
CS 5430

Information flow control (2)

Elisavet Kozyri
Spring 2017

Review: Static type system

G , 𝑐𝑡𝑥⊢ x:=e

G ⊢ e : ℓ ℓ ⊔ 𝑐𝑡𝑥 ⊑ G(x)

G , 𝑐𝑡𝑥⊢ if e then c1 else c2

G ⊢ e : ℓ G , ℓ ⊔ 𝑐𝑡𝑥⊢ c1 G , ℓ ⊔ 𝑐𝑡𝑥⊢ c2

G , 𝑐𝑡𝑥⊢ while e do c

G ⊢ e : ℓ G , ℓ ⊔ 𝑐𝑡𝑥⊢ c

G , 𝑐𝑡𝑥⊢ c1;c2

G , 𝑐𝑡𝑥⊢ c1 G , 𝑐𝑡𝑥⊢ c2

2

Soundness of type system

G,𝑐𝑡𝑥 ⊢ c ⇒ c satisfies NI

3

Noninterference ∀ℓ

4

ℓ

ℓ′

ℓ′′

• Green labels are considered “low”
with respect to ℓ.

• Red labels are considered “high”
with respect to ℓ.

• Values tagged with red labels
should not flow to values tagged
with green labels.

⊑

ℓ’’

ℓ’

ℓ’’

ℓ’

Soundness of type system

• Noninterference:
– ∀ℓ: 𝑀1 =ℓ 𝑀2 ⇒ c 𝑀1 =ℓ c 𝑀2

– where 𝑀1 =ℓ 𝑀2 denotes equality on all variables tagged
with ℓ′ ⊑ ℓ, and

– c 𝑀1 =ℓ c 𝑀2 denotes equality on all outputs tagged
with ℓ′ ⊑ ℓ.

• G,𝑐𝑡𝑥 ⊢ c ⇒ c satisfies NI

• The same type system can enforce noninterference for
labels from an arbitrary lattice, for either
confidentiality or integrity!

5

Limitations of the type system

6

This type system does not prevent leaks
through covert channels.

Example of covert channel:

while s != 0 do { //nothing };

p:=1

where s is a secret variable (i.e., Γ(s)=Η) and
p is a public variable (i.e., Γ(p)=L).

• How to represent "do nothing" in our little
imperative language?
– skip command

– i.e., while s != 0 do skip

– Typing rule: G,ctx ⊢ skip
7

This type system does not prevent leaks
through covert channels.
Example of covert channel:

while s != 0 do skip;

p:=1

where s is a secret variable and p is a public variable.

• If s!= 0 is true, then p:=1 is never executed.
– No public output!

• If s!= 0 is false, then p becomes 1.
– One public output!

• The termination behavior of the program is used as a
covert channel , which leaks s!= 0 to public outputs!

8

This type system does not prevent leaks
through covert channels.

Example of covert channel:

while s != 0 do skip;

p:=1

where s is a secret variable and p is a public variable.

• The program leaks over covert channel.
– It does not satisfy termination sensitive noninterference.

• But, the program is type correct.
– It satisfies (vanilla) noninterference.

9

A solution

• To prevent covert channels due to infinite loops,

• strengthen the typing rule for while-statement, to
allow only low guard expression:

• Now, type correctness implies termination sensitive NI.

• But, the enforcement mechanism becomes overly
conservative.

• Another solution? Research!
10

G , 𝑐𝑡𝑥⊢ while e do c

G ⊢ e :⊥ G , 𝑐𝑡𝑥⊢ c

Limitations of the type system

11

MORE

This type system is not complete.

• c satisfies noninterference ⇏ G , 𝑐𝑡𝑥 ⊢ c
– There is a command c, such that noninterference is

satisfied, but c is not type correct.

• Example:
– Γ x = {Alice}, Γ y = {Alice, Bob}

– c is if x>0 then y:=1 else y:=1

– c satisfies noninterference, because x does not leak
to y.

– c is not type correct, because Γ(x) ⋢ Γ(y).

12

This type system is not complete.

• Another example:

– Γ x = {Alice}, Γ y = {Alice, Bob}

– c is if 1=1 then y:=1 else y:=x

– c satisfies noninterference, because x does not leak to y.

– c is not type correct, because Γ(x) ⋢ Γ(y).

• So, this type system is conservative.
It has false positives:
– There are programs that satisfy noninterference, but they

are not type correct.

13

This type system has false positives.

14

Can we build a complete mechanism?

• Is there an enforcement mechanism for information
flow control that has no false positives?
– A mechanism that rejects only programs that do not

satisfy noninterference?

• No! [Sabelfeld and Myers, 2003]

– “The general problem of confidentiality for programs is
undecidable.”

– The halting problem can be reduced to the information
flow control problem.

– Example:
if s>1 then c; p:=2 else skip

• If we could precisely decide whether this program is secure, we
could decide whether c terminates!

15

Can we build a mechanism with fewer
false positives?

Switch from static to dynamic mechanisms!

16

From static to dynamic enforcement
mechanisms

• Dynamic mechanisms use run time information to
decrease false positives.

• A dynamic mechanism checks/deduces labels along
the execution:

– When an assignment x:=e is executed,

• either check whether Γ e ⊔ 𝑐𝑡𝑥 ⊑ Γ(x) holds,
– The execution of a program is halted when a check fails.

• or deduce Γ(x) such that Γ e ⊔ 𝑐𝑡𝑥 ⊑ Γ(x) holds.

– When execution enters a conditional command, the
mechanism augments 𝑐𝑡𝑥 with the label of the guard.

17

From static to dynamic enforcement
mechanisms

• Under a dynamic enforcement mechanism with fixed Γ,

• where Γ x = {Alice}, Γ y = {Alice, Bob},

• command

if 1=1 then y:=1 else y:=x

• would always be executed to completion,

• because dynamic check Γ 1 ⊔ Γ(1=1) ⊑ Γ(y) always
succeeds,

• and because branch y:=x is never taken.

• Remember: the static type system rejects this program
before execution, even though the program is secure!

18

But, there is a caveat…

• A dynamic mechanism may leak information

– when deducing labels during execution, or

– when deciding to halt an execution due to a failed
check.

19

Leaking through labels

• Flow-sensitive labels: Γ changes during analysis.
• Initially: Γ x = L, Γ y = L, Γ h = H

x:=0;

if h>0 then x:=1 else skip

y:=x

• At termination, when h≯0: Γ y = Γ x = L.
– One public output.

• At termination, when h>0: Γ y = Γ x = H.
– No public output.

• So, h>0 is leaked to public outputs.
• Problem: Even though h flows to x, x is tagged with H only

when h>0.
20

Leaking through labels

• Purely dynamic mechanisms are usually unsound.

• Purely dynamic mechanism with additional
restrictions can become sound:

– Restriction: Stop execution whenever the guard
expression of a conditional command is high.

– But, the resulting mechanism is more conservative
than desired.

• Alternatively…

21

Use on-the-fly static analysis

• Use on-the-fly static analysis to update the labels
of target variables in untaken branch.

• The resulting mechanism is sound and less
conservative.

22

Use on-the-fly static analysis

x:=0;

if h>0 then x:=1 else skip

23

h>0 is
evaluated
to false.

Problem: x was tagged with H only when h>0 was true,
even though h always flow to x.
Goal: x should be tagged with H at every execution.

Use on-the-fly static analysis

x:=0;

if h>0 then x:=1 else skip

24

Execute
taken
branch.

Use on-the-fly static analysis

x:=0;

if h>0 then x:=1 else skip

25

Apply on-the-fly
static analysis to
the untaken
branch.

Οn-the-fly static analysis:
Γ x = Γ 1 ⊔ Γ h>0 = Η

Use on-the-fly static analysis

x:=0;

if h>0 then x:=1 else skip

26

Γ x = Η

Goal: x should be tagged with H at every execution.

But, there is a caveat…

• A dynamic mechanism may leak information

– when deducing labels during execution, or

– when deciding to halt an execution (because a check
on labels failed).

27

Leaking through halting execution

• Consider fixed Γ: Γ(p)=L and Γ(s)=H.
• Consider program:

p:=0;

if s>0 then p:=1 else s:=1;

p:=2

• If s>0 is true, then execution is halted.
– No public output.

• If s>0 is false, then execution terminates normally.
– One public output.

• Thus, s>0 is leaked to public outputs.
• How can we solve this problem? Research!

28

Static versus Dynamic

• Static:
– Low run time overhead.
– No new covert channels.
– More conservative.

• Dynamic
– Increased run time overhead.
– Possible new covert channels.
– Less conservative.

• Ongoing research for both static and dynamic.
– Different expressiveness of policies, different NI versions,

different mechanisms.

29

Past and current research on static
analysis

• [Denning and Denning 1977]

• VSI type system [Volpano, Smith, and Irvine
1996]

• Jif [Myers 1999] Java + Information Flow
(originally JFlow)

• FlowCaml [Simonet 2003] OCaml + Information
Flow

• Aura, PCML5, Fine, ...

30

Jif

31

Jif

Security type:
only root may

learn
information in

this field

32

Jif

Declassification:
okay to leak

whether
password
matches

33

Past and current research on dynamic
analysis

• RIFLE (ISA) [Vachharajani et al. 2004]

• HiStar (OS) [Zeldovich et al. 2006]

• Trishul (JVM) [Nair et al. 2008]

• TaintDroid (Android) [Enck et al. 2010]

• LIO (Haskell) [Stefan et al. 2011]

• ...

34

Information flow control:
the wheels for security!

35

Upcoming events

• [Wednesday] A6 due

• [May 18] Final exam

Suspense is achieved by information control:
What you know. What the reader knows.

What the characters know.
– Tom Clancy

36

