CS 5430

Information flow control (2)

Elisavet Kozyri
Spring 2017

Review: Static type system

['He:X L Uctx ST (x)

I, ctxt x:=e

'He:X ', Uctxtel [',2 U ctxt c2

I',ctxH1f e then cl else c2

['Fe:? ', U ctxk c

I', ctxwhile e do c

I', ctxcl I, ctxt c2

', ctxtcl;c2

Soundness of type system

I'ctx Fec = c satisfies NI

Noninterference V£

* Green labels are considered “low”
with respect to £.

* Red labels are considered “high”
with respect to £.

* Values tagged with red labels
should not flow to values tagged
with green labels.

Soundness of type system

* Noninterference:
— VQ Ml =R Mz = C(Ml) =R C(Mz)
— where M; =p M, denotes equality on all variables tagged
with £' E £, and
— c(M;) =p c(M;) denotes equality on all outputs tagged
with £' E 4.
e ['ctx Fc = c satisfies NI

* The same type system can enforce noninterference for
labels from an arbitrary lattice, for either
confidentiality or integrity!

Limitations of the type system

'WARNING |

%

CHALLENGES
 AHEAD

This type system does not prevent leaks
through covert channels.

Example of covert channel:
while s !'= 0 do { //nothing };
0P - =1

here s is a secret variable (i.e, I'(s)=H) and
p is a public variable (i.e., I'(p)=L).

* How to represent "do nothing" in our little
imperative language?

— skip command

—le,while s !'= 0 do skip

— Typing rule: I',ctx - skip

This type system does not prevent leaks
through covert channels.

xample of covert channel:

while s !'= 0 do skip;

here s is a secret variable and p is a public variable.
* If s'=0is true then p : =1 is never executed.
— No public output!
* If s!'=0is false then p becomes 1.
— One public output!

* The termination behavior of the program is used as a
covert channel, which leaks s ' = 0 to public outputs!

This type system does not prevent leaks
through covert channels.

Example of covert channel:
while s !'= 0 do skip;
p:=1
where s is a secret variable and p is a public variable.

* The program leaks over covert channel.
— It does not satisfy termination sensitive noninterference.

* But, the program is type correct.
— |t satisfies (vanilla) noninterference.

A solution

* To prevent covert channels due to infinite loops,

* strengthen the typing rule for while-statement, to
allow only low guard expression:

-e:\L ', ctxc

I', ctxwhile e do c

* Now, type correctness implies termination sensitive NI.

* But, the enforcement mechanism becomes overly
conservative.

e Another solution? Research!

Limitations of the type system

WARNING

3 ,.$\\\\
()
&

MORE ’iCHAI.lENGES:
~ AHEAD

11

This type system is not complete.

e ¢ satisfies noninterference & I, ctx ¢

— There is a command ¢, such that noninterference is
satisfied, but ¢ is not type correct.

* Example:
—I'(x) = {Alice}, I'(y) = {Alice, Bob}
—c is 1f x>0 then y:=1 else y:=1
— ¢ satisfies noninterference, because x does not leak
to y.
— ¢ is not type correct, because I'(x) £ I'(y).

This type system is not complete.

* Another example:
— I'(x) = {Alice}, I'(y) = {Alice, Bob}
—c iIs 1f 1=1 then y:=1 else y:=x
— ¢ satisfies noninterference, because x does not leak to y.
— ¢ is not type correct, because I'(x) &£ I'(y).
* So, this type system is conservative.
It has false positives:

— There are programs that satisfy noninterference, but they
are not type correct.

This type system has false positives.

| ...GREAT News!
YOU'RE PREGNANT!!!

o -

_—__/

Can we build a complete mechanism?

* |s there an enforcement mechanism for information
flow control that has no false positives?

— A mechanism that rejects only programs that do not
satisfy noninterference?

* NoO! [Sabelfeld and Myers, 2003]

— “The general problem of confidentiality for programs is
undecidable.”

— The halting problem can be reduced to the information
flow control problem.

— Example:
if s>1 then c; p:=2 else skip

* If we could precisely decide whether this program is secure, we
could decide whether c terminates!

Can we build a mechanism with fewer
false positives?

Switch from static to dynamic mechanisms!

From static to dynamic enforcement
mechanisms

* Dynamic mechanisms use run time information to
decrease false positives.

* A dynamic mechanism checks/deduces labels along

the execution:

— When an assignment x : =e is executed,

* either check whether I'(e) U ctx E I'(x) holds,
— The execution of a program is halted when a check fails.

e or deduce I'(x) such that I'(e) U ctx E I'(x) holds.

— When execution enters a conditional command, the
mechanism augments ctx with the label of the guard.

From static to dynamic enforcement
mechanisms

Under a dynamic enforcement mechanism with fixed I,
where I'(x) = {Alice}, I'(y) = {Alice, Bob},
command

if 1=1 then y:=1 else y:=x
would always be executed to completion,

because dynamic check I'(1) U I'(1=1) C I'(y) always
succeeds,

and because branch y : =x is never taken.

Remember: the static type system rejects this program
before execution, even though the program is secure!

But, there is a caveat...

* A dynamic mechanism may leak information
— when deducing labels during execution, or

— when deciding to halt an execution due to a failed
check.

Leaking through labels

* Flow-sensitivelabels: I' changes during analysis.
Initially: I'(x) = L,I'(y) = L I'(h) = H

x:=0;
if h>0 then x:=1 else skip
°°y:=x

* At termination, whenh*»0:T'(y) = T'(x) = L.
— One public output.

At termination, when h>0:T'(y) = I'(x) = H.
— No public output.

* So, h>0 is leaked to public outputs.

* Problem: Even though h flows to %, x is tagged with H only
when h>0.

Leaking through labels

* Purely dynamic mechanisms are usually unsound.

* Purely dynamic mechanism with additional
restrictions can become sound:

— Restriction: Stop execution whenever the guard
expression of a conditional command is high.

— But, the resulting mechanism is more conservative
than desired.

* Alternatively...

Use on-the-fly static analysis

* Use on-the-fly static analysis to update the labels
of target variables in untaken branch.

* The resulting mechanism is sound and less
conservative.

Use on-the-fly static analysis

Problem: x was tagged with H only when h>0 was true,

even though h always flow to x.
Goal: x should be tagged with H at every execution.

x:=0;
if h>0 then x:=1 else skip

h>0 | IS
evaluated
to false

Use on-the-fly static analysis

x:=0;
if h>0 then x:=1 else skip

|

Execute
taken
branch.

24

Use on-the-fly static analysis

x:=0;
if h>0 then| x:=1 |else skip

On-the-fly static analysis: ‘

I'(x) =T(1) urth>0) =H | |Apply on-the-fly
static analysis to
the untaken
branch.

25

Use on-the-fly static analysis

Goal: x should be tagged with H at every execution. l

x:=0;
if h>0 then x:=1 else skip

|

[(x) = H

But, there is a caveat...

* A dynamic mechanism may leak information

— when deciding to halt an execution (because a check
on labels failed).

Leaking through halting execution

* Consider fixed I': T'(p)=L and I'(s)=H.
* Consider program:

p:=0;
if s>0 then p:=1 else s:=1;
O
P =2

e |If s>0is true then execution is halted.
— No public output.

* If s>0 is false then execution terminates normally.
— One public output.

* Thus, s>0 is leaked to public outputs.
* How can we solve this problem? Research!

Static versus Dynamic

* Static:
— Low run time overhead.
— No new covert channels.
— More conservative.

* Dynamic
— Increased run time overhead.
— Possible new covert channels.
— Less conservative.

* Ongoing research for both static and dynamic.

— Different expressiveness of policies, different NI versions,
different mechanisms.

Past and current research on static
analysis

* [Denning and Denning 1977]

* VSI type system [Volpano, Smith, and Irvine
1996]

* Jif [Myers 1999] Java + Information Flow
(originally JFlow)

* FlowCaml [Simonet 2003] OCaml + Information
Flow

e Aura, PCMLS5, Fine, ...

30

J

f

class passwordFile autharity(root) {
public boolean
check (String user, String password)
where authority(root) {
// Return whether password is correct
boolean match = false;
try {
for (inti = 0; i < names.length; i++) {
if (names|i] == user &&
passwords[i] == password) {
match = true;
break;

}
}

catch (NullPointerException e) {}
catch (IndexOutOfBoundsException e) {}
return declassify(match, {user; password});

private String [| names;
private String { root: } [| passwords;

}

Jif
class passwordFile autharity(root) {
public boolean
check (String user, String password)
where authority(root) {
// Return whether password is correct
boolean match = false;
try {
for (inti = 0; i < names.length; i++) {
if (names|i] == user &&

passwords[i] == password) {
match = true;
Security type:) break;
only root may }
learn catch (NullPointerException) {}
information in catch (IndexOutOfBoundsException e) {}

o rn declassify(match, {user; password});
this field

private g [] names;
private String { root: } [| passwords;

Jif
class passwordFile autharity(root) {
public boolean
check (String user, String password)
where authority(root) {
// Return whether password is correct
boolean match = false;
try {
for (inti = 0; i < names.length; i++) {
if (names|i] == user &&

Declassification:

okay to leak passwords[i] == password) {
match = true;
whether break;

password }

matches
NullPointerException e) {}

R ndexOutOfBoundsException e) {}
return declassify(match, {user; password});

private String [| names;
private String { root: } [| passwords;

Past and current research on dynamic
analysis

* RIFLE (ISA) [Vachharajani et al. 2004]

* HiStar (OS) [Zeldovich et al. 2006]

e Trishul JVM) [Nair et al. 2008]

* TaintDroid (Android) [Enck et al. 2010]
e LIO (Haskell) [Stefan et al. 2011]

34

Information flow control:
the wheels for security!

9 E)
//fl ‘.“’Q// X

35

Upcoming events

* [Wednesday] A6 due
* [May 18] Final exam

