
CS 5430

Information Flow in Android Apps

Prof. Clarkson
Spring 2017

ClickRelease

• Prototype tool [Micinski, Fetter-Degges, Jeon, Foster,
Clarkson 2015]

• Checks whether Android apps obey users' intent when
declassifying confidential information
– Intent expressed through GUI interactions
– Declassification policies: based on formal logic
– Information could include contact details, GPS location, ...

• Focus is on the user not the program

2

Android
• Popular mobile platform
• Authorization regulated with

permissions
– e.g., camera, read contacts, write contacts,

access fine location, access coarse location,
read phone state, write call log, ...

– Specified by developer
– Requested from user during installation

(before Android 6.0 Oct 2015)

3

Permissions

• Weaknesses:
– Trojan horse: app maliciously requests permissions it

doesn't need, user grants, app abuses permission
– Programmer mistakes: app wrongly releases user's

sensitive information

• Permissions provide access control not
information-flow control

• Control access to a resource, not usage of
information from that resource

4

Send

Bump app
• User checks “Email”
• Clicks "Send"
• App sends user's email address

over network

5

Email?

Number?

Send

email

Send

Bump app – Buggy or malicious
• User checks “Email”
• Clicks "Send"
• App sends user's phone number

over network

• Worse yet: app sends all the
user's private contact
information over network

• Not the user's intent

6

Email?

Number?

Send

phone

Our solution

• Policies for capturing user intent
• Formal security condition called Interaction-

Based Noninterference (IBNI)
• Prototype tool ClickRelease that checks Android

apps
• Evaluation of some apps and policies

7

POLICIES

8

Declassification policies

• GUI interactions generate events
• Events have security level: public, secret, ...
• Use a temporal logic to specify when an event

may be declassified to lower level because of user
intent

9

Events

• Security-relevant actions taken by user and app
– GUI interactions: buttons, check boxes, ...
– Writes and reads by app: network, stored data, ...

• Each event comprises channel and value
• In source code, correspond to method calls
– GUI: handler registered to receive callback
– Write and reads: API calls

• Execution of app produces many such method calls
• We abstract them to an event trace...

10

Send

Event trace for bump app
• App initializes, reads contacts
• User checks “Email”
• Clicks "Send"

• App sends user's email address
over network

11

Email?

Number?

Send

email

email : clarkson@cs.cornell.edu

phone : 607-255-0278

emailBox : true

sendButton : unit

netout : clarkson@cs.cornell.edu

Event security
• Security level: how confidential event is (could

be a lattice)
• Threat model:
– Public events may be revealed to attacker
– Secret events may not
– Attacker's only means to observe app is network, so

writes to netout are public

• Policy determines security level of event...
(default: secret)

12

Policies

Examples:
1. Bump app: Phone number may be revealed when Send button

is clicked if phone number checkbox is checked
2. Location app: …

13

Location app policy
• Intuition: Phone's fine-grained

GPS location may be revealed
when fine is checked; otherwise,
coarse-grained location may be
revealed

• Coarse-grained: mask lower 8
bits

14

Fine
Coarse

Policies

Examples:
1. Bump app: Phone number may be revealed when Send button

is clicked if phone number checkbox is checked
2. Location app: Phone's fine-grained GPS location may be

revealed when fine-grained checkbox is checked; otherwise,
coarse-grained location may be revealed

Common element: ordering of events...

15

Policies
Policy: form @ lvl
• Formula form identifies an event in a trace
• Policy stipulates security level lvl of that event
• e.g., ”any event on c2" @ public

16

c1:v1 c2:v2 c3:v3 c4:v4

Formulas:
¡ based on quantified linear-time temporal logic (QTL)

[Lichtenstein et al. 1985]
¡ customized to GUI interactions

c2:v2

Our temporal logic

f ::= e

| ¬f | f1∧ f2 | f1∨ f2

| X f | F f | G f | P f | f1 U f2 | f1 S f2

| ∀x . f | ∃x . f
e ::=name : t

t ::=x | v
v ::=int | true | false | unit

17

Our temporal logic

f ::= e

| ¬f | f1∧ f2 | f1∨ f2

| X f | F f | G f | P f | f1 U f2 | f1 S f2

| ∀x . f | ∃x . f
e ::=name : t

t ::=x | v
v ::=int | true | false | unit

18

Boolean	
connectives

Our temporal logic

f ::= e

| ¬f | f1∧ f2 | f1∨ f2

| X f | F f | G f | P f | f1 U f2 | f1 S f2

| ∀x . f | ∃x . f
e ::=name : t

t ::=x | v
v ::=int | true | false | unit

19

Temporal	
connectives

Temporal connectives

Connective Meaning
X	f f will	be	true	next
F	f f will	hold	in	the	future	(at	some	time)
P	f f held	in	the	past	(at	some	time)
G	f f holds	globally	(at	all	times	in	the	future)
f U	y f will	be	true	until y is	true
f S	y f has	been	true	since	y was	true

20

Our temporal logic

f ::= e

| ¬f | f1∧ f2 | f1∨ f2

| X f | F f | G f | P f | f1 U f2 | f1 S f2

| ∀x . f | ∃x . f
e ::=name : t

t ::=x | v
v ::=int | true | false | unit

21

Quantifiers	over	
terms

Our temporal logic

f ::= e

| ¬f | f1∧ f2 | f1∨ f2

| X f | F f | G f | P f | f1 U f2 | f1 S f2

| ∀x . f | ∃x . f
e ::=name : t

t ::=x | v
v ::=int | true | false | unit

22

which	are	
program	values

Quantifiers	over	
terms

Our temporal logic

f ::= e

| ¬f | f1∧ f2 | f1∨ f2

| X f | F f | G f | P f | f1 U f2 | f1 S f2

| ∀x . f | ∃x . f
e ::=name : t

t ::=x | v
v ::=int | true | false | unit

23

event

Our temporal logic

Other extensions:
• Wildcard term *

chan:* is any event on chan

• Last event on a channel
last(chan, t) means last event on chan had value t

24

Bump app policy

Intuition: phone number may be revealed when
Send button is clicked if phone number checkbox
is checked

phone:*
∧ F(sendButton:unit

∧ last(phoneBox,true))

@ public

25

Bump app policy

Intuition: phone number may be revealed when
Send button is clicked if phone number checkbox
is checked

phone:*
∧ F(sendButton:unit

∧ last(phoneBox,true))

@ public

26

If	current	input	is	
phone	number...

Bump app policy

Intuition: phone number may be revealed when
Send button is clicked if phone number checkbox
is checked

phone:*
∧ F(sendButton:unit

∧ last(phoneBox,true))

@ public

27

...and	eventually	
send	button	clicked...

If	current	input	is	
phone	number...

Bump app policy

Intuition: phone number may be revealed when
Send button is clicked if phone number checkbox
is checked

phone:*
∧ F(sendButton:unit

∧ last(phoneBox,true))

@ public

28

...and	eventually	
send	button	clicked...

If	current	input	is	
phone	number...

...and	at	that	
point	phone	
number	box	
checked...

Bump app policy

Intuition: phone number may be revealed when
Send button is clicked if phone number checkbox
is checked

phone:*
∧ F(sendButton:unit

∧ last(phoneBox,true))

@ public

29

...and	eventually	
send	button	clicked...

If	current	input	is	
phone	number...

...then	value	of	
phone	number	is	
public.

...and	at	that	
point	phone	
number	box	
checked...

Bump app policy

phone:*
∧ F(sendButton:unit

∧ last(phoneBox,true))

@ public

Constrains when secret information is read:
• If phone number read after button clicked,
• then formula would not hold,
• hence security level remains secret

30

Location app policy

gps:*∧ last(radio,"fine") @ public,
gps:*∧ last(radio,"coarse") @ mask

• set of policies
• security level mask between public and secret
– characterizes what attacker may observe
– security condition makes use of level...

31

SECURITY CONDITION

32

Security condition

• Noninterference [Goguen and Meseguer 1982]:
actions of high-security users do not affect
observations of low-security users

• Intuition, as commonly adapted to programs:
changes to secret inputs do not cause observable
change in public output

33

Ppub
sec1

out Ppub
sec2

out

Security condition

Interaction-based noninterference (IBNI)
• Our new noninterference property
• Intuition: two event traces with the same public

input events have the same public output events
• Builds on observational determinism [Zdancewic

and Myers 2003]

34

IBNI with insecure bump app

Insecure variant of bump app:
• releases phone number when

email address checked
• and vice-versa

35

Send

Email?

Number?

Send

phone
number

IBNI with insecure bump app
Two possible traces:
• email:a@b.com, phone:202-555-0000,

phoneBox:false, emailBox:true,
sendButton:unit, netout:202-555-0000

• email:a@b.com, phone:202-555-1337,
phoneBox:false, emailBox:true,
sendButton:unit, netout:202-555-1337

Policy:
phone:*∧ F(sendButton:unit ∧ last(phoneBox,true)) @ public
email:*∧ F(sendButton:unit ∧ last(emailBox,true)) @ public
phoneBox:* @ public, emailBox:* @ public, sendButton:* @ public

36

Ok	to	reveal these	
GUI	events

IBNI with insecure bump app
Two possible traces:
• email:a@b.com, phone:202-555-0000,

phoneBox:false, emailBox:true,
sendButton:unit, netout:202-555-0000

• email:a@b.com, phone:202-555-1337,
phoneBox:false, emailBox:true,
sendButton:unit, netout:202-555-1337

Policy:
phone:*∧ F(sendButton:unit ∧ last(phoneBox,true)) @ public,
email:*∧ F(sendButton:unit ∧ last(emailBox,true)) @ public,
phoneBox:* @ public, emailBox:* @ public, sendButton:* @ public

Labeling: netout and GUI events are public, but phone and email aren't37

IBNI with insecure bump app
Two possible traces:
• email:a@b.com, phone:202-555-0000,

phoneBox:false, emailBox:true,
sendButton:unit, netout:202-555-0000

• email:a@b.com, phone:202-555-1337,
phoneBox:false, emailBox:true,
sendButton:unit, netout:202-555-1337

IBNI: not satisfied
• two traces
• same public inputs
• different public outputs

38

PROTOTYPE

39

Prototype tool
ClickRelease:

• Our implementation of IBNI
checking for Android

• Based on SymDroid [Jeon et al.
2012]: symbolic executor for
Dalvik bytecode

• Itself based on Z3 [de Moura and
Bjørner 2008]: SMT solver

40

Symbolic execution

[Clarke 1976, King 1976]
• Motivated by software testing:

– Goal is to check programs for presence of errors
– And generate inputs that would trigger errors
– Errors can be debugged and fixed

• Key idea: symbolic values
– e.g. a instead of 5
– Program variables and expressions can be symbolic

• Symbolic executor explores all paths of program execution
– Execution path: the sequence of branches taken during execution
– Goal is to find a concrete input that triggers each possible execution path
– Might not be complete: explore up to some resource bound

41

Symbolic execution

• Maintain a list of program states each of which corresponds to a
particular point of execution

• State comprises:
– memory: maps variables, heap locations, etc. to symbolic

values
– path condition: logical formula that captures what branches

have been taken to reach current program point
– program counter: next statement to execute

• Start with a single state (initial memory, path condition
is simply true)

42

Symbolic execution algorithm
• Take a state off the list
• Execute the next program statement
– Assignment: update memory with symbolic result, add

resulting state back to the list
– If statement with guard e: add two states back to the list

• one has path condition updated with "and e"
• other updated with "and not e"

– Loops: can lead to infinite number of paths to explore;
must bound somehow (timeout, iterations, exploration
depth, etc.)

– Function calls: need code, specification, or must treat
symbolically

43

Symbolic execution algorithm
• If path condition ever becomes unsatisfiable, no

reason to explore further; terminate along that
path

• If program exits or encounters error:
– Symbolic execution terminates
– Path condition sent to satisfiability solver to find concrete

inputs that would lead to that path

44

Symbolic execution of Android
• SymDroid [Jeon et al. 2012]:
– Java source code of Android apps compiled into

Dalvik bytecode
– SymDroid is symbolic executor for Dalvik

• Android is more than just bytecode:
– Libraries, some written in native code
– System services (telephony, GPS, etc.)
– Entry points and callbacks into apps (apps register

components that respond to Intents – not just a
main function)

45

Symbolic execution of Android

• SymDroid models instead of executing Android
platform code
– Model can be written in Java or in OCaml (SymDroid's source

language)
– Handles about 25% of the Android Compatibility Test Suite

(CTS); failed cases are all because of unmodeled system
libraries; open challenge how to fully model

• Model includes:
– Generating clicks in GUI
– GUI events from widgets (buttons, check boxes, etc.)
– Services (telephony, GPS, etc.)

46

Symbolic execution of GUI

• Problem:
– Not just a single input at beginning of execution
– Instead, apps receive streams of inputs from user
– So need to simulate user

• Solution:
– Custom driver for each app
– Calls methods in Android model to inject GUI events
– Driver runs a loop that nondeterministically picks a new event

to inject
– Performance of symbolic execution is exponential in input

depth: number of iterations of loop

47

EVALUATION

48

Apps

1. Bump app: Phone number may be revealed when
Send button is clicked if phone number checkbox is
checked
Insecure variants: release email instead; always release phone
after three more clicks

2. Contact picker: Currently selected contact from a
spinner may be revealed, but no others
Insecure variants: scan contact list to release particular one in
addition to selected contact; release different contact than
selected

49

Apps

3. Location toggle: Phone's fine-grained GPS location
may be revealed when fine-grained checkbox is
checked; otherwise, coarse-grained location may be
revealed
Insecure variants: always release fine-grained; store fine-grained
and release it later even if coarse checked

4. WhereRU: Phone's location may be revealed always,
never, or on demand, based on chosen radio button
Insecure variants: always share regardless; share location from
past when choice might have been different

50

Scalability

51

(4-core i7 CPU @3.5GHz, 16GB RAM, Ubuntu 14, median of 10 runs)

For four apps, can explore input depth of 5-9 events within an hour

Scalability

• Small counter model hypothesis: if there are bugs, they are likely
to be revealed by some short sequence of inputs

• Holds for our apps: need only 2-5 inputs for each to reveal an
illegal information flow

• And we can completely explore that space within an hour
• So even though complexity is exponential, finding security

violations is relatively efficient
• Scaling up? Larger apps will need:

– more complete Android model
– larger counterexamples

52

CONCLUSION

53

Summary

• Policies for capturing user intent
• Formal security condition called Interaction-

Based Noninterference (IBNI)
• Prototype tool ClickRelease that checks Android

apps
• Evaluation of some apps and policies

54

Related work

• Access control gadgets [Roesner et al. 2012]
• AppIntent [Yang et al. 2013]
• Pegasus [Chen et al. 2013]

• DIFC for Android [Jia et al. 2013]
• SIF [Chong et al. 2007]
• Cassandra [Lortz et al. 2014]
• Declassification policies [Chong and Myers 2004]

55

Upcoming events

• [now] Course wrapup

If secrecy is the beginning of tyranny,
declassification is its apotheosis. – John Alejandro

King

FORMAL DEFINITION OF IBNI

Security condition

Interaction-based noninterference (IBNI)
Toward a formal definition:
• Represent program as a set T of event traces; formal semantics

defines that set
• Define function label(t,pol) to label each event in trace with its

security level according to policy pol
• Define equivalence relation ≡S on labeled traces: t1 ≡S t2 if

observer cleared at level S perceives traces as having the same
events

• Define function inputs(t) to project out only the input events
from a trace (labeled or unlabeled)

58

IBNI

Definition of IBNI:
Program T satisfies IBNI for security policy pol if:
for all traces t1 and t2 in T, and for all security levels S,

letting l1=label(t1,pol) and l2=label(t2,pol),
it holds that

inputs(l1) ≡S inputs(l2) implies l1 ≡S l2.

Structure of this definition is entirely standard
Interesting part is label...

59

IBNI

label(t, pol) =
(t[0], level(t, pol, 0)), (t[1], level(t, pol, 1)), ...

level(t, pol, i) =
if t[i] = netout : p then public
else
form the set of all levels S

such that f@S in pol and f holds at t[i];
return the lowest-security element of that set

60

IBNI

label(t, pol) =
(t[0], level(t, pol, 0)), (t[1], level(t, pol, 1)), ...

level(t, pol, i) =
if t[i] = netout : p then public

else ⨅ f@S ∊ pol {S | t,i ⊨ f}

relation ⊨ is essentially standard QTL

61

IBNI

Definition of IBNI:

Program T satisfies IBNI for security policy pol if:
for all traces t1 and t2 in T, and for all security levels S,

letting l1=label(t1,pol) and l2=label(t2,pol),
it holds that

inputs(l1) ≡S inputs(l2) implies l1 ≡S l2.

62

