CS 5430

Information Flow in Android Apps

Prof. Clarkson
Spring 2017

ClickRelease

* Prototype tool [Micinski, Fetter-Degges, Jeon, Foster,
Clarkson 2015]

* Checks whether Android apps obey users' intent when
declassifying confidential information
— Intent expressed through GUI interactions
— Declassification policies: based on formal logic
— Information could include contact details, GPS location, ...

Android

* Popular mobile platform

* Authorization regulated with
permissions

— e.g., camera, read contacts, write contacts,
access fine location, access coarse location,
read phone state, write call log, ...

— Specified by developer

— Requested from user during installation
(before Android 6.0 Oct 2015)

Permissions

e Weaknesses:

— Trojan horse: app maliciously requests permissions it
doesn't need, user grants, app abuses permission

— Programmer mistakes: app wrongly releases user's
sensitive information

* Permissions provide access control not
information-flow control

* Control access to a resource,

Bump app

e User checks “Email”

emailz PJ| ¢ Clicks "Send”
Number? [] * App sends user's email address

over network

email

Bump app — Buggy or malicious

 User checks

“Email”

emailz PJ| ¢ Clicks "Send”

Number?]| ¢ App sends user's phone number

over networ

* Worse yet: a

iInformation

phone

<

pp sends all the

user's private contact

over network

Our solution

* Policies for capturing user intent

* Formal security condition called Interaction-
Based Noninterference (IBNI)

* Prototype tool ClickRelease that checks Android
apps
* Evaluation of some apps and policies

POLICIES

Declassification policies

* GUI interactions generate events

* Events have security level: public, secret, ...

* Use a temporal logic to specify when an event
may be declassified to lower level because of user
Intent

Events

* Security-relevant actions taken by user and app
— GUI interactions: buttons, check boxes, ...

— Writes and reads by app: network, stored data, ...
* Each event comprises channel and value

* In source code, correspond to method calls
— GUI: handler registered to receive callback
— Write and reads: API calls

Execution of app produces many such method calls

We abstract them to an event trace...

Event trace for bump app

email

Emai? B

Number? []

App initializes, reads contacts
User checks “Email”
Clicks "Send"

App sends user's email address
over network

11

Event security

* Security level: how confidential event is (could
be a lattice)

* Threat model:
— Public events may be revealed to attacker
— Secret events may not

— Attacker's only means to observe app is network, so
writes to netout are public

* Policy determines security level of event...
(default: secret)

Policies

Examples:

1. Bump app: Phone number may be revealed when Send button
is clicked if phone number checkbox is checked

2. Location app: ...

Location app policy

* Intuition: Phone's fine-grained
GPS location may be revealed
when fine is checked; otherwise,
coarse-grained location may be
revealed

Coarse * Coarse-grained: mask lower 8
bits

14

Policies

Examples:
1. Bump app: Phone number may be revealed when Send button
is clicked if phone number checkbox is checked

2. Location app: Phone's fine-grained GPS location may be
revealed when fine-grained checkbox is checked; otherwise,

coarse-grained location may be revealed

Common element: ordering of events...

Policies

Policy: form @ Ivl
* Formula form identifies an event in a trace
* Policy stipulates security level Ivl of that event

* eg, anyeventon c2" @ public

cl:vl c3:v3 c4d:v4

Formulas:

O based on quantified linear-time temporal logic (QTL)
[Lichtenstein et al. 1985]

O customized to GUI interactions y

Our temporal logic

0) n= e
_'(|)|(|)1A(|)2‘(|)1\/(|)2
XO[FO|GO[PO|d U, |50,

Vx.o| Ix.0
e u=name : t
t n=X | v

v u=int|true| false|unit

Our temporal logic

_'(|)|(|)1A(|)2‘(|)1\/¢2
XO|FO|GO[PO|d,Ub,| S0P,

Vx.¢| dx.d
e :=name : t
t n=X | v

v u=int|true| false|unit

Our temporal logic
0) t= e

_'(|)|(|)1A(|)2‘(|)1\/(|)2 !

XO|FO|GO[PO|dUb,| PSP,

Vx.¢| dx.d
e :=name : t
t n=X | v

v u=int|true| false|unit

Temporal connectives

X O ¢ will be true next

Fo ¢ will hold in the future (at some time)

P ¢ ¢ held in the past (at some time)

G O ¢ holds globally (at all times in the future)
o Uy ¢ will be true until vy is true

oSy ¢ has been true since y was true

Our temporal logic

0) t= e
_'(|)|(|)1A(|)2‘(|)1\/(|)2
XO|FO[GO|PO|d,Ud,| S0,

Vx.¢| Ix.
e u=name : t

t n=X | v

v u=int|true| false|unit

Our temporal logic

0) t= e
_'(|)|(|)1A(|)2‘(|)1\/(|)2
XO[FO[GO[PO]|d,Ud, |05,
Vx.¢| Ix.

t n=X | v

v ==int|true| false|unit

Our temporal logic
(I) = o ‘

_'(|)|(|)1A(|)2‘(|)1\/(|)2
XO|FO|GO[PO|d,Ub,| S0P,

Vx.¢| dx.d
e :=name : t
t n=X | v

v u=int|true| false|unit

Our temporal logic

Other extensions:
e Wildcard term *

chan:* Isanyevent on chan

 Last event on a channel

last(chan, t) means last event on chan had value t

24

Bump app policy

Intuition: phone number may be revealed when
Send button is clicked if phone number checkbox

Is checked

phone: *
/\ F(sendButton:unit
/\ last(phoneBox,true))

@ public

25

Bump app policy

Intuition: phone number may be revealed when
Send button is clicked if phone number checkbox

Is checked ‘

phone: *
/\ F(sendButton:unit
/\ last(phoneBox,true))

@ public

26

Bump app policy

Intuition: phone number may be revealed when
Send button is clicked if phone number checkbox

Is checked ‘

/\ F(sendButton:unit
/\ last(phoneBox,true))

@ public

27

Bump app policy

Intuition: phone number may be revealed when
Send button is clicked if phone number checkbox

Is checked ‘

/\ F(sendButton:unit
A last(phoneBox,true))

@ public

Bump app policy

Intuition: phone number may be revealed when
Send button is clicked if phone number checkbox

Is checked ‘

phone: *
/\ F(sendButton: unit
A last(phoneBox, true))

Bump app policy

phone: *
/\ F(sendButton:unit

/\ last(phoneBox,true))
@ public

Constrains when secret information is read:
* If phone number read after button clicked,
 then formula would not hold,

* hence security level remains secret

30

Location app policy

* set of policies

* security level between public and secret
— characterizes what attacker may observe

— security condition makes use of level...

SECURITY CONDITION

Security condition

* Noninterference [Goguen and Meseguer 1982]:
actions of high-security users do not affect
observations of low-security users

* Intuition, as commonly adapted to programs:
changes to secret inputs do not cause observable
change in public output

secl —— sec2
pub — P 5 out pub

A4

=

——> out

Security condition

Interaction-based noninterference (IBNI)
* Our new noninterference property

* Intuition: two event traces with the same public
input events have the same public output events

* Builds on observational determinism [Zdancewic
and Myers 2003]

34

IBNI with insecure bump app

Insecure variant of bump app:

Emai? B

Number? []

* releases phone number when
email address checked

* and vice-versa

35

IBNI with insecure bump app

Two possible traces:

° email:a@b.com, phone:202-555-0000,
phoneBox:false, emailBox: true,
sendButton:unit, netout:202-555-0000

* email:a@b.com, phone:202-555-1337,
phoneBox:false, emailBox: true,
sendButton:unit, netout:202-555-1337

Policy:

phone: * /\ F(sendButton:unit /\ last(pho
email:* /\ F(sendButton:unit A\ emailBox,true)) @ public
phoneBox: * @ public,emailBox: * @ public, sendButton: * @ public

x,true)) @ public

36

IBNI with insecure bump app

Two possible traces:

Policy:

phone:* /\ F(sendButton:unit /\ last(phoneBox,true)) @ public,
email:* /\ F(sendButton:unit /\ last(emailBox,true)) @ public
phoneBox: * @ public,emailBox: * @ public, sendButton: * @ public

Labeling: netout and GUI events are , but phone and email aren't,

IBNI with insecure bump app

Two possible traces:

IBNI:

* two traces
* same

e different

PROTOTYPE

Prototype tool

ClickRelease;

* Our implementation of IBNI
checking for Android

* Based on SymDroid [Jeon et al.
2012]: symbolic executor for
Dalvik bytecode

* |tself based on Z3 [de Moura and
Bjorner 2008]: SMT solver

40

Symbolic execution

[Clarke 1976, King 1976]

* Motivated by software testing:
— Goal is to check programs for presence of errors
— And generate inputs that would trigger errors
— Errors can be debugged and fixed

* Key idea: symbolic values
— e.g. ainstead of 5
— Program variables and expressions can be symbolic
* Symbolic executor explores all paths of program execution
— Execution path: the sequence of branches taken during execution
— Goal is to find a concrete input that triggers each possible execution path
— Might not be complete: explore up to some resource bound

Symbolic execution

* Maintain a list of program states each of which corresponds to a
particular point of execution

* State comprises:

— memory: maps variables, heap locations, etc. to symbolic
values

— path condition: logical formula that captures what branches
have been taken to reach current program point

— program counter: next statement to execute

* Start with a single state (initial memory, path condition
is simply true)

Symbolic execution algorithm

e Take a state off the list

* Execute the next program statement

— Assignment: update memory with symbolic result, add
resulting state back to the list

— If statement with guard e: add two states back to the list
* one has path condition updated with "and e"

* other updated with "and not e"

— Loops: can lead to infinite number of paths to explore;
must bound somehow (timeout, iterations, exploration
depth, etc.)

— Function calls: need code, specification, or must treat
symbolically

Symbolic execution algorithm

* If path condition ever becomes unsatisfiable, no
reason to explore further; terminate along that
path

* If program exits or encounters error:

— Symbolic execution terminates

— Path condition sent to satisfiability solver to find concrete
inputs that would lead to that path

Symbolic execution of Android

* SymDroid [Jeon et al. 2012]:

— Java source code of Android apps compiled into
Dalvik bytecode

— SymDroid is symbolic executor for Dalvik

* Android is more than just bytecode:
— Libraries, some written in native code
— System services (telephony, GPS, etc.)

— Entry points and callbacks into apps (apps register
components that respond to Intents — not just a
main function)

Symbolic execution of Android

* SymDroid models instead of executing Android
platform code

— Model can be written in Java or in OCaml (SymDroid's source
language)
— Handles about 25% of the Android Compatibility Test Suite

(CTS); failed cases are all because of unmodeled system
libraries; open challenge how to fully model

* Model includes:
— Generating clicks in GUI
— GUI events from widgets (buttons, check boxes, etc.)
— Services (telephony, GPS, etc.)

Symbolic execution of GUI

* Problem:
— Not just a single input at beginning of execution
— Instead, apps receive streams of inputs from user
— So need to simulate user

* Solution:
— Custom driver for each app
— Calls methods in Android model to inject GUI events
— Driver runs a loop that nondeterministically picks a new event
to inject
— Performance of symbolic execution is exponential in input
depth: number of iterations of loop

EVALUATION

Apps

1. Bump app: Phone number may be revealed when
Send button is clicked if phone number checkbox is
checked

Insecure variants: release email instead; always release phone
after three more clicks

2. Contact picker: Currently selected contact from a
spinner may be revealed, but no others

Insecure variants: scan contact list to release particular one in
addition to selected contact; release different contact than

selected

Apps

3. Location toggle: Phone's fine-grained GPS location
may be revealed when fine-grained checkbox is
checked; otherwise, coarse-grained location may be
revealed
Insecure variants: always release fine-grained; store fine-grained
and release it later even if coarse checked

4. WhereRU: Phone's location may be revealed always,
never, or on demand, based on chosen radio button

Insecure variants: always share regardless; share location from
past when choice might have been different

Scalability

Bump Contact Picker
10000 10000 -
— Benign — Benign
nsecure 1 nsecure 1
1000 1 | — Insecure 2 1000 { | — Insecure 2
0 100 - 0 100 -
(b} ()
E 10- £ 10-
T -
-}
D::; 1 oC 1 -
1 1
01- 01 -
2846675809 1238456783
Events # Events

(4-core i7 CPU @3.5GHz, 16GB RAM, Ubuntu 14, median of 10 runs)

Scalability

* Small counter model hypothesis: if there are bugs, they are likely
to be revealed by some short sequence of inputs

* Holds for our apps: need only 2-5 inputs for each to reveal an
illegal information flow

* And we can completely explore that space within an hour

* Scaling up? Larger apps will need:
— more complete Android model

— larger counterexamples

CONCLUSION

Summary

* Policies for capturing user intent

* Formal security condition called Interaction-
Based Noninterference (IBNI)

* Prototype tool ClickRelease that checks Android
apps
* Evaluation of some apps and policies

Related work

* Access control gadgets [Roesner et al. 2012]
* Applntent [Yangetal. 2013]

* Pegasus [Chenetal. 2013]
* DIFC for Android [Jia et al. 2013]
* SIF [Chong et al. 2007]

e Cassandra [Lortz et al. 2014]

* Declassification policies [Chong and Myers 2004]

55

Upcoming events

* [now] Course wrapup

FORMAL DEFINITION OF IBNI

Security condition

Interaction-based noninterference (IBNI)

Toward a formal definition:

Represent program as a set T of event traces; formal semantics
defines that set

Define function label(t,pol) to label each event in trace with its
security level according to policy pol

Define equivalence relation = on labeled traces: t1 = t2 if
observer cleared at level S perceives traces as having the same
events

Define function inputs(t) to project out only the input events
from a trace (labeled or unlabeled)

IBNI

Definition of IBNI:
Program T satisfies IBNI for security policy pol if:
for all traces t1and t2 in T, and for all security levels S,

letting |1=label(t1,pol) and [2=label(t2,pol),
it holds that
inputs(I1) =¢ inputs(12) implies 11 =¢ 12.

Structure of this definition is entirely standard

Interesting part is label...

59

IBNI

label(t, pol) =
(t[0], level(t, pol, 0)), (t[1], level(t, pol, 1)), ...

level(t, pol, i) =
if t[i] = netout: p then public
else
form the set of all levels S
such that f@S in pol and f holds at t[i];
return the lowest-security element of that set

IBNI

label(t, pol) =
(t[0], level(t, pol, 0)), (t[1], level(t, pol, 1)), ...

level(t, pol, i) =
if t[i] = netout: p then public

tiF ¢}

else [y@s € por 19

relation F is essentially standard QTL

IBNI

Definition of IBNI:
Program T satisfies IBNI for security policy pol if:
for all traces t1and t2 in T, and for all security levels S,

letting |1=label(t1,pol) and [2=label(t2,pol),
it holds that
inputs(l1) =¢ inputs(12) implies 11 =¢ 12.

62

