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ClickRelease

• Prototype tool [Micinski, Fetter-Degges, Jeon, Foster, 
Clarkson 2015]

• Checks whether Android apps obey users' intent when 
declassifying confidential information
– Intent expressed through GUI interactions
– Declassification policies:  based on formal logic
– Information could include contact details, GPS location, ...

• Focus is on the user not the program
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Android
• Popular mobile platform
• Authorization regulated with 

permissions
– e.g., camera, read contacts, write contacts, 

access fine location, access coarse location, 
read phone state, write call log, ...

– Specified by developer 
– Requested from user during installation 

(before Android 6.0 Oct 2015)
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Permissions

• Weaknesses:
– Trojan horse:  app maliciously requests permissions it 

doesn't need, user grants, app abuses permission
– Programmer mistakes:  app wrongly releases user's 

sensitive information

• Permissions provide access control not 
information-flow control

• Control access to a resource, not usage of 
information from that resource
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Send

Bump app
• User checks “Email”
• Clicks "Send"
• App sends user's email address 

over network
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Send

Bump app – Buggy or malicious
• User checks “Email”
• Clicks "Send"
• App sends user's phone number 

over network

• Worse yet: app sends all the 
user's private contact 
information over network

• Not the user's intent
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Our solution

• Policies for capturing user intent
• Formal security condition called Interaction-

Based Noninterference (IBNI)
• Prototype tool ClickRelease that checks Android 

apps
• Evaluation of some apps and policies
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POLICIES
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Declassification policies

• GUI interactions generate events
• Events have security level:  public, secret, ...
• Use a temporal logic to specify when an event 

may be declassified to lower level because of user 
intent
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Events

• Security-relevant actions taken by user and app
– GUI interactions:  buttons, check boxes, ...
– Writes and reads by app:  network, stored data, ...

• Each event comprises channel and value
• In source code, correspond to method calls
– GUI:  handler registered to receive callback
– Write and reads:  API calls

• Execution of app produces many such method calls
• We abstract them to an event trace...

10



Send

Event trace for bump app
• App initializes, reads contacts
• User checks “Email”
• Clicks "Send"

• App sends user's email address 
over network
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email : clarkson@cs.cornell.edu

phone : 607-255-0278

emailBox : true

sendButton : unit

netout : clarkson@cs.cornell.edu



Event security
• Security level:  how confidential event is (could 

be a lattice)
• Threat model:
– Public events may be revealed to attacker
– Secret events may not
– Attacker's only means to observe app is network, so 

writes to netout are public

• Policy determines security level of event...
(default: secret)
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Policies

Examples:
1. Bump app:  Phone number may be revealed when Send button 

is clicked if phone number checkbox is checked
2. Location app:  …
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Location app policy
• Intuition:  Phone's fine-grained 

GPS location may be revealed 
when fine is checked; otherwise, 
coarse-grained location may be 
revealed

• Coarse-grained:  mask lower 8 
bits
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Policies

Examples:
1. Bump app:  Phone number may be revealed when Send button 

is clicked if phone number checkbox is checked
2. Location app:  Phone's fine-grained GPS location may be 

revealed when fine-grained checkbox is checked; otherwise, 
coarse-grained location may be revealed

Common element: ordering of events...
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Policies
Policy:  form @ lvl
• Formula form identifies an event in a trace
• Policy stipulates security level lvl of that event
• e.g., ”any event on c2" @ public
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c1:v1 c2:v2 c3:v3 c4:v4

Formulas:  
¡ based on quantified linear-time temporal logic (QTL) 

[Lichtenstein et al. 1985]
¡ customized to GUI interactions

c2:v2



Our temporal logic

f ::= e 

| ¬f | f1∧ f2 | f1∨ f2

| X f | F f | G f | P f | f1 U f2 | f1 S f2

| ∀x . f | ∃x . f
e ::=name : t

t ::=x | v 
v ::=int | true | false | unit
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Our temporal logic

f ::= e 
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Temporal connectives

Connective Meaning
X	f f will	be	true	next
F	f f will	hold	in	the	future	(at	some	time)
P	f f held	in	the	past	(at	some	time)
G	f f holds	globally	(at	all	times	in	the	future)
f U	y f will	be	true	until y is	true
f S	y f has	been	true	since	y was	true
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Our temporal logic
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Our temporal logic

f ::= e 
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Our temporal logic

f ::= e 

| ¬f | f1∧ f2 | f1∨ f2

| X f | F f | G f | P f | f1 U f2 | f1 S f2

| ∀x . f | ∃x . f
e ::=name : t

t ::=x | v
v ::=int | true | false | unit
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Our temporal logic

Other extensions:
• Wildcard term *

chan:* is any event on chan

• Last event on a channel
last(chan, t) means last event on chan had value t
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Bump app policy

Intuition:  phone number may be revealed when 
Send button is clicked if phone number checkbox 
is checked

phone:*
∧ F(sendButton:unit

∧ last(phoneBox,true)) 

@ public
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Bump app policy

Intuition:  phone number may be revealed when 
Send button is clicked if phone number checkbox 
is checked

phone:*
∧ F(sendButton:unit

∧ last(phoneBox,true)) 

@ public
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Bump app policy

Intuition:  phone number may be revealed when 
Send button is clicked if phone number checkbox 
is checked

phone:*
∧ F(sendButton:unit

∧ last(phoneBox,true)) 

@ public
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Bump app policy

Intuition:  phone number may be revealed when 
Send button is clicked if phone number checkbox 
is checked

phone:*
∧ F(sendButton:unit

∧ last(phoneBox,true)) 

@ public
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Bump app policy

Intuition:  phone number may be revealed when 
Send button is clicked if phone number checkbox 
is checked

phone:*
∧ F(sendButton:unit

∧ last(phoneBox,true)) 

@ public
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...and	eventually	
send	button	clicked...

If	current	input	is	
phone	number...

...then	value	of	
phone	number	is	
public.
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number	box	
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Bump app policy

phone:*
∧ F(sendButton:unit

∧ last(phoneBox,true)) 

@ public

Constrains when secret information is read:
• If phone number read after button clicked,
• then formula would not hold,
• hence security level remains secret
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Location app policy

gps:*∧ last(radio,"fine") @ public, 
gps:*∧ last(radio,"coarse") @ mask

• set of policies
• security level mask between public and secret
– characterizes what attacker may observe
– security condition makes use of level...
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SECURITY CONDITION
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Security condition

• Noninterference [Goguen and Meseguer 1982]:
actions of high-security users do not affect 
observations of low-security users

• Intuition, as commonly adapted to programs:  
changes to secret inputs do not cause observable 
change in public output
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Security condition

Interaction-based noninterference (IBNI)
• Our new noninterference property
• Intuition:  two event traces with the same public 

input events have the same public output events
• Builds on observational determinism [Zdancewic

and Myers 2003]
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IBNI with insecure bump app

Insecure variant of bump app:
• releases phone number when 

email address checked
• and vice-versa
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IBNI with insecure bump app
Two possible traces:
• email:a@b.com, phone:202-555-0000, 

phoneBox:false, emailBox:true, 
sendButton:unit, netout:202-555-0000

• email:a@b.com, phone:202-555-1337, 
phoneBox:false, emailBox:true, 
sendButton:unit, netout:202-555-1337

Policy:
phone:*∧ F(sendButton:unit ∧ last(phoneBox,true)) @ public
email:*∧ F(sendButton:unit ∧ last(emailBox,true))  @ public
phoneBox:* @ public, emailBox:* @ public, sendButton:* @ public
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IBNI with insecure bump app
Two possible traces:
• email:a@b.com, phone:202-555-0000, 

phoneBox:false, emailBox:true, 
sendButton:unit, netout:202-555-0000

• email:a@b.com, phone:202-555-1337, 
phoneBox:false, emailBox:true, 
sendButton:unit, netout:202-555-1337

Policy:
phone:*∧ F(sendButton:unit ∧ last(phoneBox,true)) @ public,
email:*∧ F(sendButton:unit ∧ last(emailBox,true))  @ public,
phoneBox:* @ public, emailBox:* @ public, sendButton:* @ public

Labeling:  netout and GUI events are public, but phone and email aren't37



IBNI with insecure bump app
Two possible traces:
• email:a@b.com, phone:202-555-0000, 

phoneBox:false, emailBox:true, 
sendButton:unit, netout:202-555-0000

• email:a@b.com, phone:202-555-1337, 
phoneBox:false, emailBox:true, 
sendButton:unit, netout:202-555-1337

IBNI:  not satisfied
• two traces
• same public inputs
• different public outputs
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PROTOTYPE
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Prototype tool
ClickRelease:  

• Our implementation of IBNI 
checking for Android

• Based on SymDroid [Jeon et al. 
2012]:  symbolic executor for 
Dalvik bytecode

• Itself based on Z3 [de Moura and 
Bjørner 2008]: SMT solver
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Symbolic execution

[Clarke 1976, King 1976]
• Motivated by software testing:

– Goal is to check programs for presence of errors
– And generate inputs that would trigger errors
– Errors can be debugged and fixed

• Key idea:  symbolic values
– e.g. a instead of 5
– Program variables and expressions can be symbolic

• Symbolic executor explores all paths of program execution
– Execution path:  the sequence of branches taken during execution
– Goal is to find a concrete input that triggers each possible execution path
– Might not be complete:  explore up to some resource bound
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Symbolic execution

• Maintain a list of program states each of which corresponds to a 
particular point of execution

• State comprises:
– memory:  maps variables, heap locations, etc. to symbolic 

values
– path condition: logical formula that captures what branches 

have been taken to reach current program point
– program counter:  next statement to execute

• Start with a single state (initial memory, path condition 
is simply true)
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Symbolic execution algorithm
• Take a state off the list
• Execute the next program statement
– Assignment:  update memory with symbolic result, add 

resulting state back to the list
– If statement with guard e:  add two states back to the list

• one has path condition updated with "and e"
• other updated with "and not e"

– Loops:  can lead to infinite number of paths to explore; 
must bound somehow (timeout, iterations, exploration 
depth, etc.)

– Function calls:  need code, specification, or must treat 
symbolically
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Symbolic execution algorithm
• If path condition ever becomes unsatisfiable, no 

reason to explore further; terminate along that 
path

• If program exits or encounters error:
– Symbolic execution terminates
– Path condition sent to satisfiability solver to find concrete 

inputs that would lead to that path
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Symbolic execution of Android
• SymDroid [Jeon et al. 2012]:  
– Java source code of Android apps compiled into 

Dalvik bytecode
– SymDroid is symbolic executor for Dalvik

• Android is more than just bytecode:
– Libraries, some written in native code
– System services (telephony, GPS, etc.)
– Entry points and callbacks into apps (apps register 

components that respond to Intents – not just a 
main function)
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Symbolic execution of Android

• SymDroid models instead of executing Android 
platform code
– Model can be written in Java or in OCaml (SymDroid's source 

language)
– Handles about 25% of the Android Compatibility Test Suite 

(CTS); failed cases are all because of unmodeled system 
libraries; open challenge how to fully model

• Model includes:
– Generating clicks in GUI
– GUI events from widgets (buttons, check boxes, etc.)
– Services (telephony, GPS, etc.)
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Symbolic execution of GUI

• Problem:  
– Not just a single input at beginning of execution
– Instead, apps receive streams of inputs from user
– So need to simulate user

• Solution:
– Custom driver for each app
– Calls methods in Android model to inject GUI events
– Driver runs a loop that nondeterministically picks a new event 

to inject
– Performance of symbolic execution is exponential in input 

depth:  number of iterations of loop
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EVALUATION
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Apps

1. Bump app:  Phone number may be revealed when 
Send button is clicked if phone number checkbox is 
checked
Insecure variants:  release email instead; always release phone 
after three more clicks

2. Contact picker:  Currently selected contact from a 
spinner may be revealed, but no others
Insecure variants:  scan contact list to release particular one in 
addition to selected contact; release different contact than 
selected
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Apps

3. Location toggle:  Phone's fine-grained GPS location 
may be revealed when fine-grained checkbox is 
checked; otherwise, coarse-grained location may be 
revealed
Insecure variants:  always release fine-grained; store fine-grained 
and release it later even if coarse checked

4. WhereRU: Phone's location may be revealed always, 
never, or on demand, based on chosen radio button
Insecure variants:  always share regardless; share location from 
past when choice might have been different
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Scalability
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(4-core i7 CPU @3.5GHz, 16GB RAM, Ubuntu 14, median of 10 runs)

For four apps, can explore input depth of 5-9 events within an hour



Scalability

• Small counter model hypothesis:  if there are bugs, they are likely 
to be revealed by some short sequence of inputs

• Holds for our apps:  need only 2-5 inputs for each to reveal an 
illegal information flow

• And we can completely explore that space within an hour
• So even though complexity is exponential, finding security 

violations is relatively efficient
• Scaling up?  Larger apps will need:

– more complete Android model
– larger counterexamples
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CONCLUSION
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Summary

• Policies for capturing user intent
• Formal security condition called Interaction-

Based Noninterference (IBNI)
• Prototype tool ClickRelease that checks Android 

apps
• Evaluation of some apps and policies
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Related work

• Access control gadgets [Roesner et al. 2012]
• AppIntent [Yang et al. 2013]
• Pegasus [Chen et al. 2013]

• DIFC for Android [Jia et al. 2013]
• SIF [Chong et al. 2007]
• Cassandra [Lortz et al. 2014]
• Declassification policies [Chong and Myers 2004]
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Upcoming events

• [now] Course wrapup

If secrecy is the beginning of tyranny, 
declassification is its apotheosis. – John Alejandro 

King



FORMAL DEFINITION OF IBNI



Security condition

Interaction-based noninterference (IBNI)
Toward a formal definition:
• Represent program as a set T of event traces; formal semantics 

defines that set 
• Define function label(t,pol) to label each event in trace with its 

security level according to policy pol
• Define equivalence relation ≡S on labeled traces: t1 ≡S t2 if 

observer cleared at level S perceives traces as having the same 
events

• Define function inputs(t) to project out only the input events 
from a trace (labeled or unlabeled)
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IBNI

Definition of IBNI:  
Program T satisfies IBNI for security policy pol if:
for all traces t1 and t2 in T, and for all security levels S,

letting l1=label(t1,pol) and l2=label(t2,pol),
it holds that 

inputs(l1) ≡S inputs(l2) implies l1 ≡S l2.

Structure of this definition is entirely standard
Interesting part is label...

59



IBNI

label(t, pol) = 
(t[0], level(t, pol, 0)), (t[1], level(t, pol, 1)), ...

level(t, pol, i) =
if t[i] = netout : p then public
else
form the set of all levels S 

such that f@S in pol and f holds at t[i];
return the lowest-security element of that set
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IBNI

label(t, pol) = 
(t[0], level(t, pol, 0)), (t[1], level(t, pol, 1)), ...

level(t, pol, i) =
if t[i] = netout : p then public

else ⨅ f@S ∊ pol {S | t,i ⊨ f}

relation ⊨ is essentially standard QTL
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IBNI

Definition of IBNI:  

Program T satisfies IBNI for security policy pol if:
for all traces t1 and t2 in T, and for all security levels S,

letting l1=label(t1,pol) and l2=label(t2,pol),
it holds that 

inputs(l1) ≡S inputs(l2) implies l1 ≡S l2.
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