx
ret

Testing

Goal is to expose existence of faults, so that they can be
fixed

Unit testing: isolated components
Integration testing: combined components
System testing: functionality, performance, acceptance

Testing

When do you stop testing?
Bad answer: when time is up
Bad answer: what all tests pass

Fun fact: Pr[undetected faults] increases with # detected
faults [Myers 1979, 2004]

Better answer: when methodology is complete (code
coverage, paths, boundary cases, etc.)

Future answer: statistical estimation says Pr[undetected
faults] is low enough (active research)

Testing for security?

Penetration testing

Experts attempt to attack WOGETGEDFRD DAMAVIROTD
nternal vs. external N OSLEY WY HBOMIELL FVER PN

SIONEY POTTIER DAVID STRATHARRN
Overt vs. covert

Typical vulnerabillities exploited:
Passwords (cracking)
Buffer overflows
Bad input validation
Race conditions / TOCTOU
Filesystem misconfiguration
Kernel flaws I i o i

Fuzz testing

[Barton Miller, 1989, 2000, 2006]

Generate random inputs and feed them to programs:
Crash? hang? terminate normally?
Of ~90 utilities in '89, crashed about 25-33% in various Unixes
Crash implies buffer overflow potential

Since then, "fuzzing" has become a standard practice for

security testing

Results have been repeated for X-windows system,
Windows NT, Mac OS X

Results keep getting worse in GUIs but better on command line

Fuzz testing

Testing strategy:

Purely random no longer so good, just gets low-hanging
fruit

Better:

Use grammar to generate inputs
Or randomly mutate good inputs in small ways
especially for testing of network protocols
Research: use analysis of source code to guide mutation of inputs

FindBugs

Looks for paftterns in code that are likely faults and that
are likely to cause failures

Categorizes and prioritizes bugs for presentation to
developer

Watch video of Prof. Bill Pugh, developer of FindBugs,

present it to a Google audience:
https://www.youtube.com/watch?v=8eZ8YWVI-2s

Web Vulnerabillities by Year

2500

2000

1500

1000

500

0
1999

2000

2001

2002

2003

2004

AN

2005 2006 2007 2008 2009 2010 2011

—8—DoS =—®—3Sql Injection —@=XSS —@=—CSRF

2012

2

2013

2014

2015

2016

2017

Threat Models
_IA CRYPTO NERDS

IMAGINATION -

HIS LAPTOPS ENCRYPTED.
LETS BUIWD A MILLION-DOLLAR
CLOSTER TO CRACK \T.

\ NO GooD! 1T’

UoG6 -R\T RGA\
BLAST! OUR }
EVIL PLAN
1S FOILED! ™~

1

WHAT WOULD

ACTUALLY HAPPEN:

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE mus U5 THE PASSWORD.

GOT' IT,

VR

Threats

A principal that has potential to cause harm to
assets

Adversary or attacker: a human threat, motivated and
capable

Sometimes humans aren't malicious: accidents happen

Sometimes non-humans cause harm: floods,
earthquakes, power outage, hardware failure

UKiLLED A BLA

e ————————————
Threat Models

|dentify threats of concern to system
Especially malicious, human threats
What kinds of attackers will system resist?
What are their motivations, resources, and capabilities?

Best if analysis is specific to system and its functionality

Non threats?
Trusted hardware
Trusted environment

e.g., physically secured machine room reachable only by
trustworthy system operators

Threats (DoD)

Vi

Practitioners who rely on others to develop the malicious code, delivery mechanisms, and execution
strategy (use known exploits).

Practitioners with a greater depth of experience, with the ability to develop their own tools (from
publically known vulnerabilities).

Practitioners who focus on the discovery and use of unknown malicious code, are adept at installing
user and kernel mode root kits™, frequently use data mining tools, target corporate executives and
key users (government and industry) for the purpose of stealing personal and corporate data with
the expressed purpose of selling the information to other criminal elements.

Criminal or state actors who are organized, highly technical, proficient, well funded professionals
working in teams to discover new vulnerabilities and develop exploits.

State actors who create vulnerabilities through an active program to “influence” commercial
products and services during design, development or manufacturing, or with the ability to impact
products while in the supply chain to enable exploitation of networks and systems of interest.

States with the ability to successfully execute full spectrum (cyber capabilities in combination with
all of their military and intelligence capabilities) operations to achieve a specific outcome in political,
military, economic, etc. domains and apply at scale.

L ——_—
Threats (DoD)

Existential

Creates vulnerabilities using full spectrum

\

£

Discovers unknown vulnerabilities

£

\‘ Exploits pre-existing known vulnerabilities

P /
e

Nuisance

Classifying Threats

[S1, based on U.S. Defense Science Board]

Inquisitive people, unintentional blunders
Hackers driven by technical challenges
Disgruntled employees or customers seeking revenge

Criminals interested in personal financial gain, stealing services, or
industrial espionage

Organized crime with the intent of hiding something or financial gain

Organized terrorist groups attempting to influence policy by isolated
attacks

Foreign espionage agents seeking to exploit information for economic,
political, or military purposes

Tactical countermeasures intended to disrupt specific weapons or
command structures

Multifaceted tactical information warfare applied in a broad orchestrated
manner to disrupt a major military missions

Large organized groups or nation-states intent on overthrowing a
government

e ———_60mm—
Threat Model = Capabilities

privilege levels

DIRTY GOW

e ————__—_—_TT—
Threat Model = Capabilities

privilege levels
memory access

e ———vn———————
Heartbleed

Heartbleed

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?

IF S0, REPLY "POTATO" (6 LETTERS). ser Meg wents these 6 letters: POTATO.

HMm these 4 letters: BIRD.

ﬁ B

(0]
o)

ﬁ)
]

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "HAT" (500 LETTERS),

f/

ser Meg wants these 500 letters: HAT.

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY “BIRD" (4 LETTERS).

ﬁ)

¥ HAT. Lucas requests the "missed conne 0
ctions" page. Eve (administrator) wan
ts to set server’s master key to "148 (o]
35038534". Isabel wants pages about " v}
snakes but not too long". User Karen
wants to change aﬁc‘gmt password to |
c v el 2

Physical
Memory Management Memory
Physical Erame ?
Address rame
oo >| Frame Offset
Virtual éPage Table L
P Address Fra'fme Access :
SR »>| Page # Offset '
' e ST 5
Virtua| ...

Address oo ,-

. Physical
v Address

Frame M

Speculative Execution

int 11, 12;
boolean bl,b2;
boolean[] al,a2;

if (i1 < al.length()) {
boolean bval= al[il];
if(bval){i2= 1;} else{i2= 0;}
if(i2 < a2.length()){
b2 = a2[i2];
}

)
ACCUsSPLIT

PRO SURVIVOR
601X
3v1

e ————__—_—_TT—
Threat Model = Capabilities

privilege levels
memory access
physical access

Stuxnet

e ————__—_—_TT—
Threat Model = Capabilities

privilege levels
memory access
physical access
key access

L —__——
FileVault

e —————
The iIPhone Case

e ————__—_—_TT—
Threat Model = Capabilities

privilege levels
memory access
physical access
key access
network access

Network Adversaries

Attacker Properties

Membership insider outsider
active passive
Adaptability dynamic static
Organization cooperative individual
global extended local

Motivation malicious rational opportunistic

Dyn DDoS

e ———vn———————
Threat Models

“Security is lax on this side.”

